Search results for: data mining challenges
28020 Upgrade of Value Chains and the Effect on Resilience of Russia’s Coal Industry and Receiving Regions on the Path of Energy Transition
Authors: Sergey Nikitenko, Vladimir Klishin, Yury Malakhov, Elena Goosen
Abstract:
Transition to renewable energy sources (solar, wind, bioenergy, etc.) and launching of alternative energy generation has weakened the role of coal as a source of energy. The Paris Agreement and assumption of obligations by many nations to orderly reduce CO₂ emissions by means of technological modernization and climate change adaptation has abridged coal demand yet more. This paper aims to assess current resilience of the coal industry to stress and to define prospects for coal production optimization using high technologies pursuant to global challenges and requirements of energy transition. Our research is based on the resilience concept adapted to the coal industry. It is proposed to divide the coal sector into segments depending on the prevailing value chains (VC). Four representative models of VC are identified in the coal sector. The most promising lines of upgrading VC in the coal industry include: •Elongation of VC owing to introduction of clean technologies of coal conversion and utilization; •Creation of parallel VC by means of waste management; •Branching of VC (conversion of a company’s VC into a production network). The upgrade effectiveness is governed in many ways by applicability of advanced coal processing technologies, usability of waste, expandability of production, entrance to non-rival markets and localization of new segments of VC in receiving regions. It is also important that upgrade of VC by means of formation of agile high-tech inter-industry production networks within the framework of operating surface and underground mines can reduce social, economic and ecological risks associated with closure of coal mines. Such promising route of VC upgrade is application of methanotrophic bacteria to produce protein to be used as feed-stuff in fish, poultry and cattle breeding, or in production of ferments, lipoids, sterols, antioxidants, pigments and polysaccharides. Closed mines can use recovered methane as a clean energy source. There exist methods of methane utilization from uncontrollable sources, including preliminary treatment and recovery of methane from air-and-methane mixture, or decomposition of methane to hydrogen and acetylene. Separated hydrogen is used in hydrogen fuel cells to generate power to feed the process of methane utilization and to supply external consumers. Despite the recent paradigm of carbon-free energy generation, it is possible to preserve the coal mining industry using the differentiated approach to upgrade of value chains based on flexible technologies with regard to specificity of mining companies.Keywords: resilience, resilience concept, resilience indicator, resilience in the Russian coal industry, value chains
Procedia PDF Downloads 10728019 Women in Urban Agriculture: Institutional Challenges, COVID-19 and the War in Bahir Dar, Ethiopia
Authors: Meseret Gebeyehu Yehuala
Abstract:
Women represent the majority of urban farmers engaged in vegetable and fruit production in Bahir Dar, Ethiopia. We examine urban agriculture in Bahir Dar city in the context of disruptions caused by the civil war and COVID-19. The Sustainable Livelihoods Framework serves as a conceptual frame to explore the vulnerability context, the structural and institutional challenges faced by women, and how this impacts their livelihoods. A total of 25 urban women farmers and 6 key informants were involved in the study through explorative and structured interviews conducted in 2021. Observations and informal conversations during repeated visits provided deeper insights. In addition, key informants employed in civil service institutions and experts were interviewed. Data were analysed by applying qualitative content analysis by using Atlas tia software. Women report that they experience a lack of access to land, insecurity of tenure, irregular technical support and input provision by agricultural extension services, and lack of access to credit and formal marketplaces. The COVID-19 pandemic restrictions aggravated this situation by delaying agricultural extension offices’ provision of necessary inputs and disrupting food handling and storage leading to the loss of perishable products. Bombing in relation to the civil war has destroyed harvests and left women in fear of returning to their fields. Women stated that vegetable and fruit production could contribute to their incomes, household food supplies, and more diversified diets. However, the city municipal office has, so far, not committed to supporting urban agriculture as a livelihood strategy.Keywords: urban agriculture, institutional challenges, Bahir Dar, sustainable livelihood framework
Procedia PDF Downloads 9928018 Application of Building Information Modeling in Energy Management of Individual Departments Occupying University Facilities
Authors: Kung-Jen Tu, Danny Vernatha
Abstract:
To assist individual departments within universities in their energy management tasks, this study explores the application of Building Information Modeling in establishing the ‘BIM based Energy Management Support System’ (BIM-EMSS). The BIM-EMSS consists of six components: (1) sensors installed for each occupant and each equipment, (2) electricity sub-meters (constantly logging lighting, HVAC, and socket electricity consumptions of each room), (3) BIM models of all rooms within individual departments’ facilities, (4) data warehouse (for storing occupancy status and logged electricity consumption data), (5) building energy management system that provides energy managers with various energy management functions, and (6) energy simulation tool (such as eQuest) that generates real time 'standard energy consumptions' data against which 'actual energy consumptions' data are compared and energy efficiency evaluated. Through the building energy management system, the energy manager is able to (a) have 3D visualization (BIM model) of each room, in which the occupancy and equipment status detected by the sensors and the electricity consumptions data logged are displayed constantly; (b) perform real time energy consumption analysis to compare the actual and standard energy consumption profiles of a space; (c) obtain energy consumption anomaly detection warnings on certain rooms so that energy management corrective actions can be further taken (data mining technique is employed to analyze the relation between space occupancy pattern with current space equipment setting to indicate an anomaly, such as when appliances turn on without occupancy); and (d) perform historical energy consumption analysis to review monthly and annually energy consumption profiles and compare them against historical energy profiles. The BIM-EMSS was further implemented in a research lab in the Department of Architecture of NTUST in Taiwan and implementation results presented to illustrate how it can be used to assist individual departments within universities in their energy management tasks.Keywords: database, electricity sub-meters, energy anomaly detection, sensor
Procedia PDF Downloads 30728017 A Comparative Study on Automatic Feature Classification Methods of Remote Sensing Images
Authors: Lee Jeong Min, Lee Mi Hee, Eo Yang Dam
Abstract:
Geospatial feature extraction is a very important issue in the remote sensing research. In the meantime, the image classification based on statistical techniques, but, in recent years, data mining and machine learning techniques for automated image processing technology is being applied to remote sensing it has focused on improved results generated possibility. In this study, artificial neural network and decision tree technique is applied to classify the high-resolution satellite images, as compared to the MLC processing result is a statistical technique and an analysis of the pros and cons between each of the techniques.Keywords: remote sensing, artificial neural network, decision tree, maximum likelihood classification
Procedia PDF Downloads 34728016 The Implementation of Corporate Social Responsibility to Contribute the Isolated District and the Drop behind District to Overcome the Poverty, Study Cases: PT. Kaltim Prima Coal (KPC) Sanggata, East Borneo, Indonesia
Authors: Sri Suryaningsum
Abstract:
The achievement ‘Best Practice Model’ holds by the government on behalf of the success implementation corporate social responsibility program that held on PT. Kaltim Prima Coal which had operation located in the isolated district in Sanggata, it could be the reference for the other companies to improve the social welfare in surrounding area, especially for the companies that have operated in the isolated area in Indonesia. The rule of Kaltim Prima Coal as the catalyst in the development progress to push up the independence of district especially for the district which has located in surrounding mining operation from village level to the regency level, those programs had written in the 7 field program in Corporate Social Responsibility, it was doing by stakeholders. The stakeholders are village government, sub-district government, Regency and citizen. One of the best programs that implement at PT. Kaltim Prima Coal is Regarding Resettlement that was completed based on Asian Development Bank Resettlement Best Practice and International Financial Corporation Resettlement Action Plan. This program contributed on the resettlement residences to develop the isolated and the neglected district.Keywords: CSR, isolated, neglected, poverty, mining industry
Procedia PDF Downloads 24728015 Competency-Based Social Work Practice and Challenges in Child Case Management: Studies in the Districts Social Welfare Services, Malaysia
Authors: Sopian Brahim, Mohd Suhaimi Mohamad, Ezarina Zakaria, Norulhuda Sarnon
Abstract:
This study aims to explore the practical experience of child welfare case workers and professionalism in the child case management in Malaysia. This paper discusses the specific social work practice competency and challenges faced by child caseworkers in the fieldwork. This research is qualitative with Grounded Theory approach. Four sessions of Focused Group Discussion (FGD) have been conducted involving a total of 27 caseworkers (child protector and probation officers) in the Klang Valley. The study found that the four basic principles of knowledge in child case management namely: 1. Knowledge in child case management, 2. Professional values of caseworkers towards children, 3. skills in managing cases, and 4. Culturally competence practice in child case managemenr. In addition, major challenges faced in the child case management are the capacity and commitment of the family in children's rehabilitation program, the credibility of the case worker are being challenge and challenges in support system from intra and inter-agency. This study is important for policy makers to take into account the capacity and needs of the child's case worker in accordance with national social work competency framework thereby improving case management services for children more systematically in line with national standards.Keywords: social work practice, child case management, competency-based knowledge, professionalism
Procedia PDF Downloads 33528014 The Use of Self-Determination Theory to Assess the Opportunities and Challenges for Blended E-Learning in Egypt: An Analysis of the Motivations of Logistics Lecturers
Authors: Aisha Tarek Noour, Nick Hubbard
Abstract:
Blended e-Learning (BL) is proving to be an effective pedagogical tool in many areas of business and management education, but there remains a number of barriers to overcome before its implementation. This paper seeks to analyse the views of lecturers towards BL according to Self-Determination Theory (SDT), and identifies the opportunities and challenges for using BL in Logistics Education in an Egyptian higher education establishment. SDT is approached from a different perspective and the relationship between intrinsic motivation (IM), extrinsic motivation (EM), and amotivation (AM) is analysed and related to the opportunities and challenges of the BL method. The case study methodology comprises of a series of interviews with lecturers employed at three Colleges of International Transport and Logistics (CITLs) at the Arab Academy for Science, Technology, Maritime and Transport (AAST&MT) in Egypt. A structured face-to-face interview was undertaken with 61 interviewees across all faculty positions: Deans, Associate Professors, Assistant Professor, Department Heads, Part-time instructors, Teaching Assistants, and Graduate Teaching Assistants. The findings were based on "content analysis" of the interview transcripts and use of the NVivo10 software program. The research contributes to the application of SDT within the field of BL through an analysis of the views of lecturers towards the opportunities and challenges that BL offers to logistics educators in Egypt.Keywords: intrinsic motivation, extrinsic motivation, amotivation, autonomy, competence, relatedness, self-determination theory and blended e-learning
Procedia PDF Downloads 44028013 Explainable Graph Attention Networks
Authors: David Pham, Yongfeng Zhang
Abstract:
Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.Keywords: explainable AI, graph attention network, graph neural network, node classification
Procedia PDF Downloads 19828012 Implementing Building Information Modelling to Attain Lean and Green Benefits
Authors: Ritu Ahuja
Abstract:
Globally the built environment sector is striving to be highly efficient, quality-centred and socially-responsible. Built environment sector is an integral part of the economy and plays an important role in urbanization, industrialization and improved quality of living. The inherent challenges such as excessive material and process waste, over reliance on resources, energy usage, and carbon footprint need to be addressed in order to meet the needs of the economy. It is envisioned that these challenges can be resolved by integration of Lean-Green-Building Information Modelling (BIM) paradigms. Ipso facto, with BIM as a catalyst, this research identifies the operational and tactical connections of lean and green philosophies by providing a conceptual integration framework and underpinning theories. The research has developed a framework for BIM-based organizational capabilities for enhanced adoption and effective use of BIM within architectural organizations. The study was conducted through a sequential mixed method approach focusing on collecting and analyzing both qualitative and quantitative data. The framework developed as part of this study will enable architectural organizations to successfully embrace BIM on projects and gain lean and green benefits.Keywords: BIM, lean, green, AEC organizations
Procedia PDF Downloads 18928011 A New Block Cipher for Resource-Constrained Internet of Things Devices
Authors: Muhammad Rana, Quazi Mamun, Rafiqul Islam
Abstract:
In the Internet of Things (IoT), many devices are connected and accumulate a sheer amount of data. These Internet-driven raw data need to be transferred securely to the end-users via dependable networks. Consequently, the challenges of IoT security in various IoT domains are paramount. Cryptography is being applied to secure the networks for authentication, confidentiality, data integrity and access control. However, due to the resource constraint properties of IoT devices, the conventional cipher may not be suitable in all IoT networks. This paper designs a robust and effective lightweight cipher to secure the IoT environment and meet the resource-constrained nature of IoT devices. We also propose a symmetric and block-cipher based lightweight cryptographic algorithm. The proposed algorithm increases the complexity of the block cipher, maintaining the lowest computational requirements possible. The proposed algorithm efficiently constructs the key register updating technique, reduces the number of encryption rounds, and adds a new layer between the encryption and decryption processes.Keywords: internet of things, cryptography block cipher, S-box, key management, security, network
Procedia PDF Downloads 11328010 Challenges of School Leadership
Authors: Stefan Ninković
Abstract:
The main purpose of this paper is to examine the different theoretical approaches and relevant empirical evidence and thus, recognize some of the most pressing challenges faced by school leaders. This paper starts from the fact that the new mission of the school is characterized by the need for stronger coordination among students' academic, social and emotional learning. In this sense, school leaders need to focus their commitment, vision and leadership on the issues of students' attitudes, language, cultural and social background, and sexual orientation. More specifically, they should know what a good teaching is for student’s at-risk, students whose first language is not dominant in school, those who’s learning styles are not in accordance with usual teaching styles, or who are stigmatized. There is a rather wide consensus around the fact that the traditionally popular concept of instructional leadership of the school principal is no longer sufficient. However, in a number of "pro-leadership" circles, including certain groups of academic researchers, consultants and practitioners, there is an established tendency of attributing school principal an extraordinary influence towards school achievements. On the other hand, the situation in which all employees in the school are leaders is a utopia par excellence. Although leadership obviously can be efficiently distributed across the school, there are few findings that speak about sources of this distribution and factors making it sustainable. Another idea that is not particularly new, but has only recently gained in importance is related to the fact that the collective capacity of the school is an important resource that often remains under-cultivated. To understand the nature and power of collaborative school cultures, it is necessary to know that these operate in a way that they make their all collective members' tacit knowledge explicit. In this sense, the question is how leaders in schools can shape collaborative culture and create social capital in the school. Pressure exerted on schools to systematically collect and use the data has been accompanied by the need for school leaders to develop new competencies. The role of school leaders is critical in the process of assessing what data are needed and for what purpose. Different types of data are important: test results, data on student’s absenteeism, satisfaction with school, teacher motivation, etc. One of the most important tasks of school leaders are data-driven decision making as well as ensuring transparency of the decision-making process. Finally, the question arises whether the existing models of school leadership are compatible with the current social and economic trends. It is necessary to examine whether and under what conditions schools are in need for forms of leadership that are different from those that currently prevail. Closely related to this issue is also to analyze the adequacy of different approaches to leadership development in the school.Keywords: educational changes, leaders, leadership, school
Procedia PDF Downloads 33628009 High-Value Health System for All: Technologies for Promoting Health Education and Awareness
Authors: M. P. Sebastian
Abstract:
Health for all is considered as a sign of well-being and inclusive growth. New healthcare technologies are contributing to the quality of human lives by promoting health education and awareness, leading to the prevention, early diagnosis and treatment of the symptoms of diseases. Healthcare technologies have now migrated from the medical and institutionalized settings to the home and everyday life. This paper explores these new technologies and investigates how they contribute to health education and awareness, promoting the objective of high-value health system for all. The methodology used for the research is literature review. The paper also discusses the opportunities and challenges with futuristic healthcare technologies. The combined advances in genomics medicine, wearables and the IoT with enhanced data collection in electronic health record (EHR) systems, environmental sensors, and mobile device applications can contribute in a big way to high-value health system for all. The promise by these technologies includes reduced total cost of healthcare, reduced incidence of medical diagnosis errors, and reduced treatment variability. The major barriers to adoption include concerns with security, privacy, and integrity of healthcare data, regulation and compliance issues, service reliability, interoperability and portability of data, and user friendliness and convenience of these technologies.Keywords: big data, education, healthcare, information communication technologies (ICT), patients, technologies
Procedia PDF Downloads 21028008 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models
Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur
Abstract:
In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity
Procedia PDF Downloads 6828007 Advancing Urban Sustainability through Data-Driven Machine Learning Solutions
Authors: Nasim Eslamirad, Mahdi Rasoulinezhad, Francesco De Luca, Sadok Ben Yahia, Kimmo Sakari Lylykangas, Francesco Pilla
Abstract:
With the ongoing urbanization, cities face increasing environmental challenges impacting human well-being. To tackle these issues, data-driven approaches in urban analysis have gained prominence, leveraging urban data to promote sustainability. Integrating Machine Learning techniques enables researchers to analyze and predict complex environmental phenomena like Urban Heat Island occurrences in urban areas. This paper demonstrates the implementation of data-driven approach and interpretable Machine Learning algorithms with interpretability techniques to conduct comprehensive data analyses for sustainable urban design. The developed framework and algorithms are demonstrated for Tallinn, Estonia to develop sustainable urban strategies to mitigate urban heat waves. Geospatial data, preprocessed and labeled with UHI levels, are used to train various ML models, with Logistic Regression emerging as the best-performing model based on evaluation metrics to derive a mathematical equation representing the area with UHI or without UHI effects, providing insights into UHI occurrences based on buildings and urban features. The derived formula highlights the importance of building volume, height, area, and shape length to create an urban environment with UHI impact. The data-driven approach and derived equation inform mitigation strategies and sustainable urban development in Tallinn and offer valuable guidance for other locations with varying climates.Keywords: data-driven approach, machine learning transparent models, interpretable machine learning models, urban heat island effect
Procedia PDF Downloads 3728006 An Approach to Building a Recommendation Engine for Travel Applications Using Genetic Algorithms and Neural Networks
Authors: Adrian Ionita, Ana-Maria Ghimes
Abstract:
The lack of features, design and the lack of promoting an integrated booking application are some of the reasons why most online travel platforms only offer automation of old booking processes, being limited to the integration of a smaller number of services without addressing the user experience. This paper represents a practical study on how to improve travel applications creating user-profiles through data-mining based on neural networks and genetic algorithms. Choices made by users and their ‘friends’ in the ‘social’ network context can be considered input data for a recommendation engine. The purpose of using these algorithms and this design is to improve user experience and to deliver more features to the users. The paper aims to highlight a broader range of improvements that could be applied to travel applications in terms of design and service integration, while the main scientific approach remains the technical implementation of the neural network solution. The motivation of the technologies used is also related to the initiative of some online booking providers that have made the fact that they use some ‘neural network’ related designs public. These companies use similar Big-Data technologies to provide recommendations for hotels, restaurants, and cinemas with a neural network based recommendation engine for building a user ‘DNA profile’. This implementation of the ‘profile’ a collection of neural networks trained from previous user choices, can improve the usability and design of any type of application.Keywords: artificial intelligence, big data, cloud computing, DNA profile, genetic algorithms, machine learning, neural networks, optimization, recommendation system, user profiling
Procedia PDF Downloads 16328005 Implementing Effective Strategies to Improve Teaching and Learning in Higher Education: Balancing the Engagement Acts between Lecturers And Students
Authors: Jeffrey Siphiwe Mkhize
Abstract:
Twelve years of schooling for most South African children, particularly those children from disadvantaged past, are confronted with numerous and diverse challenges. These challenges range from infrastructural limitations, language of teaching, poor resources and varying family backgrounds. Likewise, schools are categorized to signify schools’ geographic location, poverty lines, societal class and type of students that the school are likely to enroll. Such categorization perpetuates particular lines of identities that are indirectly reinforced by the same system that seeks to redress. South African universities prefer point systems to determine students’ suitability to gain access to their programmes. Once students are admitted based on the qualifying points there is an assumed equity in the manner in which they receive tuition. They are assumed as equal; noting the widened access to South African universities as means to redress past inequalities. Given the challenges, inequalities, it is necessary to view higher education as a site for knowledge construction that is accessible to all students. Epistemological access is key to all students irrespective of their socio-economic status. This paper seeks to contribute to the discourse of student engagement using lecturer-student relationship as a lens to understand this phenomenon. Data were generated using South African Survey of Student Engagement, focus group interviews, semi-structured one-on-one-interviews as well as document analysis. The focus was on students registered for the first year of a Bachelor of Education degree as well as lecturers that teach high risk modules in this qualification at the same level. The findings suggest that lecturers are challenged by overcrowded classrooms and over-enrolled modules; this challenge hampers their good intentions to become more efficient and innovative in their teaching. Students lack confidence in approaching lecturers for assistance. Collaborative learning has stronger results and students believe in self-support to deal with their challenges based on their individual strengths. Collaborative learning is key to student academic performance.Keywords: collaborative learning, consultations, student engagement, student performance
Procedia PDF Downloads 10828004 Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures
Authors: Tamanna Goyal, Divya Bansal, Sanjeev Sofat
Abstract:
In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results.Keywords: association rules, clustering, similarity measure, statistical approaches
Procedia PDF Downloads 32028003 The Effectiveness of Spatial Planning And Land Use Management Act, 2013 in Fetakgomo Tubatse Local Municipality: Case Study of Apel Nodal Point
Authors: Hlabishi Peter Ntloana
Abstract:
This paper aims to present the effectiveness of the Spatial Planning and Land Use Management Act, 2013, in addressing key spatial challenges in Fetakgomo Tubatse Local Municipality, mainly focusing on Apel nodal point. Spatial Planning and Land Use Management Act, 2013, popularly known as SPLUMA, aimed at addressing emerging and existing spatial planning and land use management challenges in South Africa. There are critical key spatial challenges that are continuously encountered in Apel Nodal Point, which include dispersed rural settlement mainly in a communal settlement. The spatial patterns and rural settlements development patterns are a challenge, and such results in uncoordinated human settlements. The objective of this research paper is to analyze the spatial planning of Apel nodal points and determine the effectiveness of the SPLUMA policy. Key Informant interviews were conducted with 20 participants, and also the municipal Spatial Development Framework was considered to explore more challenges and proposed recommendations. The results divulged that there is a huge gap in addressing spatial planning, mainly in rural areas, and correlation with the findings of the Municipal Spatial Development framework. In conclusion, spatial planning remains a critical dilemma in most rural settlements, and there must be programmes and strategies to balance the effectiveness of spatial planning in urban and rural settlements.Keywords: land use management, rural settlement, spatial development framework, spatial planning
Procedia PDF Downloads 17728002 Long Term Evolution Multiple-Input Multiple-Output Network in Unmanned Air Vehicles Platform
Authors: Ashagrie Getnet Flattie
Abstract:
Line-of-sight (LOS) information, data rates, good quality, and flexible network service are limited by the fact that, for the duration of any given connection, they experience severe variation in signal strength due to fading and path loss. Wireless system faces major challenges in achieving wide coverage and capacity without affecting the system performance and to access data everywhere, all the time. In this paper, the cell coverage and edge rate of different Multiple-input multiple-output (MIMO) schemes in 20 MHz Long Term Evolution (LTE) system under Unmanned Air Vehicles (UAV) platform are investigated. After some background on the enormous potential of UAV, MIMO, and LTE in wireless links, the paper highlights the presented system model which attempts to realize the various benefits of MIMO being incorporated into UAV platform. The performances of the three MIMO LTE schemes are compared with the performance of 4x4 MIMO LTE in UAV scheme carried out to evaluate the improvement in cell radius, BER, and data throughput of the system in different morphology. The results show that significant performance gains such as bit error rate (BER), data rate, and coverage can be achieved by using the presented scenario.Keywords: LTE, MIMO, path loss, UAV
Procedia PDF Downloads 27928001 Food Security of Migrants in a Regional Area of Australia: A Qualitative Study
Authors: Joanne Sin Wei Yeoh, Quynh Lê, Rosa McManamey
Abstract:
Food security indicates the ability of individuals, households and communities to acquire food that is healthy, sustainable, affordable, appropriate and accessible. Despite Australia’s current ability to produce enough food to feed a population larger than its current population, there has been substantial evidence over the last decades to demonstrate many Australians struggle to feed themselves, including those from a cultural and linguistically diverse (CALD) background. The study aimed to investigate migrants’ perceptions and experiences on food security in Tasmania. Semi-structured interviews were conducted with 33 migrants residing in North, South and North West Tasmania, who were recruited through purposive sampling. Thematic analysis was employed to analyse the interview data. Four main themes were identified from the interview data: (1) Understanding of food security; (2) Experiences with the food security in Tasmania; (3) Factors that influence migrants’ food security in Tasmania; and (4) Acculturation strategies. Various sub-themes have emerged under each of these four major themes. Though the findings indicate participants are satisfied with their current food security in Tasmania, they still encounter some challenges in food availability, accessibility, and affordability in Tasmania. Factors that influence migrants’ food security were educational background, language barrier, socioeconomic status, geographical isolation, and cultural background. By using different acculturation strategies, migrants managed to adapt to the new food culture. In addition, social and cultural capitals were also treated as vital roles in improving migrants’ food security. The findings indicate migrants residing in Tasmania face different challenges on food security. They use different strategies for food security while acculturating into a new environment. The findings may provide useful information for migrants in Australia and various private organisations or relevant government departments that address food security for migrants.Keywords: experiences, food security, migrants, perceptions
Procedia PDF Downloads 42428000 Challenges and Recommendations for Medical Device Tracking and Traceability in Singapore: A Focus on Nursing Practices
Authors: Zhuang Yiwen
Abstract:
The paper examines the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. One of the major challenges identified is the lack of a standard coding system for medical devices, which makes it difficult to track them effectively. The paper suggests the use of the Unique Device Identifier (UDI) as a single standard for medical devices to improve tracking and reduce errors. The paper also explores the use of barcoding and image recognition to identify and document medical devices in nursing practices. In nursing practices, the use of barcodes for identifying medical devices is common. However, the information contained in these barcodes is often inconsistent, making it challenging to identify which segment contains the model identifier. Moreover, the use of barcodes may be improved with the use of UDI, but many subsidized accessories may still lack barcodes. The paper suggests that the readiness for UDI and barcode standardization requires standardized information, fields, and logic in electronic medical record (EMR), operating theatre (OT), and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. Nursing workflow and data flow also need to be taken into account. The paper also explores the use of image recognition, specifically the Tesseract OCR engine, to identify and document implants in public hospitals due to limitations in barcode scanning. The study found that the solution requires an implant information database and checking output against the database. The solution also requires customization of the algorithm, cropping out objects affecting text recognition, and applying adjustments. The solution requires additional resources and costs for a mobile/hardware device, which may pose space constraints and require maintenance of sterile criteria. The integration with EMR is also necessary, and the solution require changes in the user's workflow. The paper suggests that the long-term use of Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) as a supporting terminology to improve clinical documentation and data exchange in healthcare. SNOMED CT provides a standardized way of documenting and sharing clinical information with respect to procedure, patient and device documentation, which can facilitate interoperability and data exchange. In conclusion, the paper highlights the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. The paper suggests the use of UDI and barcode standardization to improve tracking and reduce errors. It also explores the use of image recognition to identify and document medical devices in nursing practices. The paper emphasizes the importance of standardized information, fields, and logic in EMR, OT, and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. These recommendations could help the Singapore healthcare system to improve tracking and traceability of medical devices and ultimately enhance patient safety.Keywords: medical device tracking, unique device identifier, barcoding and image recognition, systematized nomenclature of medicine clinical terms
Procedia PDF Downloads 7727999 Towards a Successful Implementation of ICT in Education : Analyzing Teacher Practices and Perceptions
Authors: Azzeddine Atibi, Lamalif latifa, Khadija El Kababi, Salim Ahmed, Mohamed Radid
Abstract:
This study analyzes the integration of Information and Communication Technologies (ICT) in modern education, where these tools have become essential. Due to the rapid emergence of new technologies and their increasing adoption in education, it is important to understand how teachers use and perceive these tools. The study pursues three objectives : examining current teacher practices regarding ICT, evaluating their impact on student skills and engagement, and making recommendations for better integration of ICT in education. The study's methodology is based on a quantitative approach, using a questionnaire administered to a sample of 104 teachers. This questionnaire, rigorously validated to ensure its reliability, gathers representative data on perceptions and challenges related to the use of ICT. The results show widespread adoption of ICT by teachers, with the majority reporting an improvement in student skills due to these technologies. However, opinions diverge on their impact on student engagement : some teachers note an increase in engagement, while others remain skeptical. Persistent challenges include insufficient technological infrastructure and the need for ongoing training. The recommendations highlight the importance of improving infrastructures and supporting the professional development of teachers to optimize the integration of ICT.Keywords: ICT, education, teaching practices, teacher perceptions, continuing education
Procedia PDF Downloads 3327998 The Investigation of Enzymatic Activity in the Soils Under the Impact of Metallurgical Industrial Activity in Lori Marz, Armenia
Authors: T. H. Derdzyan, K. A. Ghazaryan, G. A. Gevorgyan
Abstract:
Beta-glucosidase, chitinase, leucine-aminopeptidase, acid phosphomonoestearse and acetate-esterase enzyme activities in the soils under the impact of metallurgical industrial activity in Lori marz (district) were investigated. The results of the study showed that the activities of the investigated enzymes in the soils decreased with increasing distance from the Shamlugh copper mine, the Chochkan tailings storage facility and the ore transportation road. Statistical analysis revealed that the activities of the enzymes were positively correlated (significant) to each other according to the observation sites which indicated that enzyme activities were affected by the same anthropogenic factor. The investigations showed that the soils were polluted with heavy metals (Cu, Pb, As, Co, Ni, Zn) due to copper mining activity in this territory. The results of Pearson correlation analysis revealed a significant negative correlation between heavy metal pollution degree (Nemerow integrated pollution index) and soil enzyme activity. All of this indicated that copper mining activity in this territory causing the heavy metal pollution of the soils resulted in the inhabitation of the activities of the enzymes which are considered as biological catalysts to decompose organic materials and facilitate the cycling of nutrients.Keywords: Armenia, metallurgical industrial activity, heavy metal pollutionl, soil enzyme activity
Procedia PDF Downloads 29627997 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review
Authors: Agastya Pratap Singh
Abstract:
Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation
Procedia PDF Downloads 2027996 ISMARA: Completely Automated Inference of Gene Regulatory Networks from High-Throughput Data
Authors: Piotr J. Balwierz, Mikhail Pachkov, Phil Arnold, Andreas J. Gruber, Mihaela Zavolan, Erik van Nimwegen
Abstract:
Understanding the key players and interactions in the regulatory networks that control gene expression and chromatin state across different cell types and tissues in metazoans remains one of the central challenges in systems biology. Our laboratory has pioneered a number of methods for automatically inferring core gene regulatory networks directly from high-throughput data by modeling gene expression (RNA-seq) and chromatin state (ChIP-seq) measurements in terms of genome-wide computational predictions of regulatory sites for hundreds of transcription factors and micro-RNAs. These methods have now been completely automated in an integrated webserver called ISMARA that allows researchers to analyze their own data by simply uploading RNA-seq or ChIP-seq data sets and provides results in an integrated web interface as well as in downloadable flat form. For any data set, ISMARA infers the key regulators in the system, their activities across the input samples, the genes and pathways they target, and the core interactions between the regulators. We believe that by empowering experimental researchers to apply cutting-edge computational systems biology tools to their data in a completely automated manner, ISMARA can play an important role in developing our understanding of regulatory networks across metazoans.Keywords: gene expression analysis, high-throughput sequencing analysis, transcription factor activity, transcription regulation
Procedia PDF Downloads 6527995 Global Pandemic of Chronic Diseases: Public Health Challenges to Reduce the Development
Authors: Benjamin Poku
Abstract:
Purpose: The purpose of the research is to conduct systematic reviews and synthesis of existing knowledge that addresses the growing incidence and prevalence of chronic diseases across the world and its impact on public health in relation to communicable diseases. Principal results: A careful compilation and summary of 15-20 peer-reviewed publications from reputable databases such as PubMed, MEDLINE, CINAHL, and other peer-reviewed journals indicate that the Global pandemic of Chronic diseases (such as diabetes, high blood pressure, etc.) have become a greater public health burden in proportion as compared to communicable diseases. Significant conclusions: Given the complexity of the situation, efforts and strategies to mitigate the negative effect of the Global Pandemic on chronic diseases within the global community must include not only urgent and binding commitment of all stakeholders but also a multi-sectorial long-term approach to increase the public health educational approach to meet the increasing world population of over 8 billion people and also the aging population as well to meet the complex challenges of chronic diseases.Keywords: pandemic, chronic disease, public health, health challenges
Procedia PDF Downloads 52727994 Evaluating the Water Balance of Sokoto Basement Complex to Address Water Security Challenges
Authors: Murtala Gada Abubakar, Aliyu T. Umar
Abstract:
A substantial part of Nigeria is part of semi-arid areas of the world, underlain by basement complex (hard) rocks which are very poor in both transmission and storage of appreciable quantity of water. Recently, a growing attention is being paid on the need to develop water resources in these areas largely due to concerns about increasing droughts and the need to maintain water security challenges. While there is ample body of knowledge that captures the hydrological behaviours of the sedimentary part, reported research which unambiguously illustrates water distribution in the basement complex of the Sokoto basin remains sparse. Considering the growing need to meet the water requirements of those living in this region necessitated the call for accurate water balance estimations that can inform a sustainable planning and development to address water security challenges for the area. To meet this task, a one-dimensional soil water balance model was developed and utilised to assess the state of water distribution within the Sokoto basin basement complex using measured meteorological variables and information about different landscapes within the complex. The model simulated the soil water storage and rates of input and output of water in response to climate and irrigation where applicable using data from 2001 to 2010 inclusive. The results revealed areas within the Sokoto basin basement complex that are rich and deficient in groundwater resource. The high potential areas identified includes the fadama, the fractured rocks and the cultivated lands, while the low potential areas are the sealed surfaces and non-fractured rocks. This study concludes that the modelling approach is a useful tool for assessing the hydrological behaviour and for better understanding the water resource availability within a basement complex.Keywords: basement complex, hydrological processes, Sokoto Basin, water security
Procedia PDF Downloads 31927993 Aviation versus Aerospace: A Differential Analysis of Workforce Jobs via Text Mining
Authors: Sarah Werner, Michael J. Pritchard
Abstract:
From pilots to engineers, the skills development within the aerospace industry is exceptionally broad. Employers often struggle with finding the right mixture of qualified skills to fill their organizational demands. This effort to find qualified talent is further complicated by the industrial delineation between two key areas: aviation and aerospace. In a broad sense, the aerospace industry overlaps with the aviation industry. In turn, the aviation industry is a smaller sector segment within the context of the broader definition of the aerospace industry. Furthermore, it could be conceptually argued that -in practice- there is little distinction between these two sectors (i.e., aviation and aerospace). However, through our unstructured text analysis of over 6,000 job listings captured, our team found a clear delineation between aviation-related jobs and aerospace-related jobs. Using techniques in natural language processing, our research identifies an integrated workforce skill pattern that clearly breaks between these two sectors. While the aviation sector has largely maintained its need for pilots, mechanics, and associated support personnel, the staffing needs of the aerospace industry are being progressively driven by integrative engineering needs. Increasingly, this is leading many aerospace-based organizations towards the acquisition of 'system level' staffing requirements. This research helps to better align higher educational institutions with the current industrial staffing complexities within the broader aerospace sector.Keywords: aerospace industry, job demand, text mining, workforce development
Procedia PDF Downloads 27227992 Catering for Children with Autism in the Regular Classroom: Challenges and the Way Forward
Authors: Beatrice Tayo Ajayi, Dzever Linus Terry
Abstract:
Pupils with autism in the general classroom have dare need to be adequately catered for in social and academic activities for successful attainment in school work and future life. However, adequate catering for autistic children by teachers that basically received no training in content related to inclusive education and lack the ability to use inclusive strategies during classroom instruction appears to be a mirage. This paper intends to examine the current classroom environment in relation to the level to which autistic primary school pupils are catered for in the regular classroom. The study also seeks to identify the challenges teachers experience in the course of catering to the needs of children with autism and the way out. The sample consists of thirty (30) primary school teachers of Ondo West Local Government Area, Ondo State, Nigeria (10 male, 15 female), age grades between twenty five (25) to sixty (60). Data collection will be a survey using the researcher developed 18 statements Four Point- Likert Scale type to assess the level to which participants agree or disagree with the statement about catering for pupils with autism. Results are to be evaluated using descriptive statistical methods of mean scores and t-test.Keywords: autism, catering, general classroom, way forward
Procedia PDF Downloads 11527991 Psychosocial Experience of Parents of Children with Conduct Disorder in Thulamela, South Africa
Authors: Constance Singo, Choja Oduaran
Abstract:
Child mental disorders are strongly associated with different forms of challenges, including behavioural problems. The burden of care for children with a mental disorder is high and put primary caregivers, parents in particular, at risk of poor mental wellbeing. Understanding the experience of parents of children with mental disorders is crucial to developing a relevant intervention to assist them to attain optimal mental wellbeing. The aim of this study was to explore the experiences of parents of children with conduct disorder by focussing on the psychological and social stress experience of the parents in raising and caring for their children with conduct disorder. A qualitative research approach, using in-depth interview was utilized in this study. Purposive and snowballing sampling techniques were used to select 9 parents of children with conduct disorder in Thulamela Municipality, Limpopo Province of South Africa. Participants comprising of 2 males and 7 females aged between 30 years and 49 years were interviewed individually at scheduled appointment in-home setting. Interviews were conducted in both English and Setswana language. Data collected in Setswana language were translated to English by 'expert in language translation'. Ethical approval was obtained from appropriate authority before data collection. Thematic analysis was conducted to analyse the collected data. The findings identified anger, fear, depressive symptoms, denial, and suicidal ideation as predominant psychological experiences of the parents. Furthermore, deteriorated interpersonal relationships with family and community members, financial stress, and stigma emerged as social problems being the experience of the parents. It was concluded that parents of children with conduct disorder are highly traumatized by the challenges of caring for their children. We recommend professional engagement in terms of counselling service to support the parents. There is also a need for massive enlightenment programmes for members of the community in order to support the parents of children with child mental disorders.Keywords: conduct disorder, parents, psychosocial experiences, South Africa
Procedia PDF Downloads 138