Search results for: autobiographical memory functions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3538

Search results for: autobiographical memory functions

2368 Neuroanatomical Specificity in Reporting & Diagnosing Neurolinguistic Disorders: A Functional & Ethical Primer

Authors: Ruairi J. McMillan

Abstract:

Introduction: This critical analysis aims to ascertain how well neuroanatomical aetiologies are communicated within 20 case reports of aphasia. Neuroanatomical visualisations based on dissected brain specimens were produced and combined with white matter tract and vascular taxonomies of function in order to address the most consistently underreported features found within the aphasic case study reports. Together, these approaches are intended to integrate aphasiological knowledge from the past 20 years with aphasiological diagnostics, and to act as prototypal resources for both researchers and clinical professionals. The medico-legal precedent for aphasia diagnostics under Canadian, US and UK case law and the neuroimaging/neurological diagnostics relative to the functional capacity of aphasic patients are discussed in relation to the major findings of the literary analysis, neuroimaging protocols in clinical use today, and the neuroanatomical aetiologies of different aphasias. Basic Methodology: Literature searches of relevant scientific databases (e.g, OVID medline) were carried out using search terms such as aphasia case study (year) & stroke induced aphasia case study. A series of 7 diagnostic reporting criteria were formulated, and the resulting case studies were scored / 7 alongside clinical stroke criteria. In order to focus on the diagnostic assessment of the patient’s condition, only the case report proper (not the discussion) was used to quantify results. Statistical testing established if specific reporting criteria were associated with higher overall scores and potentially inferable increases in quality of reporting. Statistical testing of whether criteria scores were associated with an unclear/adjusted diagnosis were also tested, as well as the probability of a given criterion deviating from an expected estimate. Major Findings: The quantitative analysis of neuroanatomically driven diagnostics in case studies of aphasia revealed particularly low scores in the connection of neuroanatomical functions to aphasiological assessment (10%), and in the inclusion of white matter tracts within neuroimaging or assessment diagnostics (30%). Case studies which included clinical mention of white matter tracts within the report itself were distributed among higher scoring cases, as were case studies which (as clinically indicated) related the affected vascular region to the brain parenchyma of the language network. Concluding Statement: These findings indicate that certain neuroanatomical functions are integrated less often within the patient report than others, despite a precedent for well-integrated neuroanatomical aphasiology also being found among the case studies sampled, and despite these functions being clinically essential in diagnostic neuroimaging and aphasiological assessment. Therefore, ultimately the integration and specificity of aetiological neuroanatomy may contribute positively to the capacity and autonomy of aphasic patients as well as their clinicians. The integration of a full aetiological neuroanatomy within the reporting of aphasias may improve patient outcomes and sustain autonomy in the event of medico-ethical investigation.

Keywords: aphasia, language network, functional neuroanatomy, aphasiological diagnostics, medico-legal ethics

Procedia PDF Downloads 67
2367 Joint Probability Distribution of Extreme Water Level with Rainfall and Temperature: Trend Analysis of Potential Impacts of Climate Change

Authors: Ali Razmi, Saeed Golian

Abstract:

Climate change is known to have the potential to impact adversely hydrologic patterns for variables such as rainfall, maximum and minimum temperature and sea level rise. Long-term average of these climate variables could possibly change over time due to climate change impacts. In this study, trend analysis was performed on rainfall, maximum and minimum temperature and water level data of a coastal area in Manhattan, New York City, Central Park and Battery Park stations to investigate if there is a significant change in the data mean. Partial Man-Kendall test was used for trend analysis. Frequency analysis was then performed on data using common probability distribution functions such as Generalized Extreme Value (GEV), normal, log-normal and log-Pearson. Goodness of fit tests such as Kolmogorov-Smirnov are used to determine the most appropriate distributions. In flood frequency analysis, rainfall and water level data are often separately investigated. However, in determining flood zones, simultaneous consideration of rainfall and water level in frequency analysis could have considerable effect on floodplain delineation (flood extent and depth). The present study aims to perform flood frequency analysis considering joint probability distribution for rainfall and storm surge. First, correlation between the considered variables was investigated. Joint probability distribution of extreme water level and temperature was also investigated to examine how global warming could affect sea level flooding impacts. Copula functions were fitted to data and joint probability of water level with rainfall and temperature for different recurrence intervals of 2, 5, 25, 50, 100, 200, 500, 600 and 1000 was determined and compared with the severity of individual events. Results for trend analysis showed increase in long-term average of data that could be attributed to climate change impacts. GEV distribution was found as the most appropriate function to be fitted to the extreme climate variables. The results for joint probability distribution analysis confirmed the necessity for incorporation of both rainfall and water level data in flood frequency analysis.

Keywords: climate change, climate variables, copula, joint probability

Procedia PDF Downloads 360
2366 Mott Transition in the VO2/LSCO Heterojunction

Authors: Yi Hu, Chun-Chi Lin, Shau-En Yeh, Shin Lee

Abstract:

In this study, p–n heterojunctions with La0.5Sr0.5CoO3 (LSCO) and W-doped VO2 thin films were fabricated by the radio frequency (r.f.) magnetron sputtering technique and sol-gel process, respectively. The thickness of VO2 and LSCO thin films are about 40 nm and 400 nm, respectively. Good crystalline match between LSCO and VO2 films was observed from the SEM. The built-in voltages for the junction are about 1.1 V and 2.3 V for the sample in the metallic and insulating state, respectively. The sample can undergo the current induced MIT during applying field when the sample was heated at 40 and 50ºC. This is in agreement with the value obtained from the difference in the work functions of LSCO and VO2. The band structure of the heterojunction was proposed based on the results of analysis.

Keywords: hetrojection, Mott transition, switching , VO2

Procedia PDF Downloads 589
2365 Hepatocyte-Intrinsic NF-κB Signaling Is Essential to Control a Systemic Viral Infection

Authors: Sukumar Namineni, Tracy O'Connor, Ulrich Kalinke, Percy Knolle, Mathias Heikenwaelder

Abstract:

The liver is one of the pivotal organs in vertebrate animals, serving a multitude of functions such as metabolism, detoxification and protein synthesis and including a predominant role in innate immunity. The innate immune mechanisms pertaining to liver in controlling viral infections have largely been attributed to the Kupffer cells, the locally resident macrophages. However, all the cells of liver are equipped with innate immune functions including, in particular, the hepatocytes. Hence, our aim in this study was to elucidate the innate immune contribution of hepatocytes in viral clearance using mice lacking Ikkβ specifically in the hepatocytes, termed IkkβΔᴴᵉᵖ mice. Blockade of Ikkβ activation in IkkβΔᴴᵉᵖ mice affects the downstream signaling of canonical NF-κB signaling by preventing the nuclear translocation of NF-κB, an important step required for the initiation of innate immune responses. Interestingly, infection of IkkβΔᴴᵉᵖ mice with lymphocytic choriomeningitis virus (LCMV) led to strongly increased hepatic viral titers – mainly confined in clusters of infected hepatocytes. This was due to reduced interferon stimulated gene (ISG) expression during the onset of infection and a reduced CD8+ T-cell-mediated response. Decreased ISG production correlated with increased liver LCMV protein and LCMV in isolated hepatocytes from IkkβΔᴴᵉᵖ mice. A similar phenotype was found in LCMV-infected mice lacking interferon signaling in hepatocytes (IFNARΔᴴᵉᵖ) suggesting a link between NFkB and interferon signaling in hepatocytes. We also observed a failure of interferon-mediated inhibition of HBV replication in HepaRG cells treated with NF-kB inhibitors corroborating our initial findings with LCMV infections. Collectively, these results clearly highlight a previously unknown and influential role of hepatocytes in the induction of innate immune responses leading to viral clearance during a systemic viral infection with LCMV-WE.

Keywords: CD8+ T cell responses, innate immune mechanisms in the liver, interferon signaling, interferon stimulated genes, NF-kB signaling, viral clearance

Procedia PDF Downloads 191
2364 From Oral to Written: Translating the Dawot (Epic Poem), Revitalizing Appreciation for Indigenous Literature

Authors: Genevieve Jorolan-Quintero

Abstract:

The recording as well as the preservation of indigenous literature is an important task as it deals with a significant heritage of pre-colonial culture. The beliefs and traditions of a people are reflected in their oral narratives, such as the folk epic, which must be written down to insure their preservation. The epic poem for instance, known as dawot among the Mandaya, one of the indigenous communities in the southern region of the Philippines, narrates the customs, the ways of life, and the adventures of an ancient people. Nabayra, an expert on Philippine folkloric studies, stresses that still extant after centuries of unknown origin, the dawot was handed down to the magdadawot (bard) by word of mouth, forming the greatest bulk of Mandaya oral tradition. Unhampered by modern means of communication to distract her/him, the magdadawot has a sharp memory of the intricacies of the ancient art of chanting the panayday (verses) of the epic poem. The dawot has several hullubaton (episodes), each of which takes several nights to chant . The language used in these oral traditions is archaic Mandaya, no longer spoken or clearly understood by the present generation. There is urgency to the task of recording and writing down what remain of the epic poem since the singers and storytellers who have retained the memory and the skill of chanting and narrating the dawot and other forms of oral tradition in their original forms are getting fewer. The few who are gifted and skilled to transmit these ancient arts and wisdom are old and dying. Unlike the other Philippine epics (i.e. the Darangen, the Ulahingan, the Hinilawod, etc.), the Mandaya epic is yet to be recognized and given its rightful place among the recorded epics in Philippine Folk Literature. The general aim of this study was to put together and preserve an intangible heritage, the Mandaya hullubaton (episodes of the dawot), in order to preserve and promote appreciation for the oral traditions and cultural legacy of the Mandaya. It was able to record, transcribe, and translate four hullubaton of the folk epic into two languages, Visayan and English to insure understanding of their contents and significance among non-Mandaya audiences. Evident in the contents of the episodes are the cultural practices, ideals, life values, and traditions of the ancient Mandaya. While the conquests and adventures of the Mandaya heroes Lumungtad, Dilam, and Gambong highlight heroic virtues, the role of the Mandaya matriarch in family affairs is likewise stressed. The recording and the translation of the hullubaton and the dawot into commonly spoken languages will not only promote knowledge and understanding about their culture, but will also stimulate in the members of this cultural community a sense of pride for their literature and culture. Knowledge about indigenous cultural system and philosophy derived from their oral literature will serve as a springboard to further comparative researches dealing with indigenous mores and belief systems among the different tribes in the Philippines, in Asia, in Africa, and other countries in the world.

Keywords: Dawot, epic poem, Mandaya, Philippine folk literature

Procedia PDF Downloads 441
2363 Location Privacy Preservation of Vehicle Data In Internet of Vehicles

Authors: Ying Ying Liu, Austin Cooke, Parimala Thulasiraman

Abstract:

Internet of Things (IoT) has attracted a recent spark in research on Internet of Vehicles (IoV). In this paper, we focus on one research area in IoV: preserving location privacy of vehicle data. We discuss existing location privacy preserving techniques and provide a scheme for evaluating these techniques under IoV traffic condition. We propose a different strategy in applying Differential Privacy using k-d tree data structure to preserve location privacy and experiment on real world Gowalla data set. We show that our strategy produces differentially private data, good preservation of utility by achieving similar regression accuracy to the original dataset on an LSTM (Long Term Short Term Memory) neural network traffic predictor.

Keywords: differential privacy, internet of things, internet of vehicles, location privacy, privacy preservation scheme

Procedia PDF Downloads 179
2362 Approach to Functional Safety-Compliant Design of Electric Power Steering Systems for Commercial Vehicles

Authors: Hyun Chul Koag, Hyun-Sik Ahn

Abstract:

In this paper, we propose a design approach for the safety mechanism of an actuator used in a commercial vehicle’s EPS system. As the number of electric/electronic system in a vehicle increases, the importance of the functional safety has been receiving much attention. EPS(Electric Power Steering) systems for commercial vehicles require large power than passenger vehicles, and hence, dual motor can be applied to get more torque. We show how to formulate the development process for the design of hardware and software of an EPS system using dual motors. A lot of safety mechanisms for the processor, sensors, and memory have been suggested, however, those for actuators have not been fully researched. It is shown by metric analyses that the target ASIL(Automotive Safety Integrated Level) is satisfied in the point of view of hardware of EPS controller.

Keywords: safety mechanism, functional safety, commercial vehicles, electric power steering

Procedia PDF Downloads 393
2361 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion

Authors: Ali Kazemi

Abstract:

Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.

Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting

Procedia PDF Downloads 66
2360 Analyzing the Politico-Religious Order of The 'Islamic State'

Authors: Galit Truman Zinman

Abstract:

The 'Islamic State' (IS) is one of the most successful jihadist groups in the modern history. The 'Islamic State' strives to realize the idea of erasing the borders between Muslim countries and establishing a wide Islamic caliphate. The 'Islamic State' is based on religious unity and opposition to existing political order. In this paper, the main argument is that the 'Islamic State' is characterized by two significant tendencies of state-building: preservation and change. The methodology of this study is based on the process tracing method and the analysis of primary sources: decisions, announcements and speeches of religious leaders of the Islamic State, slogans, rituals and symbols, audio and video clips produced by the Al-Hayat Media Center, films distributed on YouTube, as well as the content analysis of Dabiq`s articles (IS official Journal) and nasheeds (jihadi songs). The major findings of this study indicate that in practice the 'Islamic State' uses the same socio-political functions typical to the modern state (preservation), but introduces a different religious-ideological content (change). On the one hand, there is a preservation of the principles of existing modern state. Even with the rejection of secularization, globalization, and nationalism, there is an establishment of typical modern nation-state patterns. It is still a state entity, which has an ideological infrastructure, territory, population, governance and a monopoly on the use of violence, security services, justice system, tax collection, etc. All these functions characterize the modern state, and despite the desire of the 'Islamic State' to create a new kind of state, it reminds patterns of the typical modern nation-state. As for the religious-ideological content of the new state, here we can see a tendency of great change. The 'Islamic State' aims to create an Islamic caliphate which would allow the establishment of religious law and order, under a big commitment to return civilization to a seventh-century environment. The 'Islamic State' favors the fight against Western culture and its liberal ideology. It supports the struggle for global jihad against the unbelievers. Today, despite the territorial 'contraction' and the undermining of the organization's governance in Iraq and Syria, the 'Islamic State' continues to maintain its brand among jihadist activists around the world.

Keywords: Islamic State, Islamic caliphate, modern nation-state, religious law and order

Procedia PDF Downloads 183
2359 Development of a Tilt-Rotor Aircraft Model Using System Identification Technique

Authors: Ferdinando Montemari, Antonio Vitale, Nicola Genito, Giovanni Cuciniello

Abstract:

The introduction of tilt-rotor aircraft into the existing civilian air transportation system will provide beneficial effects due to tilt-rotor capability to combine the characteristics of a helicopter and a fixed-wing aircraft into one vehicle. The disposability of reliable tilt-rotor simulation models supports the development of such vehicle. Indeed, simulation models are required to design automatic control systems that increase safety, reduce pilot's workload and stress, and ensure the optimal aircraft configuration with respect to flight envelope limits, especially during the most critical flight phases such as conversion from helicopter to aircraft mode and vice versa. This article presents a process to build a simplified tilt-rotor simulation model, derived from the analysis of flight data. The model aims to reproduce the complex dynamics of tilt-rotor during the in-flight conversion phase. It uses a set of scheduled linear transfer functions to relate the autopilot reference inputs to the most relevant rigid body state variables. The model also computes information about the rotor flapping dynamics, which are useful to evaluate the aircraft control margin in terms of rotor collective and cyclic commands. The rotor flapping model is derived through a mixed theoretical-empirical approach, which includes physical analytical equations (applicable to helicopter configuration) and parametric corrective functions. The latter are introduced to best fit the actual rotor behavior and balance the differences existing between helicopter and tilt-rotor during flight. Time-domain system identification from flight data is exploited to optimize the model structure and to estimate the model parameters. The presented model-building process was applied to simulated flight data of the ERICA Tilt-Rotor, generated by using a high fidelity simulation model implemented in FlightLab environment. The validation of the obtained model was very satisfying, confirming the validity of the proposed approach.

Keywords: flapping dynamics, flight dynamics, system identification, tilt-rotor modeling and simulation

Procedia PDF Downloads 199
2358 Highly Linear and Low Noise AMR Sensor Using Closed Loop and Signal-Chopped Architecture

Authors: N. Hadjigeorgiou, A. C. Tsalikidou, E. Hristoforou, P. P. Sotiriadis

Abstract:

During the last few decades, the continuously increasing demand for accurate and reliable magnetic measurements has paved the way for the development of different types of magnetic sensing systems as well as different measurement techniques. Sensor sensitivity and linearity, signal-to-noise ratio, measurement range, cross-talk between sensors in multi-sensor applications are only some of the aspects that have been examined in the past. In this paper, a fully analog closed loop system in order to optimize the performance of AMR sensors has been developed. The operation of the proposed system has been tested using a Helmholtz coil calibration setup in order to control both the amplitude and direction of magnetic field in the vicinity of the AMR sensor. Experimental testing indicated that improved linearity of sensor response, as well as low noise levels can be achieved, when the system is employed.

Keywords: AMR sensor, closed loop, memory effects, chopper, linearity improvement, sensitivity improvement, magnetic noise, electronic noise

Procedia PDF Downloads 362
2357 Discourse Functions of Rhetorical Devices in Selected Roman Catholic Bishops' Pastoral Letters in the Ecclesiastical Province of Onitsha, Nigeria

Authors: Virginia Chika Okafor

Abstract:

The pastoral letter, an open letter addressed by a bishop to members of his diocese for the purpose of promoting faith and good Christian living, constitutes a persuasive religious discourse characterized by numerous rhetorical devices. Previous studies on Christian religious language have concentrated mainly on sermons, liturgy, prayers, theology, scriptures, hymns, and songs to the exclusion of the persuasive power of pastoral letters. This study, therefore, examined major rhetorical devices in selected Roman Catholic bishops’ Lenten pastoral letters in the Ecclesiastical Province of Onitsha, with a view to determining their persuasive discourse functions. Aristotelian Rhetoric was adopted as the framework because of its emphasis on persuasion through three main rhetorical appeals: logos, pathos, and ethos. Data were drawn from 10 pastoral letters of five Roman Catholic bishops in five dioceses (two letters from each) out of the seven in the Ecclesiastical of Onitsha. The five dioceses (Onitsha arch-diocese, Nnewi, Awka, Enugu, and Awgu dioceses) were chosen because pastoral letters are regularly published there. The 10 pastoral letters were published between 2000 and 2010 and range between 20 and 104 pages. They were selected, through purposive sampling, based on consistency in the publication and rhetorical content. Data were subjected to discourse analysis. Three categories of rhetorical devices were identified: those relating to logos (logical devices), those relating to pathos (pathetical devices), and those relating to ethos (ethical devices). Major logical devices deployed were: testimonial reference functioning as authority to validate messages; logical arguments appealing to the rationality of the audience; nominalization and passivation objectifying the validity of ideas; and modals of obligation/necessity appealing to the audience’s sense of responsibility and moral duty. Prominent among the pathetical devices deployed were: use of Igbo language to express solidarity with the audience; inclusive pronoun (we) to create a feeling of belonging, collectivism and oneness with them; prayers to inspire them; and positive emotion-laden words to refer to the Roman Catholic Church (RCC) to keep the audience emotionally attached to it. Finally, major ethical devices deployed were: use of first-person singular pronoun (I) and imperatives to invoke the authority of the bishops’ office; Latinisms to show learnedness; greetings and appreciation to express goodwill; and exemplary Biblical characters as models of faith, repentance, and love. The rhetorical devices were used in relation to the bishops’ messages of faith, repentance, love and loyalty to the Roman Catholic Church. Roman Catholic bishops’ pastoral letters in the Ecclesiastical Province of Onitsha are thus characterized by logos-, pathos-, and ethos-related rhetorical devices designed to persuade the audience to live according to the bishops’ messages of faith, love, repentance, and loyalty to the Roman Catholic Church. The rhetorical devices, therefore, establish the pastoral letters as a significant form of persuasive religious discourse.

Keywords: ecclesiastical province of Onitsha, pastoral letters, persuasive discourse functions, rhetorical devices, Roman Catholic bishops

Procedia PDF Downloads 438
2356 Load Balancing and Resource Utilization in Cloud Computing

Authors: Gagandeep Kaur

Abstract:

Cloud computing uses various computing resources such as CPU, memory, processor etc. which is used to deliver service over the network and is one of the emerging fields for large scale distributed computing. In cloud computing, execution of large number of tasks with available resources to achieve high performance, minimal total time for completion, minimum response time, effective utilization of resources etc. are the major research areas. In the proposed research, an algorithm has been proposed to achieve high performance in load balancing and resource utilization. The proposed algorithm is used to reduce the makespan, increase the resource utilization and performance cost for independent tasks. Further scheduling metrics based on algorithm in cloud computing has been proposed.

Keywords: resource utilization, response time, load balancing, performance cost

Procedia PDF Downloads 182
2355 The Gender Criteria of Film Criticism: Creating the ‘Big’, Avoiding the Important

Authors: Eleni Karasavvidou

Abstract:

Social and anthropological research, parallel to Gender Studies, highlighted the relationship between social structures and symbolic forms as an important field of interaction and recording of 'social trends.' Since the study of representations can contribute to the understanding of the social functions and power relations, they encompass. This ‘mirage,’ however, has not only to do with the representations themselves but also with the ways they are received and the film or critical narratives that are established as dominant or alternative. Cinema and the criticism of its cultural products are no exception. Even in the rapidly changing media landscape of the 21st century, movies remain an integral and widespread part of popular culture, making films an extremely powerful means of 'legitimizing' or 'delegitimizing' visions of domination and commonsensical gender stereotypes throughout society. And yet it is film criticism, the 'language per se,' that legitimizes, reinforces, rewards and reproduces (or at least ignores) the stereotypical depictions of female roles that remain common in the realm of film images. This creates the need for this issue to have emerged (also) in academic research questioning gender criteria in film reviews as part of the effort for an inclusive art and society. Qualitative content analysis is used to examine female roles in selected Oscar-nominated films against their reviews from leading websites and newspapers. This method was chosen because of the complex nature of the depictions in the films and the narratives they evoke. The films were divided into basic scenes depicting social functions, such as love and work relationships, positions of power and their function, which were analyzed by content analysis, with borrowings from structuralism (Gennette) and the local/universal images of intercultural philology (Wierlacher). In addition to the measurement of the general ‘representation-time’ by gender, other qualitative characteristics were also analyzed, such as: speaking time, sayings or key actions, overall quality of the character's action in relation to the development of the scenario and social representations in general, as well as quantitatively (insufficient number of female lead roles, fewer key supporting roles, relatively few female directors and people in the production chain and how they might affect screen representations. The quantitative analysis in this study was used to complement the qualitative content analysis. Then the focus shifted to the criteria of film criticism and to the rhetorical narratives that exclude or highlight in relation to gender identities and functions. In the criteria and language of film criticism, stereotypes are often reproduced or allegedly overturned within the framework of apolitical "identity politics," which mainly addresses the surface of a self-referential cultural-consumer product without connecting it more deeply with the material and cultural life. One of the prime examples of this failure is the Bechtel Test, which tracks whether female characters speak in a film regardless of whether women's stories are represented or not in the films analyzed. If perceived unbiased male filmmakers still fail to tell truly feminist stories, the same is the case with the criteria of criticism and the related interventions.

Keywords: representations, context analysis, reviews, sexist stereotypes

Procedia PDF Downloads 83
2354 Trigonelline: A Promising Compound for The Treatment of Alzheimer's Disease

Authors: Mai M. Farid, Ximeng Yang, Tomoharu Kuboyama, Chihiro Tohda

Abstract:

Trigonelline is a major alkaloid component derived from Trigonella foenum-graecum L. (fenugreek) and has been reported before as a potential neuroprotective agent, especially in Alzheimer’s disease (AD). However, the previous data were unclear and used model mice were not well established. In the present study, the effect of trigonelline on memory function was investigated in Alzheimer’s disease transgenic model mouse, 5XFAD which overexpresses the mutated APP and PS1 genes. Oral administration of trigonelline for 14 days significantly enhanced object recognition and object location memories. Plasma and cerebral cortex were isolated at 30 min, 1h, 3h, and 6 h after oral administration of trigonelline. LC-MS/MS analysis indicated that trigonelline was detected in both plasma and cortex from 30 min after, suggesting good penetration of trigonelline into the brain. In addition, trigonelline significantly ameliorated axonal and dendrite atrophy in Amyloid β-treated cortical neurons. These results suggest that trigonelline could be a promising therapeutic candidate for AD.

Keywords: alzheimer’s disease, cortical neurons, LC-MS/MS analysis, trigonelline

Procedia PDF Downloads 147
2353 Organizational Learning Strategies for Building Organizational Resilience

Authors: Stephanie K. Douglas, Gordon R. Haley

Abstract:

Organizations face increasing disruptions, changes, and uncertainties through the rapid shifts in the economy and business environment. A capacity for resilience is necessary for organizations to survive and thrive in such adverse conditions. Learning is an essential component of an organization's capability for building resilience. Strategic human resource management is a principal component of learning and organizational resilience. To achieve organizational resilience, human resource management strategies must support individual knowledge, skills, and ability development through organizational learning. This study aimed to contribute to the comprehensive knowledge of the relationship between strategic human resource management and organizational learning to build organizational resilience. The organizational learning dimensions of knowledge acquisition, knowledge distribution, knowledge interpretation, and organizational memory can be fostered through human resource management strategies and then aggregated to the organizational level to build resilience.

Keywords: human resource development, human resource management, organizational learning, organizational resilience

Procedia PDF Downloads 137
2352 Education Function of Botanical Gardens

Authors: Ruhugül Özge Ocak, Banu Öztürk Kurtaslan

Abstract:

Botanical gardens are very significant organizations which protect the environment against the increasing environmental problems, provide environmental education for people, offer recreation possibilities, etc. This article describes botanical gardens and their functions. The most important function of a botanical garden is to provide environmental education for people and improve environmental awareness. Considering this function, some botanical gardens were examined and opinions were suggested about the subject.

Keywords: botanical garden, environment, environmental education, recreation

Procedia PDF Downloads 529
2351 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks

Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios

Abstract:

To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.

Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand

Procedia PDF Downloads 142
2350 Parametric Inference of Elliptical and Archimedean Family of Copulas

Authors: Alam Ali, Ashok Kumar Pathak

Abstract:

Nowadays, copulas have attracted significant attention for modeling multivariate observations, and the foremost feature of copula functions is that they give us the liberty to study the univariate marginal distributions and their joint behavior separately. The copula parameter apprehends the intrinsic dependence among the marginal variables, and it can be estimated using parametric, semiparametric, or nonparametric techniques. This work aims to compare the coverage rates between an Elliptical and an Archimedean family of copulas via a fully parametric estimation technique.

Keywords: elliptical copula, archimedean copula, estimation, coverage rate

Procedia PDF Downloads 65
2349 The Budget Impact of the DISCERN™ Diagnostic Test for Alzheimer’s Disease in the United States

Authors: Frederick Huie, Lauren Fusfeld, William Burchenal, Scott Howell, Alyssa McVey, Thomas F. Goss

Abstract:

Alzheimer’s Disease (AD) is a degenerative brain disease characterized by memory loss and cognitive decline that presents a substantial economic burden for patients and health insurers in the US. This study evaluates the payer budget impact of the DISCERN™ test in the diagnosis and management of patients with symptoms of dementia evaluated for AD. DISCERN™ comprises three assays that assess critical factors related to AD that regulate memory, formation of synaptic connections among neurons, and levels of amyloid plaques and neurofibrillary tangles in the brain and can provide a quicker, more accurate diagnosis than tests in the current diagnostic pathway (CDP). An Excel-based model with a three-year horizon was developed to assess the budget impact of DISCERN™ compared with CDP in a Medicare Advantage plan with 1M beneficiaries. Model parameters were identified through a literature review and were verified through consultation with clinicians experienced in diagnosis and management of AD. The model assesses direct medical costs/savings for patients based on the following categories: •Diagnosis: costs of diagnosis using DISCERN™ and CDP. •False Negative (FN) diagnosis: incremental cost of care avoidable with a correct AD diagnosis and appropriately directed medication. •True Positive (TP) diagnosis: AD medication costs; cost from a later TP diagnosis with the CDP versus DISCERN™ in the year of diagnosis, and savings from the delay in AD progression due to appropriate AD medication in patients who are correctly diagnosed after a FN diagnosis.•False Positive (FP) diagnosis: cost of AD medication for patients who do not have AD. A one-way sensitivity analysis was conducted to assess the effect of varying key clinical and cost parameters ±10%. An additional scenario analysis was developed to evaluate the impact of individual inputs. In the base scenario, DISCERN™ is estimated to decrease costs by $4.75M over three years, equating to approximately $63.11 saved per test per year for a cohort followed over three years. While the diagnosis cost is higher with DISCERN™ than with CDP modalities, this cost is offset by the higher overall costs associated with CDP due to the longer time needed to receive a TP diagnosis and the larger number of patients who receive a FN diagnosis and progress more rapidly than if they had received appropriate AD medication. The sensitivity analysis shows that the three parameters with the greatest impact on savings are: reduced sensitivity of DISCERN™, improved sensitivity of the CDP, and a reduction in the percentage of disease progression that is avoided with appropriate AD medication. A scenario analysis in which DISCERN™ reduces the utilization for patients of computed tomography from 21% in the base case to 16%, magnetic resonance imaging from 37% to 27% and cerebrospinal fluid biomarker testing, positive emission tomography, electroencephalograms, and polysomnography testing from 4%, 5%, 10%, and 8%, respectively, in the base case to 0%, results in an overall three-year net savings of $14.5M. DISCERN™ improves the rate of accurate, definitive diagnosis of AD earlier in the disease and may generate savings for Medicare Advantage plans.

Keywords: Alzheimer’s disease, budget, dementia, diagnosis.

Procedia PDF Downloads 138
2348 Imami Shia and Democracy

Authors: Hamid Reza Shariatmadari

Abstract:

The Muslims who believe in twelve Imams and believe that their twelfth Imam is now hidden, because of their kind of consideration of immune Imam as their unique canonical authority for interpretation of Islam, are subject of these important questions; how can you be democratic? And can you speak of democracy as the best model of governing? Answering this question, we can talk firstly about the nature of democracy and realize it as a way and mechanism not as a philosophy of identity and secondly we can refer to the nature and functions of Imam in Shiism and thirdly we will focus on the age of Ghaybah (Or concealment of Imam). In such a time we can or have to combine domination of Islamic Faqis (Islamic Jurists) and democracy which is known in Shiite Iran for instance as religious democracy.

Keywords: Shiism, concealment of Imam, Islamic Jurists, Democracy

Procedia PDF Downloads 491
2347 Intelligent Drug Delivery Systems

Authors: Shideh Mohseni Movahed, Mansoureh Safari

Abstract:

Intelligent drug delivery systems (IDDS) are innovative technological innovations and clinical way to advance current treatments. These systems differ in technique of therapeutic administration, intricacy, materials and patient compliance to address numerous clinical conditions that require different pharmacological therapies. IDDS capable of releasing an active molecule at the proper site and at a amount that adjusts in response to the progression of the disease or to certain functions/biorhythms of the organism is particularly appealing. In this paper, we describe the most recent advances in the development of intelligent drug delivery systems.

Keywords: drug delivery systems, IDDS, medicine, health

Procedia PDF Downloads 224
2346 Pistacia Lentiscus: A Plant With Multiple Virtues for Human Health

Authors: Djebbar Atmani, Aghiles Karim Aissat, Nadjet Debbache-Benaida, Nassima Chaher-Bazizi, Dina Atmani-Kilani, Meriem Rahmani-Berboucha, Naima Saidene, Malika Benloukil, Lila Azib

Abstract:

Medicinal plants are believed to be an important source for the discovery of potential antioxidant, anti-inflammatory and anti-diabetic substances. The present study was designed to investigate the neuroprotective, anti-inflammatory, anti-diabetic and anti-hyperuricemic potential of Pistacia lentiscus, as well as the identification of active compounds. The antioxidant potential of plant extracts against known radicals was measured using various standard in vitro methods. Anti-inflammatory activity was determined using the paw edema model in mice and by measuring the secretion of the pro-inflammatory cytokine, whereas the anti-diabetic effect was assessed in vivo on streptozotocin-induced diabetic rats and in vitro by inhibition of alpha-amylase. The anti-hyperuricemic activity was evaluated using the xanthine oxidase assay, whereas neuroprotective activity was investigated using an Aluminum-induced toxicity test. Pistacia lentiscus extracts and fractions exhibited high scavenging capacity against DPPH, NO. and ABTS+ radicals in a dose-dependent manner and restored blood glucose levels, in vivo, to normal values, in agreement with the in vitro anti-diabetic effect. Oral administration of plant extracts significantly decreased carrageenan-induced mice paw oedema, similar to the standard drug, diclofenac, was effective in reducing IL-1β levels in cell culture and induced a significant increase in urinary volume in mice, associated to a promising anti-hyperuricemic activity. Plant extracts showed good neuroprotection and restoration of cognitive functions in mice. HPLC-MS and NMR analyses allowed the identification of known and new phenolic compounds that could be responsible for the observed activities. Therefore, Pistacia lentiscus could be beneficial in the treatment of inflammatory conditions and diabetes complications and the enhancement of cognitive functions.

Keywords: Pistacia lentiscus, anti-inflammatory, antidiabetic, flavanols, neuroprotective

Procedia PDF Downloads 136
2345 A Deep Learning Based Integrated Model For Spatial Flood Prediction

Authors: Vinayaka Gude Divya Sampath

Abstract:

The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.

Keywords: deep learning, disaster management, flood prediction, urban flooding

Procedia PDF Downloads 146
2344 Self-Disclosure and Privacy Management Behavior in Social Media: Privacy Calculus Perspective

Authors: Chien-Wen Chen, Nguyen Duong Thuy Trang, Yu-Hsuan Chang

Abstract:

With the development of information technology, social networking sites are inseparable from life and have become an important way for people to communicate. Nonetheless, privacy issues are raised by the presence of personal information on social networking sites. However, users can benefit from using the functions of social networking sites, which also leads to users worrying about the leakage of personal information without corresponding privacy protection behaviors, which is called the privacy paradox. However, previous studies have questioned the viewpoint of the privacy paradox, believing that users are not so naive and that people with privacy concerns will conduct privacy management. Consequently, this study is based on the view of privacy calculation perspective to investigate the privacy behavior of users on social networking sites. Among them, social benefits and privacy concerns are taken as the expected benefits and costs in the viewpoint of privacy calculation. At the same time, this study also explores the antecedents, including positive feedback, self-presentation, privacy policy, and information sensitivity, and the consequence of privacy behavior of weighing benefits and costs, including self-disclosure and three privacy management strategies by interpersonal boundaries (Preventive, Censorship, and Corrective). The survey respondents' characteristics and prior use experience of social networking sites were analyzed. As a consequence, a survey of 596 social network users was conducted online to validate the research framework. The results show that social benefit has the greatest influence on privacy behavior. The most important external factors affecting privacy behavior are positive feedback, followed by the privacy policy and information sensitivity. In addition, the important findings of this study are that social benefits will positively affect privacy management. It shows that users can get satisfaction from interacting with others through social networking sites. They will not only disclose themselves but also manage their privacy on social networking sites after considering social benefits and privacy management on social networking sites, and it expands the adoption of the Privacy Calculus Perspective framework from prior research. Therefore, it is suggested that as the functions of social networking sites increase and the development of social networking sites, users' needs should be understood and updated in order to ensure the sustainable operation of social networking.

Keywords: privacy calculus perspective, self-disclosure, privacy management, social benefit, privacy concern

Procedia PDF Downloads 89
2343 Symbolic Computation and Abundant Travelling Wave Solutions to Modified Burgers' Equation

Authors: Muhammad Younis

Abstract:

In this article, the novel (G′/G)-expansion method is successfully applied to construct the abundant travelling wave solutions to the modified Burgers’ equation with the aid of computation. The method is reliable and useful, which gives more general exact travelling wave solutions than the existing methods. These obtained solutions are in the form of hyperbolic, trigonometric and rational functions including solitary, singular and periodic solutions which have many potential applications in physical science and engineering. Some of these solutions are new and some have already been constructed. Additionally, the constraint conditions, for the existence of the solutions are also listed.

Keywords: traveling wave solutions, NLPDE, computation, integrability

Procedia PDF Downloads 433
2342 Imagology: The Study of Multicultural Imagery Reflected in the Heart of Elif Shafak’s 'The Bastard of Istanbul'

Authors: Mohammad Reza Haji Babai, Sepideh Ahmadkhan Beigi

Abstract:

Internationalization and modernization of the globe have played their roles in the process of cultural interaction between globalized societies and, consequently, found their way to the world of literature under the name of ‘imagology’. Imagology has made it possible for the reader to understand the author’s thoughts and judgments of others. The present research focuses on the intercultural images portrayed in the novel of a popular Turkish-French writer, Elif Shafak, about the lifestyle, traditions, habits, and social norms of Turkish, Americans, and Armenians. The novel seeks to articulate a more intricate multicultural memory of Turkishness by grieving over the Armenian massacre. This study finds that, as a mixture of multiple lifestyles and discourses, The Bastard of Istanbul reflects not only images of oriental culture but also occidental cultures. This means that the author has attempted to maintain selfhood through historical and cultural recollection, which resulted in constructing the self and another identity.

Keywords: imagology, Elif Shafak, The Bastard of Istanbul, self-image, other-image

Procedia PDF Downloads 141
2341 Efficient Fake News Detection Using Machine Learning and Deep Learning Approaches

Authors: Chaima Babi, Said Gadri

Abstract:

The rapid increase in fake news continues to grow at a very fast rate; this requires implementing efficient techniques that allow testing the re-liability of online content. For that, the current research strives to illuminate the fake news problem using deep learning DL and machine learning ML ap-proaches. We have developed the traditional LSTM (Long short-term memory), and the bidirectional BiLSTM model. A such process is to perform a training task on almost of samples of the dataset, validate the model on a subset called the test set to provide an unbiased evaluation of the final model fit on the training dataset, then compute the accuracy of detecting classifica-tion and comparing the results. For the programming stage, we used Tensor-Flow and Keras libraries on Python to support Graphical Processing Units (GPUs) that are being used for developing deep learning applications.

Keywords: machine learning, deep learning, natural language, fake news, Bi-LSTM, LSTM, multiclass classification

Procedia PDF Downloads 95
2340 Characterization of the in 0.53 Ga 0.47 as n+nn+ Photodetectors

Authors: Fatima Zohra Mahi, Luca Varani

Abstract:

We present an analytical model for the calculation of the sensitivity, the spectral current noise and the detectivity for an optically illuminated In0.53Ga0.47As n+nn+ diode. The photocurrent due to the excess carrier is obtained by solving the continuity equation. Moreover, the current noise level is evaluated at room temperature and under a constant voltage applied between the diode terminals. The analytical calculation of the current noise in the n+nn+ structure is developed. The responsivity and the detectivity are discussed as functions of the doping concentrations and the emitter layer thickness in one-dimensional homogeneous n+nn+ structure.

Keywords: detectivity, photodetectors, continuity equation, current noise

Procedia PDF Downloads 643
2339 Hanta Virus Infection in a Child and Sequelae

Authors: Vijay Samuel, Tina Thekkekkara, Shoma Ganguly

Abstract:

There is no reported Hanta Seoul virus infection in children in the UK so far, making it quite challenging for clinicians in diagnosing, predicting and prognosticating the outcome of the infection to patients and parents. We report a case of a ten-year-old girl who presented with pyrexia associated with headache, photophobia and abdominal pain. The family had recently acquired two pet rats six weeks ago. She appeared flushed with peri-oral pallor, coated the strawberry tongue, inflamed tonsils and bilateral cervical lymphadenopathy. Her liver and splenic edges were palpable. Investigations showed that she was thrombocytopenic with deranged renal and liver functions. An ultrasound abdomen demonstrated a mildly enlarged spleen, peripancreatic lymph node and an acalculous cholecystitis. In view of her clinical presentation, a diagnosis of leptospirosis was considered and she was commenced on intravenous benzylpenicillin. The following day she became oliguric, developed significant proteinuria and her renal function deteriorated. Following conservative management, her urine output gradually improved along with her renal function, proteinuria and thrombocytopaenia. Serology for leptospirosis and various other viruses were negative. Following discussion with the Rare and Imported Pathogens Laboratory at Porton hanta virus serology was requested and found to be strongly positive for Seoul hanta virus. Following discharge she developed palpitations, fatigue, severe headache and cognitive difficulties including memory loss and difficulties in spelling, reading and mathematics. Extensive investigations including ECG, MRI brain and CSF studies were performed and revealed no significant abnormalities. Since 2012, there have been six cases of acute kidney injury due to Hantavirus infection in the UK. Two cases were from the Humber region and were exposure to wild rats and the other four were exposed to specially bred pet fancy rats. Hanta virus infections can cause mild flu like symptoms but two clinical syndromes are associated with severe disease including haemorrhagic fever with renal syndrome, which may be associated with thrombocytopenia and Hantavirus cardiopulmonary syndrome. Neuropsychological impairments reported following hantavirus pulmonary syndrome and following Puumala virus infection have been reported. Minor white matter lesions were found in about half of the patients investigated with MRI brain. Seoul virus has a global distribution owing to the dispersal of its carrier host rats, through global trade. Several ports in the region could explain the possible establishment of Seoul virus in local populations of rats in the Yorkshire and Humber region. The risk of infection for occupationally exposed groups is 1-3% compared to 32.9% for specialist pet rat owners. The report highlight’s the importance of routinely asking about pets in the family. We hope to raise awareness of the emergence of hantavirus infection in the UK, particularly in the Yorkshire and Humber region. Clinicians should consider hantavirus infection as a potential cause of febrile illness causing renal impairment in children. Awareness of the possible neuro-cognitive sequele would help the clinicians offer appropriate information and support to children and their families. Contacting Rare and Imported Pathogens Laboratory at Porton is a useful resource for clinicians in UK when they consider unusual infections.

Keywords: Seoul hantavirus in child Porton, UK Acute kidney injury

Procedia PDF Downloads 293