Search results for: brain mapping
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2268

Search results for: brain mapping

1098 Study the Action of Malathion Induced Enzymatic Changes in the Target Organ of Fish Labeo Rohita

Authors: Sudha Summarwar, Jyotsana Pandey, Deepali Lall

Abstract:

The Malathion compound has the great tendency to be accumulated in the organs of the fishes both if it is present in traces or in higher amount in the aquatic environment. It has the tendency to be accumulated more in quantity in the organs directly exposed to it. The accumulation was found to be time and concentration dependent. The accumulation of malathion was maximum in gills and is the minimum in the brain. Effect of different sub-lethal concentrations (l/5th, l/l0th, l/15th, l/20th, and 1/25th fractions of 96 hr. LC50) of malathion compound on acid phosphatase (AcPase), alkaline phosphatase (AlPase), serum glutamic oxalacetic transaminase (SGOT) and Serum Glucose-6-Phosphatase (S-G-6-Pase), serum glutamic pyruvic transaminase (SGPT) in blood of Labeo rohita exposed for the period of 15. 30, 45, and 60 days, have been studied in present investigations. In general the alterations were concentrations and duration dependent.

Keywords: AcPase, AlPase, Labeo rohita, malathion, S-G-6-Pase, SGOT, SGPT

Procedia PDF Downloads 325
1097 Exposure to Tactile Cues Does Not Influence Spatial Navigation in 129 S1/SvLm Mice

Authors: Rubaiyea Uddin, Rebecca Taylor, Emily Levesque

Abstract:

The hippocampus, located in the limbic system, is most commonly known for its role in memory and spatial navigation (as cited in Brain Reward and Pathways). It maintains an especially important role in specifically episodic and declarative memory. The hippocampus has also recently been linked to dopamine, the reward pathway’s primary neurotransmitter. Since research has found that dopamine also contributes to memory consolidation and hippocampal plasticity, this neurotransmitter is potentially responsible for contributing to the hippocampus’s role in memory formation. In this experiment we tested to see the effect of tactile cues on spatial navigation for eight different mice. We used a radial arm that had one designated “reward” arm containing sucrose. The presence or absence of bedding was our tactile cue. We attempted to see if the memory of that cue would enhance the mice’s memory of having received the reward in that arm. The results from our study showed there was no significant response from the use of tactile cues on spatial navigation on our 129 mice. Tactile cues therefore do not influence spatial navigation.

Keywords: mice, radial arm maze, memory, spatial navigation, tactile cues, hippocampus, reward, sensory skills, Alzheimer's, neuro-degenerative diseases

Procedia PDF Downloads 688
1096 Registration of Multi-Temporal Unmanned Aerial Vehicle Images for Facility Monitoring

Authors: Dongyeob Han, Jungwon Huh, Quang Huy Tran, Choonghyun Kang

Abstract:

Unmanned Aerial Vehicles (UAVs) have been used for surveillance, monitoring, inspection, and mapping. In this paper, we present a systematic approach for automatic registration of UAV images for monitoring facilities such as building, green house, and civil structures. The two-step process is applied; 1) an image matching technique based on SURF (Speeded up Robust Feature) and RANSAC (Random Sample Consensus), 2) bundle adjustment of multi-temporal images. Image matching to find corresponding points is one of the most important steps for the precise registration of multi-temporal images. We used the SURF algorithm to find a quick and effective matching points. RANSAC algorithm was used in the process of finding matching points between images and in the bundle adjustment process. Experimental results from UAV images showed that our approach has a good accuracy to be applied to the change detection of facility.

Keywords: building, image matching, temperature, unmanned aerial vehicle

Procedia PDF Downloads 292
1095 The Five Aggregates in Buddhism and Natural Sciences: A Revolutionary Perspective of Nature

Authors: Choo Fatt Foo

Abstract:

The Five Aggregates is core to Buddhism teaching. According to Buddhism, human beings and all sentient beings are made up of nothing but the Five Aggregates. If that is the case, the Five Aggregates must be found in all natural sciences. So far, there has not been any systematic connection between the Five Aggregates and natural sciences. This study aims at identifying traces of the Five Aggregates in various levels of natural sciences and pointing possible directions for future research. The following areas are briefly explored to identify the connection with the Five Aggregates: physics, chemistry, organic chemistry, DNA, cell, and human body and brain. Traces of the Five Aggregates should be found in each level of this hierarchy of natural sciences for human and sentient beings to be said to be made up of the Five Aggregates. This study proposes a hierarchical structure of nature cutting every level with the Five Aggregates and the Four Great Elements as its basis. The structure proposed by this study would revolutionize how we look at nature. Hopefully, better understanding of sciences in this manner will steer the application of scientific methods and technology towards a brighter future with compassion and tolerance.

Keywords: the five aggregates, Buddhism, four great elements, physics, calabi-yau manifold

Procedia PDF Downloads 190
1094 Implementation in Python of a Method to Transform One-Dimensional Signals in Graphs

Authors: Luis Andrey Fajardo Fajardo

Abstract:

We are immersed in complex systems. The human brain, the galaxies, the snowflakes are examples of complex systems. An area of interest in Complex systems is the chaos theory. This revolutionary field of science presents different ways of study than determinism and reductionism. Here is where in junction with the Nonlinear DSP, chaos theory offer valuable techniques that establish a link between time series and complex theory in terms of complex networks, so that, the study of signals can be explored from the graph theory. Recently, some people had purposed a method to transform time series in graphs, but no one had developed a suitable implementation in Python with signals extracted from Chaotic Systems or Complex systems. That’s why the implementation in Python of an existing method to transform one dimensional chaotic signals from time domain to graph domain and some measures that may reveal information not extracted in the time domain is proposed.

Keywords: Python, complex systems, graph theory, dynamical systems

Procedia PDF Downloads 509
1093 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children

Authors: Norah Mohammed Alshahrani, Abdulaziz Almaleh

Abstract:

Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset.

Keywords: autism spectrum disorder, machine learning, feature selection, support vector machine

Procedia PDF Downloads 151
1092 Efficient GIS Based Public Health System for Disease Prevention

Authors: K. M. G. T. R. Waidyarathna, S. M. Vidanagamachchi

Abstract:

Public Health System exists in Sri Lanka has a satisfactory complete information flow when compared to other systems in developing countries. The availability of a good health information system contributed immensely to achieve health indices that are in line with the developed countries like US and UK. The health information flow at the moment is completely paper based. In Sri Lanka, the fields like banking, accounting and engineering have incorporated information and communication technology to the same extent that can be observed in any other country. The field of medicine has behind those fields throughout the world mainly due to its complexity, issues like privacy, confidentially and lack of people with knowledge in both fields of Information Technology (IT) and Medicine. Sri Lanka’s situation is much worse and the gap is rapidly increasing with huge IT initiatives by private-public partnerships in all other countries. The major goal of the framework is to support minimizing the spreading diseases. To achieve that a web based framework should be implemented for this application domain with web mapping. The aim of this GIS based public health system is a secure, flexible, easy to maintain environment for creating and maintaining public health records and easy to interact with relevant parties.

Keywords: DHIS2, GIS, public health, Sri Lanka

Procedia PDF Downloads 563
1091 What Smart Can Learn about Art

Authors: Faten Hatem

Abstract:

This paper explores the associated understanding of the role and meaning of art and whether it is perceived to be separate from smart city construction. The paper emphasises the significance of fulfilling the inherent need for discovery and interaction, driving people to explore new places and think of works of art. This is done by exploring the ways of thinking and types of art in Milton Keynes by illustrating a general pattern of misunderstanding that relies on the separation between smart, art, and architecture, promoting a better and deeper understanding of the interconnections between neuroscience, art, and architecture. A reflective approach is used to clarify the potential and impact of using art-based research, methodology, and ways of knowing when approaching global phenomena and knowledge production while examining the process of making and developing smart cities, in particular, asserting that factors can severely impact it in the process of conducting the study itself. It follows a case study as a research strategy. The qualitative methods included data collection and analysis that involved interviews and observations that depended on visuals.

Keywords: smart cities, art and smart, smart cities design, smart cities making, sustainability, city brain and smart cities metrics, smart cities standards, smart cities applications, governance, planning and policy

Procedia PDF Downloads 118
1090 [Keynote Talk]: Existence of Random Fixed Point Theorem for Contractive Mappings

Authors: D. S. Palimkar

Abstract:

Random fixed point theory has received much attention in recent years, and it is needed for the study of various classes of random equations. The study of random fixed point theorems was initiated by the Prague school of probabilistic in the 1950s. The existence and uniqueness of fixed points for the self-maps of a metric space by altering distances between the points with the use of a control function is an interesting aspect in the classical fixed point theory. In a new category of fixed point problems for a single self-map with the help of a control function that alters the distance between two points in a metric space which they called an altering distance function. In this paper, we prove the results of existence of random common fixed point and its uniqueness for a pair of random mappings under weakly contractive condition for generalizing alter distance function in polish spaces using Random Common Fixed Point Theorem for Generalized Weakly Contractions.

Keywords: Polish space, random common fixed point theorem, weakly contractive mapping, altering function

Procedia PDF Downloads 273
1089 RoboWeedSupport-Sub Millimeter Weed Image Acquisition in Cereal Crops with Speeds up till 50 Km/H

Authors: Morten Stigaard Laursen, Rasmus Nyholm Jørgensen, Mads Dyrmann, Robert Poulsen

Abstract:

For the past three years, the Danish project, RoboWeedSupport, has sought to bridge the gap between the potential herbicide savings using a decision support system and the required weed inspections. In order to automate the weed inspections it is desired to generate a map of the weed species present within the field, to generate the map images must be captured with samples covering the field. This paper investigates the economical cost of performing this data collection based on a camera system mounted on a all-terain vehicle (ATV) able to drive and collect data at up to 50 km/h while still maintaining a image quality sufficient for identifying newly emerged grass weeds. The economical estimates are based on approximately 100 hectares recorded at three different locations in Denmark. With an average image density of 99 images per hectare the ATV had an capacity of 28 ha per hour, which is estimated to cost 6.6 EUR/ha. Alternatively relying on a boom solution for an existing tracktor it was estimated that a cost of 2.4 EUR/ha is obtainable under equal conditions.

Keywords: weed mapping, integrated weed management, weed recognition, image acquisition

Procedia PDF Downloads 233
1088 Syndrome of Irreversible Lithium-Effectuated Neurotoxicity: Case Report and Review of Literature

Authors: David J. Thomson, Joshua C. J. Chew

Abstract:

Background: Syndrome of Irreversible Lithium-Effectuated Neurotoxicity (SILENT) is a rare complication of lithium toxicity that typically causes irreversible cerebellar dysfunction. These patients may require hemodialysis and extensive supports in the intensive care. Methods: A review was performed on the available literature of SILENT with a focus on current pathophysiological hypotheses and advances in treatment. Articles were restricted to the English language. Results: Although the exact mechanism is unclear, CNS demyelination, especially in the cerebellum, was seen on the brain biopsies of a proportion of patients. There is no definitive management of SILENT but instead current management is focused on primary and tertiary prevention – detection of those at risk, and rehabilitation post onset of neurological deficits. Conclusions: This review draws conclusions from a limited amount of available literature, most of which are isolated case reports. Greater awareness of SILENT and further investigation into the risk factors and pathogenesis are required so this serious and irreversible syndrome may be avoided.

Keywords: lithium toxicity, pathogenesis, SILENT, syndrome of irreversible lithium-effectuated neurotoxicity

Procedia PDF Downloads 496
1087 Self-focused Language and the Reversive Impact of Depression in Negative Mood

Authors: Soheil Behdarvandirad

Abstract:

The relationship between depression and self-focused language has been well documented. The more depressed a person is, the more "I"s, "me"s, and "my"s they will use. The present study attempted to factor in the impact of mood and examine whether negative mood has self-focused impacts similar to those of depression. For this purpose, 160 Iranian native speakers of Farsi were divided into three experimental groups of negative, neutral, and positive groups. After completing the BDI-II inventory and depression measurement, they were presented with pretested mood stimuli (3 separate videos to induce the target moods). Finally, they were asked to write between 10 to 20 minutes about a topic that asked them to freely write about their state of life, how you feel about it and the reasons that had shaped their current life circumstances. While the significant correlation between depression and I-talk was observed, negative mood led to more we-talk in general and seemed to even push the participants away from self-rumination. It seems that it is an emotion-regulatory strategy that participants subconsciously adopt to distract themselves from the disturbing mood. However, negative mood intensified the self-focused language among depressed participants. Such results can be further studied by examining brain areas that are more involved in self-perception and particularly in precuneus.

Keywords: self-focused language, depression, mood, precuneus

Procedia PDF Downloads 84
1086 The End Justifies the Means: Using Programmed Mastery Drill to Teach Spoken English to Spanish Youngsters, without Relying on Homework

Authors: Robert Pocklington

Abstract:

Most current language courses expect students to be ‘vocational’, sacrificing their free time in order to learn. However, pupils with a full-time job, or bringing up children, hardly have a spare moment. Others just need the language as a tool or a qualification, as if it were book-keeping or a driving license. Then there are children in unstructured families whose stressful life makes private study almost impossible. And the countless parents whose evenings and weekends have become a nightmare, trying to get the children to do their homework. There are many arguments against homework being a necessity (rather than an optional extra for more ambitious or dedicated students), making a clear case for teaching methods which facilitate full learning of the key content within the classroom. A methodology which could be described as Programmed Mastery Learning has been used at Fluency Language Academy (Spain) since 1992, to teach English to over 4000 pupils yearly, with a staff of around 100 teachers, barely requiring homework. The course is structured according to the tenets of Programmed Learning: small manageable teaching steps, immediate feedback, and constant successful activity. For the Mastery component (not stopping until everyone has learned), the memorisation and practice are entrusted to flashcard-based drilling in the classroom, leading all students to progress together and develop a permanently growing knowledge base. Vocabulary and expressions are memorised using flashcards as stimuli, obliging the brain to constantly recover words from the long-term memory and converting them into reflex knowledge, before they are deployed in sentence building. The use of grammar rules is practised with ‘cue’ flashcards: the brain refers consciously to the grammar rule each time it produces a phrase until it comes easily. This automation of lexicon and correct grammar use greatly facilitates all other language and conversational activities. The full B2 course consists of 48 units each of which takes a class an average of 17,5 hours to complete, allowing the vast majority of students to reach B2 level in 840 class hours, which is corroborated by an 85% pass-rate in the Cambridge University B2 exam (First Certificate). In the past, studying for qualifications was just one of many different options open to young people. Nowadays, youngsters need to stay at school and obtain qualifications in order to get any kind of job. There are many students in our classes who have little intrinsic interest in what they are studying; they just need the certificate. In these circumstances and with increasing government pressure to minimise failure, teachers can no longer think ‘If they don’t study, and fail, its their problem’. It is now becoming the teacher’s problem. Teachers are ever more in need of methods which make their pupils successful learners; this means assuring learning in the classroom. Furthermore, homework is arguably the main divider between successful middle-class schoolchildren and failing working-class children who drop out: if everything important is learned at school, the latter will have a much better chance, favouring inclusiveness in the language classroom.

Keywords: flashcard drilling, fluency method, mastery learning, programmed learning, teaching English as a foreign language

Procedia PDF Downloads 110
1085 Social Network Analysis as a Research and Pedagogy Tool in Problem-Focused Undergraduate Social Innovation Courses

Authors: Sean McCarthy, Patrice M. Ludwig, Will Watson

Abstract:

This exploratory case study explores the deployment of Social Network Analysis (SNA) in mapping community assets in an interdisciplinary, undergraduate, team-taught course focused on income insecure populations in a rural area in the US. Specifically, it analyzes how students were taught to collect data on community assets and to visualize the connections between those assets using Kumu, an SNA data visualization tool. Further, the case study shows how social network data was also collected about student teams via their written communications in Slack, an enterprise messaging tool, which enabled instructors to manage and guide student research activity throughout the semester. The discussion presents how SNA methods can simultaneously inform both community-based research and social innovation pedagogy through the use of data visualization and collaboration-focused communication technologies.

Keywords: social innovation, social network analysis, pedagogy, problem-based learning, data visualization, information communication technologies

Procedia PDF Downloads 147
1084 Relation between Physical and Mechanical Properties of Concrete Paving Stones Using Neuro-Fuzzy Approach

Authors: Erion Luga, Aksel Seitllari, Kemal Pervanqe

Abstract:

This study investigates the relation between physical and mechanical properties of concrete paving stones using neuro-fuzzy approach. For this purpose 200 samples of concrete paving stones were selected randomly from different sources. The first phase included the determination of physical properties of the samples such as water absorption capacity, porosity and unit weight. After that the indirect tensile strength test and compressive strength test of the samples were performed. İn the second phase, adaptive neuro-fuzzy approach was employed to simulate nonlinear mapping between the above mentioned physical properties and mechanical properties of paving stones. The neuro-fuzzy models uses Sugeno type fuzzy inference system. The models parameters were adapted using hybrid learning algorithm and input space was fuzzyfied by considering grid partitioning. It is concluded based on the observed data and the estimated data through ANFIS models that neuro-fuzzy system exhibits a satisfactory performance.

Keywords: paving stones, physical properties, mechanical properties, ANFIS

Procedia PDF Downloads 342
1083 Factors Affecting English Language Acquisition and Learning for Primary Schools in Nigeria

Authors: Chibuzor Dalmeida

Abstract:

This paper shall discuss the factors affecting English Language Acquisition and Learning for Primary School in Nigeria. Learning English language is a difficult task mostly those at the primary school level. Pupils find it more difficult on vocabulary, grammar and sentence structure, idioms, pronunciation etc. Researchers have discovered the reasons behind these discrepancies and have formulated theories that could be of utmost assistance to English language teachers and students. This paper further looked at the following factors that include Learner Characteristics and Personal Traits, Situational and Environmental Factors, Prior Language Development and Competence and Age and Brain Development. It further recommended that pupils must learn new vocabulary, rules for grammar and sentence structure, idioms, pronunciation. Pupils whose families and communities set high standards for language acquisition learn more quickly than those who do not. Exposure to high-quality programs also essential. Pupils do best when they are allowed to speak their native language.

Keywords: acquisition, affecting, factors, learning

Procedia PDF Downloads 628
1082 Neural Network Based Decision Trees Using Machine Learning for Alzheimer's Diagnosis

Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, S. Meenakshi Sundaram

Abstract:

Alzheimer’s disease is one of the prevalent kind of ailment, expected for impudent reconciliation or an effectual therapy is to be accredited hitherto. Probable detonation of patients in the upcoming years, and consequently an enormous deal of apprehension in early discovery of the disorder, this will conceivably chaperon to enhanced healing outcomes. Complex impetuosity of the brain is an observant symbolic of the disease and a unique recognition of genetic sign of the disease. Machine learning alongside deep learning and decision tree reinforces the aptitude to absorb characteristics from multi-dimensional data’s and thus simplifies automatic classification of Alzheimer’s disease. Susceptible testing was prophesied and realized in training the prospect of Alzheimer’s disease classification built on machine learning advances. It was shrewd that the decision trees trained with deep neural network fashioned the excellent results parallel to related pattern classification.

Keywords: Alzheimer's diagnosis, decision trees, deep neural network, machine learning, pattern classification

Procedia PDF Downloads 297
1081 Indoor Localization by Pattern Matching Method Based on Extended Database

Authors: Gyumin Hwang, Jihong Lee

Abstract:

This paper studied the CSS-based indoor localization system which is easy to implement, inexpensive to compose the systems, additionally CSS-based indoor localization system covers larger area than other system. However, this system has problem which is affected by reflected distance data. This problem in localization is caused by the multi-path effect. Error caused by multi-path is difficult to be corrected because the indoor environment cannot be described. In this paper, in order to solve the problem by multi-path, we have supplemented the localization system by using pattern matching method based on extended database. Thereby, this method improves precision of estimated. Also this method is verified by experiments in gymnasium. Database was constructed by 1 m intervals, and 16 sample data were collected from random position inside the region of DB points. As a result, this paper shows higher accuracy than existing method through graph and table.

Keywords: chirp spread spectrum, indoor localization, pattern-matching, time of arrival, multi-path, mahalanobis distance, reception rate, simultaneous localization and mapping, laser range finder

Procedia PDF Downloads 244
1080 Customizable Sonic EEG Neurofeedback Environment to Train Self-Regulation of Momentary Mental and Emotional State

Authors: Cyril Kaplan, Nikola Jajcay

Abstract:

We developed purely sonic, musical based, highly customizable EEG neurofeedback environment designed to administer a new neurofeedback training protocol. The training protocol concentrates on improving the ability to switch between several mental states characterized by different levels of arousal, each of them correlated to specific brain wave activity patterns in several specific regions of neocortex. This paper describes the neurofeedback training environment we developed and its specificities, thus can be helpful as a manual to guide other neurofeedback users (both researchers and practitioners) interested in our editable open source program (available to download and usage under CC license). Responses and reaction of first trainees that used our environment are presented in this article. Combination of qualitative methods (thematic analysis of neurophenomenological insights of trainees and post-session semi-structured interviews) and quantitative methods (power spectra analysis of EEG recorded during the training) were employed to obtain a multifaceted view on our new training protocol.

Keywords: EEG neurofeedback, mixed methods, self-regulation, switch-between-states training

Procedia PDF Downloads 227
1079 Cranioplasty with Custom Implant Realized Using 3D Printing Technology

Authors: Trad Khodja Rafik, Mahtout Amine, Ghoul Rachid, Benbouali Amine, Boulahlib Amine, Hariza Abdelmalik

Abstract:

Cranioplasty with custom implant realized using 3D printing technology. Cranioplasty is a surgical act that aims restoring cranial bone losses in order to protect the brain from external aggressions and to improve the patient aesthetic appearance. This objective can be achieved with taking advantage of the current technological development in computer science and biomechanics. The objective of this paper it to present an approach for the realization of high precision biocompatible cranial implants using new 3D printing technologies at the lowest cost. The proposed method is to reproduce the missing part of the skull by referring to its healthy contralateral part. Once the model is validated by the neurosurgeons, a mold is 3D printed for the production of a biocompatible implant in Poly-Methyl-Methacrylate (PMMA) acrylic cement. Using this procedure four patients underwent this procedure with excellent aesthetic results.

Keywords: cranioplasty, cranial bone loss, 3D printing technology, custom-made implants, PMMA

Procedia PDF Downloads 111
1078 The 10,000 Fold Effect of Retrograde Neurotransmission, a New Concept for Stroke Revival: Use of Intracarotid Sodium Nitroprusside

Authors: Vinod Kumar

Abstract:

Background: Tissue Plasminogen Activator (tPA) showed a level 1 benefit in acute stroke (within 3-6 hrs). Intracarotid sodium nitroprusside (ICSNP) has been studied in this context with a wide treatment window, fast recovery and affordability. This work proposes two mechanisms for acute cases and one mechanism for chronic cases, which are interrelated, for physiological recovery. a)Retrograde Neurotransmission (acute cases): 1)Normal excitatory impulse: at the synaptic level, glutamate activates NMDA receptors, with nitric oxide synthetase (NOS) on the postsynaptic membrane, for further propagation by the calcium-calmodulin complex. Nitric oxide (NO, produced by NOS) travels backward across the chemical synapse and binds the axon-terminal NO receptor/sGC of a presynaptic neuron, regulating anterograde neurotransmission (ANT) via retrograde neurotransmission (RNT). Heme is the ligand-binding site of the NO receptor/sGC. Heme exhibits > 10,000-fold higher affinity for NO than for oxygen (the 10,000-fold effect) and is completed in 20 msec. 2)Pathological conditions: normal synaptic activity, including both ANT and RNT, is absent. A NO donor (SNP) releases NO from NOS in the postsynaptic region. NO travels backward across a chemical synapse to bind to the heme of a NO receptor in the axon terminal of a presynaptic neuron, generating an impulse, as under normal conditions. b)Vasospasm: (acute cases) Perforators show vasospastic activity. NO vasodilates the perforators via the NO-cAMP pathway. c)Long-Term Potentıatıon (LTP): (chronic cases) The NO–cGMP-pathway plays a role in LTP at many synapses throughout the CNS and at the neuromuscular junction. LTP has been reviewed both generally and with respect to brain regions specific for memory/learning. Aims/Study Des’gn: The principles of “generation of impulses from the presynaptic region to the postsynaptic region by very potent RNT (10,000-fold effect)” and “vasodilation of arteriolar perforators” are the basis of the authors’ hypothesis to treat stroke cases. Case-control prospective study. Mater’als And Methods: The experimental population included 82 stroke patients (10 patients were given control treatments without superfusion or with 5% dextrose superfusion, and 72 patients comprised the ICSNP group). The mean time for superfusion was 9.5 days post-stroke. Pre- and post-ICSNP status was monitored by NIHSS, MRI and TCD. Results: After 90 seconds in the ICSNP group, the mean change in the NIHSS score was a decrease of 1.44 points, or 6.55%; after 2 h, there was a decrease of 1.16 points; after 24 h, there was an increase of 0.66 points, 2.25%, compared to the control-group increase of 0.7 points, or 3.53%; at 7 days, there was an 8.61-point decrease, 44.58%, compared to the control-group increase of 2.55 points, or 22.37%; at 2 months in ICSNP, there was a 6.94-points decrease, 62.80%, compared to the control-group decrease of 2.77 points, or 8.78%. TCD was documented and improvements were noted. Conclusions: ICSNP is a swift-acting drug in the treatment of stroke, acting within 90 seconds on day 9.5 post-stroke with a small decrease after 24 hours. The drug recovers from this decrease quickly.

Keywords: brain infarcts, intracarotid sodium nitroprusside, perforators, vasodilatıons, retrograde transmission, the 10, 000-fold effect

Procedia PDF Downloads 307
1077 sing Eye Tracking to Measure the Impact of Persuasion Principles in Phishing Emails

Authors: Laura Bishop, Isabel Jones, Linn Halvorsen, Angela Smith

Abstract:

Phishing emails are a form of social engineering where attackers deceive email users into revealing sensitive information or installing malware such as ransomware. Scammers often use persuasion techniques to influence email users to interact with malicious content. This study will use eye-tracking equipment to analyze how participants respond to and process Cialdini’s persuasion principles when utilized within phishing emails. Eye tracking provides insights into what is happening on the subconscious level of the brain that the participant may not be aware of. An experiment is conducted to track participant eye movements, whilst interacting with and then filing a series of persuasive emails delivered at random. Eye tracking metrics will be analyzed in relation to whether a malicious email has been identified as phishing (filed as ‘suspicious’) or not phishing (filed in any other folder). This will help determine the most influential persuasion techniques and those 'areas of interest' within an email that require intervention. The results will aid further research on how to reduce the effects of persuasion on human decision-making when interacting with phishing emails.

Keywords: cybersecurity, human-centric, phishing, psychology

Procedia PDF Downloads 83
1076 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine

Authors: D. Madhushanka, Y. Liu, H. C. Fernando

Abstract:

Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.

Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2

Procedia PDF Downloads 235
1075 Application of Lean Manufacturing Tools in Hot Asphalt Production

Authors: S. Bayona, J. Nunez, D. Paez, C. Diaz

Abstract:

The application of Lean manufacturing tools continues to be an effective solution for increasing productivity, reducing costs and eliminating waste in the manufacture of goods and services. This article analyzes the production process of a hot asphalt manufacturing company from an administrative and technical perspective. Three main phases were analyzed, the first phase was related to the determination of the risk priority number of the main operations in asphalt mix production process by an FMEA (Failure Mode Effects Analysis), in the second phase the Value Stream Mapping (VSM) of the production line was performed and in the third phase a SWOT (Strengths, Weaknesses Opportunities, Threats) matrix was constructed. Among the most valued failure modes were the lack training of workers in occupational safety and health issues, the lack of signaling and classification of granulated material, and the overweight of vehicles loaded. The analysis of the results in the three phases agree on the importance of training operational workers, improve communication with external actors in order to minimize delays in material orders and strengthen control suppliers.

Keywords: asphalt, lean manufacturing, productivity, process

Procedia PDF Downloads 116
1074 High-Fidelity 1D Dynamic Model of a Hydraulic Servo Valve Using 3D Computational Fluid Dynamics and Electromagnetic Finite Element Analysis

Authors: D. Henninger, A. Zopey, T. Ihde, C. Mehring

Abstract:

The dynamic performance of a 4-way solenoid operated hydraulic spool valve has been analyzed by means of a one-dimensional modeling approach capturing flow, magnetic and fluid forces, valve inertia forces, fluid compressibility, and damping. Increased model accuracy was achieved by analyzing the detailed three-dimensional electromagnetic behavior of the solenoids and flow behavior through the spool valve body for a set of relevant operating conditions, thereby allowing the accurate mapping of flow and magnetic forces on the moving valve body, in lieu of representing the respective forces by lower-order models or by means of simplistic textbook correlations. The resulting high-fidelity one-dimensional model provided the basis for specific and timely design modification eliminating experimentally observed valve oscillations.

Keywords: dynamic performance model, high-fidelity model, 1D-3D decoupled analysis, solenoid-operated hydraulic servo valve, CFD and electromagnetic FEA

Procedia PDF Downloads 177
1073 Mapping Identity: Algerian Diasporic Voices in Literature

Authors: Salma Kaouthar Letaief

Abstract:

This article investigates the experience of diaspora in the writings of Algerian diasporic writers, namely: Leila Sebbar’s Silence on the Shores (2000), Keltoum Staali’ December’s Mimosa (2012). The study discusses the collective trauma of violence in Algeria and overseas. The experience of displacement of the characters to an alien territory compel their journey with issues related to nostalgia, identity crisis, alienation, racism, and in-betweeness. The focus in this research is, thus, on Algerian immigrants’ experience in the host country and their psychological conflicts. The theories Multiculturalism and Psychoanalysis are used to analyse the novels in this paper. While Multiculturalism examines how characters negotiate and navigate their identities in multicultural settings, Psychoanalysis enables the analysis of how characters in diasporic novels grapple with issues of identity, belonging, and self-discovery. Hence, interweaving multiculturalism and psychoanalysis provides an interdisciplinary framework that addresses both the socio-cultural and psychological aspects of the diasporic experience. Accordingly, this paper is an attempt to examine the diasporic experience and cultural dialectics.

Keywords: diaspora, algerian diasporic writers, trauma, algeria, displacement, identity crisis, cultural dialects

Procedia PDF Downloads 307
1072 Mapping Context, Roles, and Relations for Adjudicating Robot Ethics

Authors: Adam J. Bowen

Abstract:

Abstract— Should robots have rights or legal protections. Often debates concerning whether robots and AI should be afforded rights focus on conditions of personhood and the possibility of future advanced forms of AI satisfying particular intrinsic cognitive and moral attributes of rights-holding persons. Such discussions raise compelling questions about machine consciousness, autonomy, and value alignment with human interests. Although these are important theoretical concerns, especially from a future design perspective, they provide limited guidance for addressing the moral and legal standing of current and near-term AI that operate well below the cognitive and moral agency of human persons. Robots and AI are already being pressed into service in a wide range of roles, especially in healthcare and biomedical contexts. The design and large-scale implementation of robots in the context of core societal institutions like healthcare systems continues to rapidly develop. For example, we bring them into our homes, hospitals, and other care facilities to assist in care for the sick, disabled, elderly, children, or otherwise vulnerable persons. We enlist surgical robotic systems in precision tasks, albeit still human-in-the-loop technology controlled by surgeons. We also entrust them with social roles involving companionship and even assisting in intimate caregiving tasks (e.g., bathing, feeding, turning, medicine administration, monitoring, transporting). There have been advances to enable severely disabled persons to use robots to feed themselves or pilot robot avatars to work in service industries. As the applications for near-term AI increase and the roles of robots in restructuring our biomedical practices expand, we face pressing questions about the normative implications of human-robot interactions and collaborations in our collective worldmaking, as well as the moral and legal status of robots. This paper argues that robots operating in public and private spaces be afforded some protections as either moral patients or legal agents to establish prohibitions on robot abuse, misuse, and mistreatment. We already implement robots and embed them in our practices and institutions, which generates a host of human-to-machine and machine-to-machine relationships. As we interact with machines, whether in service contexts, medical assistance, or home health companions, these robots are first encountered in relationship to us and our respective roles in the encounter (e.g., surgeon, physical or occupational therapist, recipient of care, patient’s family, healthcare professional, stakeholder). This proposal aims to outline a framework for establishing limiting factors and determining the extent of moral or legal protections for robots. In doing so, it advocates for a relational approach that emphasizes the priority of mapping the complex contextually sensitive roles played and the relations in which humans and robots stand to guide policy determinations by relevant institutions and authorities. The relational approach must also be technically informed by the intended uses of the biomedical technologies in question, Design History Files, extensive risk assessments and hazard analyses, as well as use case social impact assessments.

Keywords: biomedical robots, robot ethics, robot laws, human-robot interaction

Procedia PDF Downloads 120
1071 Cognitive eTransformation Framework for Education Sector

Authors: A. Hol

Abstract:

21st century brought waves of business and industry eTransformations. The impact of change is also being seen in education. To identify the extent of this, scenario analysis methodology was utilised with the aim to assess business transformations across industry sectors ranging from craftsmanship, medicine, finance and manufacture to innovations and adoptions of new technologies and business models. Firstly, scenarios were drafted based on the current eTransformation models and its dimensions. Following this, eTransformation framework was utilised with the aim to derive the key eTransformation parameters, the essential characteristics that have enabled eTransformations across the sectors. Following this, identified key parameters were mapped to the transforming domain-education. The mapping assisted in deriving a cognitive eTransformation framework for education sector. The framework highlights the importance of context and the notion that education today needs not only to deliver content to students but it also needs to be able to meet the dynamically changing demands of specific student and industry groups. Furthermore, it pinpoints that for such processes to be supported, specific technology is required, so that instant, on demand and periodic feedback as well as flexible, dynamically expanding study content can be sought and received via multiple education mediums.

Keywords: education sector, business transformation, eTransformation model, cognitive model, cognitive systems, eTransformation

Procedia PDF Downloads 136
1070 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification

Authors: Anita Kushwaha

Abstract:

We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.

Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining

Procedia PDF Downloads 272
1069 Potential Contribution of Combined High-Resolution and Fluorescence Remote Sensing to Coastal Ecosystem Service Assessments

Authors: Yaner Yan, Ning Li, Yajun Qiao, Shuqing An

Abstract:

Although most studies have focused on assessing and mapping terrestrial ecosystem services, there is still a knowledge gap on coastal ecosystem services and an urgent need to assess them. Lau (2013) clearly defined five types of costal ecosystem services: carbon sequestration, shoreline protection, fish nursery, biodiversity, and water quality. While high-resolution remote sensing can provide the more direct, spatially estimates of biophysical parameters, such as species distribution relating to biodiversity service, and Fluorescence information derived from remote sensing direct relate to photosynthesis, availing in estimation of carbon sequestration and the response to environmental changes in coastal wetland. Here, we review the capabilities of high-resolution and fluorescence remote sesing for describing biodiversity, vegetation condition, ecological processes and highlight how these prodicts may contribute to costal ecosystem service assessment. In so doing, we anticipate rapid progress to combine the high-resolution and fluorescence remote sesing to estimate the spatial pattern of costal ecosystem services.

Keywords: ecosystem services, high resolution, remote sensing, chlorophyll fluorescence

Procedia PDF Downloads 506