Search results for: swirl-jet flow
4666 Hydrodynamic and Sediment Transport Analysis of Computational Fluid Dynamics Designed Flow Regulating Liner (Smart Ditch)
Authors: Saman Mostafazadeh-Fard, Zohrab Samani, Kenneth Suazo
Abstract:
Agricultural ditch liners are used to prevent soil erosion and reduce seepage losses. This paper introduced an approach to validate a computational fluid dynamics (CFD) platform FLOW-3D code and its use to design a flow-regulating corrugated agricultural ditch liner system (Smart Ditch (SM)). Hydrodynamic and sediment transport analyses were performed on the proposed liner flow using the CFD platform FLOW-3D code. The code's hydrodynamic and scour and sediment transport models were calibrated and validated using lab data with an accuracy of 94 % and 95%, respectively. The code was then used to measure hydrodynamic parameters of sublayer turbulent intensity, kinetic energy, dissipation, and packed sediment mass normalized with respect to sublayer flow velocity. Sublayer turbulent intensity, kinetic energy, and dissipation in the SM flow were significantly higher than CR flow. An alternative corrugated liner was also designed, and sediment transport was measured and compared to SM and CR flows. Normalized packed sediment mass with respect to average sublayer flow velocity was 27.8 % lower in alternative flow compared to SM flow. CFD platform FLOW-3D code could effectively be used to design corrugated ditch liner systems and perform hydrodynamic and sediment transport analysis under various corrugation designs.Keywords: CFD, hydrodynamic, sediment transport, ditch, liner design
Procedia PDF Downloads 1224665 Consideration of Failed Fuel Detector Location through Computational Flow Dynamics Analysis on Primary Cooling System Flow with Two Outlets
Authors: Sanghoon Bae, Hanju Cha
Abstract:
Failed fuel detector (FFD) in research reactor is a very crucial instrument to detect the anomaly from failed fuels in the early stage around primary cooling system (PCS) outlet prior to the decay tank. FFD is considered as a mandatory sensor to ensure the integrity of fuel assemblies and mitigate the consequence from a failed fuel accident. For the effective function of FFD, the location of them should be determined by contemplating the effect from coolant flow around two outlets. For this, the analysis on computational flow dynamics (CFD) should be first performed how the coolant outlet flow including radioactive materials from failed fuels are mixed and discharged through the outlet plenum within certain seconds. The analysis result shows that the outlet flow is well mixed regardless of the position of failed fuel and ultimately illustrates the effect of detector location.Keywords: computational flow dynamics (CFD), failed fuel detector (FFD), fresh fuel assembly (FFA), spent fuel assembly (SFA)
Procedia PDF Downloads 2404664 Aerodynamic Designing of Supersonic Centrifugal Compressor Stages
Authors: Y. Galerkin, A. Rekstin, K. Soldatova
Abstract:
Universal modeling method well proven for industrial compressors was applied for design of the high flow rate supersonic stage. Results were checked by ANSYS CFX and NUMECA Fine Turbo calculations. The impeller appeared to be very effective at transonic flow velocities. Stator elements efficiency is acceptable at design Mach numbers too. Their loss coefficient versus inlet flow angle performances correlates well with Universal modeling prediction. The impeller demonstrated ability of satisfactory operation at design flow rate. Supersonic flow behavior in the impeller inducer at the shroud blade to blade surface Φdes deserves additional study.Keywords: centrifugal compressor stage, supersonic impeller, inlet flow angle, loss coefficient, return channel, shock wave, vane diffuser
Procedia PDF Downloads 4674663 Numerical Study for Examination of Flow Characteristics in Fractured Gas Reservoirs
Authors: M. K. Kim, C. H. Shin, W. G. Park
Abstract:
Recently, natural gas resources are issued due to alternative and eco-friendly energy policies, and development of even unconventional gas resources including tight gas, coal bed methane and shale gas is being rapidly expanded from North America all over the world. For developing these gas reservoirs, it is necessary to investigate reservoir characteristics by using reservoir simulation. In reservoir simulation, calculation of permeability of fractured zone is very important to predict the gas production. However, it is difficult to accurately calculate the permeability by using conventional methods which use analytic solution for laminar flow. The flow in gas reservoirs exhibits complex flow behavior such as slip around the wall roughness effect and turbulence because the size of the apertures of fractures is ranged over various scales from nano-scale to centi-scale. Therefore, it is required to apply new reservoir flow analysis methods which can accurately consider complex gas flow owing to the geometric characteristics and distributions of various pores and flow paths within gas reservoirs. Hence, in this study, the flow characteristics and the relation between each characteristic variable was investigated and multi-effect was quantified when the fractures are compounded for devising a new calculation model of permeability of fractured zone in gas reservoirs by using CFD.Keywords: fractured zone, gas reservoir, permeability, CFD
Procedia PDF Downloads 2514662 A Measurement Device of Condensing Flow Rate, an Order of MilliGrams per Second
Authors: Hee Joon Lee
Abstract:
There are many difficulties in measuring a small flow rate of an order of milli grams per minute (LPM) or less using a conventional flowmeter. Therefore, a flow meter with minimal loss and based on a new concept was designed as part of this paper. A chamber was manufactured with a level transmitter and an on-off control valve. When the level of the collected condensed water reaches the top of the chamber, the valve opens to allow the collected water to drain back into the tank. To allow the water to continue to drain when the signal is lost, the valve is held open for a few seconds by a time delay switch and then closed. After an examination, the condensing flow rate was successfully measured with the uncertainty of ±5.7% of the full scale for the chamber.Keywords: chamber, condensation, flow meter, milli-grams
Procedia PDF Downloads 2814661 A Comparative CFD Study on the Hemodynamics of Flow through an Idealized Symmetric and Asymmetric Stenosed Arteries
Authors: B. Prashantha, S. Anish
Abstract:
The aim of the present study is to computationally evaluate the hemodynamic factors which affect the formation of atherosclerosis and plaque rupture in the human artery. An increase of atherosclerosis disease in the artery causes geometry changes, which results in hemodynamic changes such as flow separation, reattachment, and adhesion of new cells (chemotactic) in the artery. Hence, geometry plays an important role in the determining the nature of hemodynamic patterns. Influence of stenosis in the non-bifurcating artery, under pulsatile flow condition, has been studied on an idealized geometry. Analysis of flow through symmetric and asymmetric stenosis in the artery revealed the significance of oscillating shear index (OSI), flow separation, low WSS zones and secondary flow patterns on plaque formation. The observed characteristic of flow in the post-stenotic region highlight the importance of plaque eccentricity on the formation of secondary stenosis on the arterial wall.Keywords: atherosclerotic plaque, oscillatory shear index, stenosis nature, wall shear stress
Procedia PDF Downloads 3504660 An Axisymmetric Finite Element Method for Compressible Swirling Flow
Authors: Raphael Zanella, Todd A. Oliver, Karl W. Schulz
Abstract:
This work deals with the finite element approximation of axisymmetric compressible flows with swirl velocity. We are interested in problems where the flow, while weakly dependent on the azimuthal coordinate, may have a strong azimuthal velocity component. We describe the approximation of the compressible Navier-Stokes equations with H1-conformal spaces of axisymmetric functions. The weak formulation is implemented in a C++ solver with explicit time marching. The code is first verified with a convergence test on a manufactured solution. The verification is completed by comparing the numerical and analytical solutions in a Poiseuille flow case and a Taylor-Couette flow case. The code is finally applied to the problem of a swirling subsonic air flow in a plasma torch geometry.Keywords: axisymmetric problem, compressible Navier-Stokes equations, continuous finite elements, swirling flow
Procedia PDF Downloads 1744659 On the Fixed Rainfall Intensity: Effects on Overland Flow Resistance, Shear Velocity and on Soil Erosion
Authors: L. Mouzai, M. Bouhadef
Abstract:
Raindrops and overland flow both are erosive parameters but they do not act by the same way. The overland flow alone tends to shear the soil horizontally and concentrates into rills. In the presence of rain, the soil particles are removed from the soil surface in the form of a uniform sheet layer. In addition to this, raindrops falling on the flow roughen the water and soil surface depending on the flow depth, and retard the velocity, therefore influence shear velocity and Manning’s factor. To investigate this part, agricultural sandy soil, rainfall simulator and a laboratory soil tray of 0.2x1x3 m were the base of this work. Five overland flow depths of 0; 3.28; 4.28; 5.16; 5.60; 5.80 mm were generated under a rainfall intensity of 217.2 mm/h. Sediment concentration control is based on the proportionality of depth/microtopography. The soil loose is directly related to the presence of rain splash on thin sheet flow. The effect of shear velocity on sediment concentration is limited by the value of 5.28 cm/s. In addition to this, the rain splash reduces the soil roughness by breaking the soil crests. The rainfall intensity is the major factor influencing depth and soil erosion. In the presence of rainfall, the shear velocity of the flow is due to two simultaneous effects. The first, which is horizontal, comes from the flow and the second, vertical, is due to the raindrops.Keywords: flow resistance, laboratory experiments, rainfall simulator, sediment concentration, shear velocity, soil erosion
Procedia PDF Downloads 1974658 Numerical Investigation of Flow Past in a Staggered Tube Bundle
Authors: Kerkouri Abdelkadir
Abstract:
Numerical calculations of turbulent flows are one of the most prominent modern interests in various engineering applications. Due to the difficulty of predicting, following up and studying this flow for computational fluid dynamic (CFD), in this paper, we simulated numerical study of a flow past in a staggered tube bundle, using CFD Code ANSYS FLUENT with several models of turbulence following: k-ε, k-ω and SST approaches. The flow is modeled based on the experimental studies. The predictions of mean velocities are in very good agreement with detailed LDA (Laser Doppler Anemometry) measurements performed in 8 stations along the depth of the array. The sizes of the recirculation zones behind the cylinders are also predicted. The simulations are conducted for Reynolds numbers of 12858. The Reynolds number is set to depend experimental results.Keywords: flow, tube bundle, ANSYS Fluent, CFD, turbulence, LDA, RANS (k-ε, k-ω, SST)
Procedia PDF Downloads 1644657 Effects of the Flow Direction on the Fluid Flow and Heat Transfer in the Rod Bundle
Authors: Huirui Han, Chao Zhang
Abstract:
The rod bundle is used in the fuel assembly of the supercritical water-cooled nuclear reactor. In the rod bundle, the coolant absorbs the heat contributed by the fission process. Because of the dramatic variations in the thermophysical properties of water at supercritical conditions, it is essential to investigate the heat transfer characteristics of supercritical water in the rod bundle to ensure the safety of the nuclear power plant. In this study, the effects of the flow direction, including horizontal, upward, and downward, on the fluid flow and heat transfer of the supercritical water in the rod bundle were studied numerically. The results show the possibility of gap vortices in the flow subchannels of the rod bundle. In addition, the distributions of the circumferential wall temperature show differences in different flow direction conditions. It was also found that the circumferential cladding surface temperature distribution in the upward flow condition is extremely non-uniform, and there is a large difference between the maximum wall temperatures for different fuel rods.Keywords: heat transfer, rod bundle, supercritical water, wall temperature
Procedia PDF Downloads 1014656 Numerical Study of Effects of Air Dam on the Flow Field and Pressure Distribution of a Passenger Car
Authors: Min Ye Koo, Ji Ho Ahn, Byung Il You, Gyo Woo Lee
Abstract:
Everything that is attached to the outside of the vehicle to improve the driving performance of the vehicle by changing the flow characteristics of the surrounding air or to pursue the external personality is called a tuning part. Typical tuning components include front or rear air dam, also known as spoilers, splitter, and side air dam. Particularly, the front air dam prevents the airflow flowing into the lower portion of the vehicle and increases the amount of air flow to the side and front of the vehicle body, thereby reducing lift force generation that lifts the vehicle body, and thus, improving the steering and driving performance of the vehicle. The purpose of this study was to investigate the role of anterior air dam in the flow around a sedan passenger car using computational fluid dynamics. The effects of flow velocity, trajectory of fluid particles on static pressure distribution and pressure distribution on body surface were investigated by varying flow velocity and size of air dam. As a result, it has been confirmed that the front air dam improves the flow characteristics, thereby reducing the generation of lift force of the vehicle, so it helps in steering and driving characteristics.Keywords: numerical study, air dam, flow field, pressure distribution
Procedia PDF Downloads 2054655 Numerical Analysis of Liquid Metal Magnetohydrodynamic Flows in a Manifold with Three Sub-Channels
Authors: Meimei Wen, Chang Nyung Kim
Abstract:
In the current study, three-dimensional liquid metal (LM) magneto-hydrodynamic (MHD) flows in a manifold with three sub-channels under a uniform magnetic field are numerically investigated. In the manifold, the electrical current can cross channel walls, thus having influence on the flow distribution in each sub-channel. A case with various arrangements of electric conductivity for different parts of channel walls is considered, yielding different current distributions as well as flow distributions in each sub-channel. Here, the imbalance of mass flow rates in the three sub-channels is addressed. Meanwhile, predicted are detailed behaviors of the flow velocity, pressure, current and electric potential of LM MHD flows with three sub-channels. Commercial software CFX is used for the numerical simulation of LM MHD flows.Keywords: CFX, liquid metal, manifold, MHD flow
Procedia PDF Downloads 3444654 Numerical Investigation of Improved Aerodynamic Performance of a NACA 0015 Airfoil Using Synthetic Jet
Authors: K. Boualem, T. Yahiaoui, A. Azzi
Abstract:
Numerical investigations are performed to analyze the flow behavior over NACA0015 and to evaluate the efficiency of synthetic jet as active control device. The second objective of this work is to investigate the influence of momentum coefficient of synthetic jet on the flow behaviour. The unsteady Reynolds-averaged Navier-Stokes equations of the turbulent flow are solved using, k-ω SST provided by ANSYS CFX-CFD code. The model presented in this paper is a comprehensive representation of the information found in the literature. Comparison of obtained numerical flow parameters with the experimental ones shows that the adopted computational procedure reflects nearly the real flow nature. Also, numerical results state that use of synthetic jets devices has positive effects on the flow separation, and thus, aerodynamic performance improvement of NACA0015 airfoil. It can also be observed that the use of synthetic jet increases the lift coefficient about 13.3% and reduces the drag coefficient about 52.7%.Keywords: active control, synthetic jet, NACA airfoil, CFD
Procedia PDF Downloads 3134653 PIV Measurements of the Instantaneous Velocities for Single and Two-Phase Flows in an Annular Duct
Authors: Marlon M. Hernández Cely, Victor E. C. Baptistella, Oscar M. H. Rodríguez
Abstract:
Particle Image Velocimetry (PIV) is a well-established technique in the field of fluid flow measurement and provides instantaneous velocity fields over global domains. It has been applied to external and internal flows and in single and two-phase flows. Regarding internal flow, works about the application of PIV in annular ducts are scanty. An experimental work is presented, where flow of water is studied in an annular duct of inner diameter of 60 mm and outer diameter of 155 mm and 10.5-m length, with the goal of obtaining detailed velocity measurements. Depending on the flow rates of water, it can be laminar, transitional or turbulent. In this study, the water flow rate was kept at three different values for the annular duct, allowing the analysis of one laminar and two turbulent flows. Velocity fields and statistic quantities of the turbulent flow were calculated.Keywords: PIV, annular duct, laminar, turbulence, velocity profile
Procedia PDF Downloads 3514652 Effects of Structure on Density-Induced Flow in Coastal and Estuarine Navigation Channel
Authors: Shuo Huang, Huomiao Guo, Wenrui Huang
Abstract:
In navigation channels located in coasts and estuaries as the waterways connecting coastal water to ports or harbors, density-induced flow often exist due to the density-gradient or gravity gradient as the results of mixing between fresh water from coastal rivers and saline water in the coasts. The density-induced flow often carries sediment transport into navigation channels and causes sediment depositions in the channels. As a result, expensive dredging may need to maintain the water depth required for navigation. In our study, we conduct a series of experiments to investigate the characteristics of density-induced flow in the estuarine navigation channels under different density gradients. Empirical equations between density flow and salinity gradient were derived. Effects of coastal structures for regulating navigation channel on density-induced flow have also been investigated. Results will be very helpful for improving the understanding of the characteristics of density-induced flow in estuarine navigation channels. The results will also provide technical support for cost-effective waterway regulation and management to maintain coastal and estuarine navigation channels.Keywords: density flow, estuarine, navigation channel, structure
Procedia PDF Downloads 2584651 Flow Performance of Hybrid Cement Based Mortars
Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco Torgal
Abstract:
The workability of hybrid alkaline cements is a field of knowledge that still needs further research efforts. This paper reports experimental results of 32 hybrid cement mixes regarding the joint effect of sodium hydroxide concentration, the use of a commercial superplasticizer and a biopolymer on the flow and compressive strength performance. The results show that the use of commercial admixtures led to a slightly increase in the flow of mortars with lower sodium hydroxide concentration.Keywords: waste reuse, fly ash, waste glass, hybrid cement, biopolymer, polycarboxylate, flow
Procedia PDF Downloads 3074650 Wall Pressure Fluctuations in Naturally Developing Boundary Layer Flows on Axisymmetric Bodies
Authors: Chinsuk Hong
Abstract:
This paper investigates the characteristics of wall pressure fluctuations in naturally developing boundary layer flows on axisymmetric bodies experimentally. The axisymmetric body has a modified ellipsoidal blunt nose. Flush-mounted microphones are used to measure the wall pressure fluctuations in the boundary layer flow over the body. The measurements are performed in a low noise wind tunnel. It is found that the correlation between the flow regime and the characteristics of the pressure fluctuations is distinct. The process from small fluctuation in laminar flow to large fluctuation in turbulent flow is investigated. Tollmien-Schlichting wave (T-S wave) is found to generate and develop in transition. Because of the T-S wave, the wall pressure fluctuations in the transition region are higher than those in the turbulent boundary layer.Keywords: wall pressure fluctuation, boundary layer flow, transition, turbulent flow, axisymmetric body, flow noise
Procedia PDF Downloads 3604649 Synergistic Impacts and Optimization of Gas Flow Rate, Concentration of CO2, and Light Intensity on CO2 Biofixation in Wastewater Medium by Chlorella vulgaris
Authors: Ahmed Arkoazi, Hussein Znad, Ranjeet Utikar
Abstract:
The synergistic impact and optimization of gas flow rate, concentration of CO2, and light intensity on CO2 biofixation rate were investigated using wastewater as a medium to cultivate Chlorella vulgaris under different conditions (gas flow rate 1-8 L/min), CO2 concentration (0.03-7%), and light intensity (150-400 µmol/m2.s)). Response Surface Methodology and Box-Behnken experimental Design were applied to find optimum values for gas flow rate, CO2 concentration, and light intensity. The optimum values of the three independent variables (gas flow rate, concentration of CO2, and light intensity) and desirability were 7.5 L/min, 3.5%, and 400 µmol/m2.s, and 0.904, respectively. The highest amount of biomass produced and CO2 biofixation rate at optimum conditions were 5.7 g/L, 1.23 gL-1d-1, respectively. The synergistic effect between gas flow rate and concentration of CO2, and between gas flow rate and light intensity was significant on the three responses, while the effect between CO2 concentration and light intensity was less significant on CO2 biofixation rate. The results of this study could be highly helpful when using microalgae for CO2 biofixation in wastewater treatment.Keywords: bubble column reactor, gas holdup, hydrodynamics, sparger
Procedia PDF Downloads 1444648 Analysis of the Secondary Stationary Flow Around an Oscillating Circular Cylinder
Authors: Artem Nuriev, Olga Zaitseva
Abstract:
This paper is devoted to the study of a viscous incompressible flow around a circular cylinder performing harmonic oscillations, especially the steady streaming phenomenon. The research methodology is based on the asymptotic explanation method combined with the computational bifurcation analysis. Present studies allow to identify several regimes of the secondary streaming with different flow structures. The results of the research are in good agreement with experimental and numerical simulation data.Keywords: oscillating cylinder, secondary streaming, flow regimes, asymptotic and bifurcation analysis
Procedia PDF Downloads 4354647 Unsteadiness Effects on Variable Thrust Nozzle Performance
Authors: A. M. Tahsini, S. Tadayon Mousavi
Abstract:
The purpose of this paper is to elucidate the flow unsteady behavior for moving plug in convergent-divergent variable thrust nozzle. Compressible axisymmetric Navier-Stokes equations are used to study this physical phenomenon. Different velocities are set for plug to investigate the effect of plug movement on flow unsteadiness. Variation of mass flow rate and thrust are compared under two conditions: First, the plug is placed at different positions and flow is simulated to reach the steady state (quasi steady simulation) and second, the plug is moved with assigned velocity and flow simulation is coupled with plug movement (unsteady simulation). If plug speed is high enough and its movement time scale is at the same order of the flow time scale, variation of the mass flow rate and thrust level versus plug position demonstrate a vital discrepancy under the quasi steady and unsteady conditions. This phenomenon should be considered especially from response time viewpoints in thrusters design.Keywords: nozzle, numerical study, unsteady, variable thrust
Procedia PDF Downloads 3494646 A Computational Study on Flow Separation Control of Humpback Whale Inspired Sinusoidal Hydrofoils
Authors: J. Joy, T. H. New, I. H. Ibrahim
Abstract:
A computational study on bio-inspired NACA634-021 hydrofoils with leading-edge protuberances has been carried out to investigate their hydrodynamic flow control characteristics at a Reynolds number of 14,000 and different angles-of-attack. The numerical simulations were performed using ANSYS FLUENT and based on Reynolds-Averaged Navier-Stokes (RANS) solver mode incorporated with k-ω Shear Stress Transport (SST) turbulence model. The results obtained indicate varying flow phenomenon along the peaks and troughs over the span of the hydrofoils. Compared to the baseline hydrofoil with no leading-edge protuberances, the leading-edge modified hydrofoils tend to reduce flow separation extents along the peak regions. In contrast, there are increased flow separations in the trough regions of the hydrofoil with leading-edge protuberances. Interestingly, it was observed that dissimilar flow separation behaviour is produced along different peak- or trough-planes along the hydrofoil span, even though the troughs or peaks are physically similar at each interval for a particular hydrofoil. Significant interactions between adjacent flow structures produced by the leading-edge protuberances have also been observed. These flow interactions are believed to be responsible for the dissimilar flow separation behaviour along physically similar peak- or trough-planes.Keywords: computational fluid dynamics, flow separation control, hydrofoils, leading-edge protuberances
Procedia PDF Downloads 3284645 Structure of Turbulence Flow in the Wire-Wrappes Fuel Assemblies of BREST-OD-300
Authors: Dmitry V. Fomichev, Vladimir I. Solonin
Abstract:
In this paper, experimental and numerical study of hydrodynamic characteristics of the air coolant flow in the test wire-wrapped assembly is presented. The test assembly has 37 rods, which are similar to the real fuel pins of the BREST-OD-300 fuel assemblies geometrically. Air open loop test facility installed at the “Nuclear Power Plants and Installations” department of BMSTU was used to obtain the experimental data. The obtaining altitudinal distribution of static pressure in the near-wall test assembly as well as velocity and temperature distribution of coolant flow in the test sections can give us some new knowledge about the mechanism of formation of the turbulence flow structure in the wire wrapped fuel assemblies. Numerical simulations of the turbulence flow has been accomplished using ANSYS Fluent 14.5. Different non-local turbulence models have been considered, such as standard and RNG k-e models and k-w SST model. Results of numerical simulations of the flow based on the considered turbulence models give the best agreement with the experimental data and help us to carry out strong analysis of flow characteristics.Keywords: wire-spaces fuel assembly, turbulent flow structure, computation fluid dynamics
Procedia PDF Downloads 4594644 Herschel-Bulkley Fluid Flow through Narrow Tubes
Authors: Santhosh Nallapu, G. Radhakrishnamacharya
Abstract:
A two-fluid model of Herschel-Bulkley fluid flow through tubes of small diameters is studied. It is assumed that the core region consists of Herschel-Bulkley fluid and Newtonian fluid in the peripheral region. The analytical solutions for velocity, flow flux, effective viscosity, core hematocrit and mean hematocrit have been derived and the effects of various relevant parameters on these flow variables have been studied. It has been observed that the effective viscosity and mean hematocrit increase with yield stress, power-law index, hematocrit and tube radius. Further, the core hematocrit decreases with hematocrit and tube radius.Keywords: two-layered model, non-Newtonian fluid, hematocrit, Fahraeus-Lindqvist effect, plug flow
Procedia PDF Downloads 4704643 Magnetohydrodynamic 3D Maxwell Fluid Flow Towards a Horizontal Stretched Surface with Convective Boundary Conditions
Authors: M. Y. Malika, Farzana, Abdul Rehman
Abstract:
The study deals with the steady, 3D MHD boundary layer flow of a non-Newtonian Maxwell fluid flow due to a horizontal surface stretched exponentially in two lateral directions. The temperature at the boundary is assumed to be distributed exponentially and possesses convective boundary conditions. The governing nonlinear system of partial differential equations along with associated boundary conditions is simplified using a suitable transformation and the obtained set of ordinary differential equations is solved through numerical techniques. The effects of important involved parameters associated with fluid flow and heat flux are shown through graphs.Keywords: boundary layer flow, exponentially stretched surface, Maxwell fluid, numerical solution
Procedia PDF Downloads 5884642 Discuss the Relationship Between Floor Movement and the Mental and Physical Health - Case Study on Movement Flow
Authors: Joyce Chieh Hsin Lo
Abstract:
In the forthcoming paper, we aim to comprehensively investigate the relation between floor movement and the health condition. We embark on an extensive exploration of the innovative Movement Flow system, a contemporary paradigm that is reshaping the landscape of physical fitness and well-being. Our primary aim is to dissect the profound potential of this groundbreaking approach, not only as a means to enhance our physical fitness but also as a transformative tool for nurturing mental health. Within the scope of this comprehensive analysis, we will delve into the multifaceted aspects of Movement Flow, highlighting its versatility and adaptability to various individuals' needs and objectives.Keywords: prehab, floor movement, proprioception, movement flow
Procedia PDF Downloads 894641 2D Surface Flow Model in The Biebrza Floodplain
Authors: Dorota Miroslaw-Swiatek, Mateusz Grygoruk, Sylwia Szporak
Abstract:
We applied a two-dimensional surface water flow model with irregular wet boundaries. In this model, flow equations are in the form of a 2-D, non-linear diffusion equations which allows to account spatial variations in flow resistance and topography. Calculation domain to simulate the flow pattern in the floodplain is congruent with a Digital Elevation Model (DEM) grid. The rate and direction of sheet flow in wetlands is affected by vegetation type and density, therefore the developed model take into account spatial distribution vegetation resistance to the water flow. The model was tested in a part of the Biebrza Valley, of an outstanding heterogeneity in the elevation and flow resistance distributions due to various ecohydrological conditions and management measures. In our approach we used the highest-possible quality of the DEM in order to obtain hydraulic slopes and vegetation distribution parameters for the modelling. The DEM was created from the cloud of points measured in the LiDAR technology. The LiDAR reflects both the land surface as well as all objects on top of it such as vegetation. Depending on the density of vegetation cover the ability of laser penetration is variable. Therefore to obtain accurate land surface model the “vegetation effect” was corrected using data collected in the field (mostly the vegetation height) and satellite imagery such as Ikonos (to distinguish different vegetation types of the floodplain and represent them spatially). Model simulation was performed for the spring thaw flood in 2009.Keywords: floodplain flow, Biebrza valley, model simulation, 2D surface flow model
Procedia PDF Downloads 4994640 Study of Low Loading Heavier Phase in Horizontal Oil-Water Liquid-Liquid Pipe Flow
Authors: Aminu J. A. Koguna, Aliyu M. Aliyu, Olawale T. Fajemidupe, Yahaya D. Baba
Abstract:
Production fluids are transported from the platform to tankers or process facilities through transfer pipelines. Water being one of the heavier phases tends to settle at the bottom of pipelines especially at low flow velocities and this has adverse consequences for pipeline integrity. On restart after a shutdown this could result in corrosion and issues for process equipment, thus the need to have the heavier liquid dispersed into the flowing lighter fluid. This study looked at the flow regime of low water cut and low flow velocity oil and water flow using conductive film thickness probes in a large diameter 4-inch pipe to obtain oil and water interface height and the interface structural velocity. A wide range of 0.1–1.0 m/s oil and water mixture velocities was investigated for 0.5–5% water cut. Two fluid model predictions were used to compare with the experimental results.Keywords: interface height, liquid, velocity, flow regime, dispersed, water cut
Procedia PDF Downloads 3914639 Empirical Heat Transfer Correlations of Finned-Tube Heat Exchangers in Pulsatile Flow
Authors: Jason P. Michaud, Connor P. Speer, David A. Miller, David S. Nobes
Abstract:
An experimental study on finned-tube radiators has been conducted. Three radiators found in desktop computers sized for 120 mm fans were tested in steady and pulsatile flows of ambient air over a Reynolds number range of 50 < Re < 900. Water at 60 °C was circulated through the radiators to maintain a constant fin temperature during the tests. For steady flow, it was found that the heat transfer rate increased linearly with the mass flow rate of air. The pulsatile flow experiments showed that frequency of pulsation had a negligible effect on the heat transfer rate for the range of frequencies tested (0.5 Hz – 2.5 Hz). For all three radiators, the heat transfer rate was decreased in the case of pulsatile flow. Linear heat transfer correlations for steady and pulsatile flow were calculated in terms of Reynolds number and Nusselt number.Keywords: finned-tube heat exchangers, heat transfer correlations, pulsatile flow, computer radiators
Procedia PDF Downloads 5064638 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems
Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr
Abstract:
Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.Keywords: gas lift instability, bubbles forming, bubbles collapsing, image processing
Procedia PDF Downloads 4204637 Numerical Study of Flow around Flat Tube between Parallel Walls
Authors: Hamidreza Bayat, Arash Mirabdolah Lavasani, Meysam Bolhasani, Sajad Moosavi
Abstract:
Flow around a flat tube is studied numerically. Reynolds number is defined base on equivalent circular tube and it is varied in range of 100 to 300. Equations are solved by using finite volume method and results are presented in form of drag and lift coefficient. Results show that drag coefficient of flat tube is up to 66% lower than circular tube with equivalent diameter. In addition, by increasing l/D from 1 to 2, the drag coefficient of flat tube is decreased about 14-27%.Keywords: laminar flow, flat-tube, drag coefficient, cross-flow, heat exchanger
Procedia PDF Downloads 503