Search results for: substrate specificity
1555 Preformed Au Colloidal Nanoparticles Immobilised on NiO as Highly Efficient Heterogeneous Catalysts for Reduction of 4-Nitrophenol to 4-Aminophenol
Authors: Khaled Alshammari
Abstract:
A facile approach to synthesizing highly active and stable Au/NiO catalysts for the hydrogenation of nitro-aromatics is reported. Preformed gold nanoparticles have been immobilized onto NiO using a colloidal method. In this article, the reduction of 4-nitrophenol with NaBH4 has been used as a model reaction to investigate the catalytic activity of synthesized Au/NiO catalysts. In addition, we report a systematic study of the reduction kinetics and the influence of specific reaction parameters such as (i) temperature, (ii) stirring rate, (iii) sodium borohydride concentration and (iv) substrate/metal molar ratio. The reaction has been performed at a substrate/metal molar ratio of 7.4, a ratio significantly higher than previously reported. The reusability of the catalyst has been examined, with little to no decrease in activity observed over 5 catalytic cycles. Systematic variation of Au loading reveals the successful synthesis of low-cost and efficient Au/NiO catalysts at very low Au content and using high substrate/metal molar ratios.Keywords: nonochemistry, catalyst, nanoparticles supported, characterization of materials, colloidal nanoparticles
Procedia PDF Downloads 651554 Evaluation of Thermal Barrier Coating Applied to the Gas Turbine Blade According to the Thermal Gradient
Authors: Jeong-Min Lee, Hyunwoo Song, Yonseok Kim, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok
Abstract:
The Thermal Barrier Coating (TBC) prevents heat directly transferring from the high-temperature flame to the substrate. Top coat and bond coat compose the TBC and top coat consists of a ceramic and bond coat increases adhesion between the top coat and the substrate. The TBC technology drops the substrate surface temperature by about 150~200°C. In addition, the TBC system has a cooling system to lower the blade temperature by the air flow inside the blade. Then, as a result, the thermal gradient occurs inside the blade by cooling. Also, the internal stress occurs due to the difference in thermal expansion. In this paper, the finite element analyses (FEA) were performed and stress changes were derived according to the thermal gradient of the TBC system. The stress was increased due to the cooling, but difference of the stress between the top coat and bond coat was decreased. So, delamination in the interface between top coat and bond coat.Keywords: gas turbine blade, Thermal Barrier Coating (TBC), thermal gradient, Finite Element Analysis (FEA)
Procedia PDF Downloads 6071553 Sustainable Approach to Fabricate Titanium Nitride Film on Steel Substrate by Using Automotive Plastics Waste
Authors: Songyan Yin, Ravindra Rajarao, Veena Sahajwalla
Abstract:
Automotive plastics waste (widely known as auto-fluff or ASR) is a complicated mixture of various plastics incorporated with a wide range of additives and fillers like titanium dioxide, magnesium oxide, and silicon dioxide. Automotive plastics waste is difficult to recycle and its landfilling poses the significant threat to the environment. In this study, a sustainable technology to fabricate protective nanoscale TiN thin film on a steel substrate surface by using automotive waste plastics as titanium and carbon resources is suggested. When heated automotive plastics waste with steel at elevated temperature in a nitrogen atmosphere, titanium dioxide contented in ASR undergo carbothermal reduction and nitridation reactions on the surface of the steel substrate forming a nanoscale thin film of titanium nitride on the steel surface. The synthesis of TiN film on steel substrate under this technology was confirmed by X-ray photoelectron spectrometer, high resolution X-ray diffraction, field emission scanning electron microscope, a high resolution transmission electron microscope fitted with energy dispersive X-ray spectroscopy, and inductively coupled plasma mass spectrometry techniques. This sustainably fabricated TiN film was verified of dense, well crystallized and could provide good oxidation resistance to the steel substrate. This sustainable fabrication technology is maneuverable, reproducible and of great economic and environmental benefit. It not only reduces the fabrication cost of TiN coating on steel surface, but also provides a sustainable environmental solution to recycling automotive plastics waste. Moreover, high value copper droplets and char residues were also extracted from this unique fabrication process.Keywords: automotive plastics waste, carbonthermal reduction and nitirdation, sustainable, TiN film
Procedia PDF Downloads 3921552 Study of Individual Parameters on the Enzymatic Glycosidation of Betulinic Acid by Novozyme-435
Authors: A. U. Adamu, Hamisu Abdu, A. A. Saidu
Abstract:
The enzymatic synthesis of 3-O-β-D-glucopyranoside-betulinic acid using Novozyme-435 as a catalyst was studied. The effect of various parameters such as substrate molar ratio, reaction temperature, reaction time, re-used enzymes and amount of enzymes were investigated. The optimum rection conditions for the enzymatic glycosidation of betulinic acid in an organic solvent using Novozym-435 was found to be at 1:1.2 substrate molar ratio, 55oC, 24 h and 180 mg of enzymes with percentage conversion of 88.69 %.Keywords: betulinic acid, glycosidation, novozyme-435, optimization
Procedia PDF Downloads 4261551 Swastika Shape Multiband Patch Antenna for Wireless Applications on Low Cost Substrate
Authors: Md. Samsuzzaman, M. T. Islam, J. S. Mandeep, N. Misran
Abstract:
In this article, a compact simple structure modified Swastika shape patch multiband antenna on a substrate of available low cost polymer resin composite material is designed for Wi-Fi and WiMAX applications. The substrate material consists of an epoxy matrix reinforced by woven glass. The designed micro-strip line fed compact antenna comprises of a planar wide square slot ground with four slits and Swastika shape radiation patch with a rectangular slot. The effect of the different substrate materials on the reflection coefficients of the proposed antennas was also analyzed. It can be clearly seen that the proposed antenna provides a wider bandwidth and acceptable return loss value compared to other reported materials. The simulation results exhibits that the antenna has an impedance bandwidth with -10 dB return loss at 3.01-3.89 GHz and 4.88-6.10 GHz which can cover both the WLAN, WiMAX and public safety WLAN bands. The proposed swastika shape antenna was designed and analyzed by using a finite element method based simulator HFSS and designed on a low cost FR4 (polymer resin composite material) printed circuit board. The electrical performances and superior frequency characteristics make the proposed material antenna desirable for wireless communications.Keywords: epoxy resin polymer, multiband, swastika shaped, wide slot, WLAN/WiMAX
Procedia PDF Downloads 4521550 Self-Assembled Laser-Activated Plasmonic Substrates for High-Throughput, High-Efficiency Intracellular Delivery
Authors: Marinna Madrid, Nabiha Saklayen, Marinus Huber, Nicolas Vogel, Christos Boutopoulos, Michel Meunier, Eric Mazur
Abstract:
Delivering material into cells is important for a diverse range of biological applications, including gene therapy, cellular engineering and imaging. We present a plasmonic substrate for delivering membrane-impermeable material into cells at high throughput and high efficiency while maintaining cell viability. The substrate fabrication is based on an affordable and fast colloidal self-assembly process. When illuminated with a femtosecond laser, the light interacts with the electrons at the surface of the metal substrate, creating localized surface plasmons that form bubbles via energy dissipation in the surrounding medium. These bubbles come into close contact with the cell membrane to form transient pores and enable entry of membrane-impermeable material via diffusion. We use fluorescence microscopy and flow cytometry to verify delivery of membrane-impermeable material into HeLa CCL-2 cells. We show delivery efficiency and cell viability data for a range of membrane-impermeable cargo, including dyes and biologically relevant material such as siRNA. We estimate the effective pore size by determining delivery efficiency for hard fluorescent spheres with diameters ranging from 20 nm to 2 um. To provide insight to the cell poration mechanism, we relate the poration data to pump-probe measurements of micro- and nano-bubble formation on the plasmonic substrate. Finally, we investigate substrate stability and reusability by using scanning electron microscopy (SEM) to inspect for damage on the substrate after laser treatment. SEM images show no visible damage. Our findings indicate that self-assembled plasmonic substrates are an affordable tool for high-throughput, high-efficiency delivery of material into mammalian cells.Keywords: femtosecond laser, intracellular delivery, plasmonic, self-assembly
Procedia PDF Downloads 5291549 A Study of Surface of Titanium Targets for Neutron Generators
Authors: Alexey Yu. Postnikov, Nikolay T. Kazakovskiy, Valery V. Mokrushin, Irina A. Tsareva, Andrey A. Potekhin, Valentina N. Golubeva, Yuliya V. Potekhina, Maxim V. Tsarev
Abstract:
The development of tritium and deuterium targets for neutron tubes and generators is a part of the activities in All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF). These items contain a metal substrate (for example, copper) with a titanium film with a few microns thickness deposited on it. Then these metal films are saturated with tritium, deuterium or their mixtures. The significant problem in neutron tubes and neutron generators is the characterization of substrate surface before a deposition of titanium film on it, and analysis of the deposited titanium film’s surface before hydrogenation and after a saturation of the film with hydrogen isotopes. The performance effectiveness of neutron tube and generator also depends on upon the quality parameters of the surface of the initial substrate, deposited metal film and hydrogenated target. The objective of our work is to study the target prototype samples, that have differ by various approaches to the preliminary chemical processing of a copper substrate, and to analyze the integrity of titanium film after its saturation with deuterium. The research results of copper substrate and the surface of deposited titanium film with the use of electron microscopy, X-ray spectral microanalysis and laser-spark methods of analyses are presented. The causes of surface defects appearance have been identified. The distribution of deuterium and some impurities (oxygen and nitrogen) along the surface and across the height of the hydrogenated film in the target has been established. This allows us to evaluate the composition homogeneity of the samples and consequently to estimate the quality of hydrogenated samples. As the result of this work the propositions on the advancement of production technology and characterization of target’s surface have been presented.Keywords: tritium and deuterium targets, titanium film, laser-spark methods, electron microscopy
Procedia PDF Downloads 4421548 Simulation the Effect of Temperature on the Residual Stress in Shot Peening Process Using FEM Method
Authors: M. Jalali Azizpour, H. Mohammadi Majd, A.R. Aboudi Asl, D. Sajedipour, V. Tawaf
Abstract:
Sandblasting is a generally used surface treatment technique to improve the residual stress and adhesion of coatings to substrate. The goal of this work is to study the effect of temperature on the residual stress in sandblasting AISI1045 substrate. For this purpose a two dimensional axisymmetric model of shot impacting on an AISI 1045 disc was generated using ABAQUS version 6.10. The result shows for sandblasting temperature there is an optimum condition. In addition there are other effective factors that influence the fatigue life of parts.Keywords: modeling, shot peen, residual stress, temperature
Procedia PDF Downloads 5861547 Pineapple Waste Valorization through Biogas Production: Effect of Substrate Concentration and Microwave Pretreatment
Authors: Khamdan Cahyari, Pratikno Hidayat
Abstract:
Indonesia has produced more than 1.8 million ton pineapple fruit in 2013 of which turned into waste due to industrial processing, deterioration and low qualities. It was estimated that this waste accounted for more than 40 percent of harvested fruits. In addition, pineapple leaves were one of biomass waste from pineapple farming land, which contributed even higher percentages. Most of the waste was only dumped into landfill area without proper pretreatment causing severe environmental problem. This research was meant to valorize the pineapple waste for producing renewable energy source of biogas through mesophilic (30℃) anaerobic digestion process. Especially, it was aimed to investigate effect of substrate concentration of pineapple fruit waste i.e. peel, core as well as effect of microwave pretreatment of pineapple leaves waste. The concentration of substrate was set at value 12, 24 and 36 g VS/liter culture whereas 800-Watt microwave pretreatment conducted at 2 and 5 minutes. It was noticed that optimum biogas production obtained at concentration 24 g VS/l with biogas yield 0.649 liter/g VS (45%v CH4) whereas microwave pretreatment at 2 minutes duration performed better compare to 5 minutes due to shorter exposure of microwave heat. This results suggested that valorization of pineapple waste could be carried out through biogas production at the aforementioned process condition. Application of this method is able to both reduce the environmental problem of the waste and produce renewable energy source of biogas to fulfill local energy demand of pineapple farming areas.Keywords: pineapple waste, substrate concentration, microwave pretreatment, biogas, anaerobic digestion
Procedia PDF Downloads 5801546 Silver Grating for Strong and Reproducible SERS Response
Authors: Y. Kalachyova, O. Lyutakov, V. Svorcik
Abstract:
One of the most significant obstacles for the application of surface enhanced Raman spectroscopy (SERS) is the poor reproducibility of SERS active substrates: SERS intensity can be varied from one substrate to another and moreover along the one substrate surface. High enhancement of the near-field intensity is the key factor for ultrasensitive SERS realization. SERS substrate can be prepared through introduction of highly ordered metal array, where light focusing is achieved through excitation of surface plasmon-polaritons (SPPs). In this work, we report the preparation of silver nanostructures with plasmon absorption peaks tuned by the metal arrangement. Excimer laser modification of poly(methyl methacrylate) followed by silver evaporation is proposed as an effective way for the creation of reproducible and effective surface plasmon-polaritons (SPP)-based SERS substrate. Theoretical and experimental studies were performed to optimize structure parameter for effective SPP excitation. It was found that the narrow range of grating periodicity and metal thickness exist, where SPPs can be most efficiently excited. In spite of the fact, that SERS response was almost always achieved, the enhancement factor was found to vary more with the effectivity of SPP excitation. When the real structure parameters were set to optimal for SPP excitation, a SERS enhancement factor was achieved up to four times. Theoretical and experimental investigation of SPP excitation on the two-dimensional periodical silver array was performed with the aim to make SERS response as high as possible.Keywords: grating, nanostructures, plasmon-polaritons, SERS
Procedia PDF Downloads 2681545 Influence of Disintegration of Sida hermaphrodita Silage on Methane Fermentation Efficiency
Authors: Marcin Zielinski, Marcin Debowski, Paulina Rusanowska, Magda Dudek
Abstract:
As a result of sonification, the destruction of complex biomass structures results in an increase in the biogas yield from the conditioned material. First, the amount of organic matter released into the solution due to disintegration was determined. This parameter was determined by changes in the carbon content in liquid phase of the conditioned substrate. The amount of carbon in the liquid phase increased with the prolongation of the sonication time to 16 min. Further increase in the duration of sonication did not cause a statistically significant increase in the amount of organic carbon in the liquid phase. The disintegrated material was then used for respirometric measurements for determination of the impact of the conditioning process used on methane fermentation effectiveness. The relationship between the amount of energy introduced into the lignocellulosic substrate and the amount of biogas produced has been demonstrated. Statistically significant increase in the amount of biogas was observed until sonication of 16 min. Further increase in energy in the conditioning process did not significantly increase the production of biogas from the treated substrate. The biogas production from the conditioned substrate was 17% higher than from the reference biomass at that time. The ultrasonic disintegration method did not significantly affect the observed biogas composition. In all series, the methane content in the produced biogas from the conditioned substrate was similar to that obtained with the raw substrate sample (51.1%). Another method of substrate conditioning was hydrothermal depolymerization. This method consists in application of increased temperature and pressure to substrate. These phenomena destroy the structure of the processed material, the release of organic compounds to the solution, which should lead to increase the amount of produced biogas from such treated biomass. The hydrothermal depolymerization was conducted using an innovative microwave heating method. Control measurements were performed using conventional heating. The obtained results indicate the relationship between depolymerization temperature and the amount of biogas. Statistically significant value of the biogas production coefficients increased as the depolymerization temperature increased to 150°C. Further raising the depolymerization temperature to 180°C did not significantly increase the amount of produced biogas in the respirometric tests. As a result of the hydrothermal depolymerization obtained using microwave at 150°C for 20 min, the rate of biogas production from the Sida silage was 780 L/kg VS, which accounted for nearly 50% increase compared to 370 L/kg VS obtained from the same silage but not depolymerised. The study showed that by microwave heating it is possible to effectively depolymerized substrate. Significant differences occurred especially in the temperature range of 130-150ºC. The pre-treatment of Sida hermaphrodita silage (biogas substrate) did not significantly affect the quality of the biogas produced. The methane concentration was about 51.5% on average. The study was carried out in the framework of the project under program BIOSTRATEG funded by the National Centre for Research and Development No. 1/270745/2/NCBR/2015 'Dietary, power, and economic potential of Sida hermaphrodita cultivation on fallow land'.Keywords: disintegration, biogas, methane fermentation, Virginia fanpetals, biomass
Procedia PDF Downloads 3091544 Tribological Study of TiC Powder Cladding on 6061 Aluminum Alloy
Authors: Yuan-Ching Lin, Sin-Yu Chen, Pei-Yu Wu
Abstract:
This study reports the improvement in the wear performance of A6061 aluminum alloy clad with mixed powders of titanium carbide (TiC), copper (Cu) and aluminum (Al) using the gas tungsten arc welding (GTAW) method. The wear performance of the A6061 clad layers was evaluated by performing pin-on-disc mode wear test. Experimental results clearly indicate an enhancement in the hardness of the clad layer by about two times that of the A6061 substrate without cladding. Wear test demonstrated a significant improvement in the wear performance of the clad layer when compared with the A6061 substrate without cladding. Moreover, the interface between the clad layer and the A6061 substrate exhibited superior metallurgical bonding. Due to this bonding, the clad layer did not spall during the wear test; as such, massive wear loss was prevented. Additionally, massive oxidized particulate debris was generated on the worn surface during the wear test; this resulted in three-body abrasive wear and reduced the wear behavior of the clad surface.Keywords: GTAW、A6061 aluminum alloy, 、surface modification, tribological study, TiC powder cladding
Procedia PDF Downloads 4631543 Wetting Properties of Silver Based Alloys
Authors: Zoltán Weltsch, József Hlinka, Eszter Kókai
Abstract:
The temperature dependence of wettability (wetting angle, Θ (T)) for Ag-based melts on graphite and Al2O3 substrates is compared. Typical alloying effects are found, as the Ag host metal is gradually replaced by various metallic elements. The essence of alloying lies in the change of the electron/atom (e/a) ratio. This ratio is also manifested in the shift of wetting angles on the same substrate. Nevertheless, the effects are partially smeared by other (metallurgical) factors, like the interaction between the oxygen-alloying elements and by the graphite substrate-oxygen interaction. In contrast, such effects are not pronounced in the case of Al2O3 substrates. As a consequence, Θ(T) exhibits an opposite trend in the case of two substrates. Crossovers of the Θ(T) curves were often found. The positions of crossovers depend on the chemical character and concentration of solute atoms. Segregation and epitaxial texture formation after solidification were also observed in certain alloy drops, especially in high concentration range. This phenomenon is not yet explained in every detail.Keywords: contact angle, graphite, silver, soldering, solid solubility, substrate, temperature dependence, wetting
Procedia PDF Downloads 4131542 Coated Chromium Thin Film on Zirconium for Corrosion Resistance of Nuclear Fuel Rods by Plasma Focus Device
Authors: Amir Raeisdana, Davood Sohrabi, Mojtaba Nohekhan, Ameneh Kargarian, Maryam Ghapanvari, Alireza Aslezaeem
Abstract:
Improvement of zirconium properties by chromium coating and nitrogen implantation is ideal to protect the nuclear fuel rods against corrosion and secondary hydrogenation. Metallic chromium (Cr) has attracted attention as a potential coating material on zirconium alloys, to limit external cladding corrosion. In this research, high energy plasma focus device was used to coat the chromium and implant the nitrogen ions in the zirconium substrate. This device emits high-energy nitrogen ions of 10 keV-1 MeV and with a flux of 10^16 ions/cm^2 in each shot toward the target so it is attractive for implantation on the substrate materials at the room temperature. Six zirconium samples in 2cm×2cm dimensions with 1mm thickness were located at a distance of 20cm from the place where the pinch is formed. The experiments are carried out in 0.5 mbar of the nitrogen gas pressure and 15 kV of the charging voltage. Pure Cr disc was installed on the anode head for sputtering of the chromium and deposition on zirconium substrate. When the pinch plasma column decays due to various instabilities, intense and high-energy N2 ions are accelerated towards the zirconium substrate also sputtered Cr is deposited on the zirconium substrate. XRD and XRF analysis were used to study the structural properties of the samples. XRF analysis indicates 77.1% of Zr and 11.1% of Cr in the surface of the sample. XRD spectra shows the formation of ZrN, CrN and CrZr composites after nitrogen implantation and chromium coating. XRD spectra shows the chromium peak height equal to 152.80 a.u. for the major sample (θ=0֯) and 92.99 a.u. for the minor sample (θ=6֯), so implantation and coating along the main axis of the device is significantly more than other directions.Keywords: ZrN and CrN and CrZr composites, angular distribution for Cr deposition rate, zirconium corrosion resistance, nuclear fuel rods, plasma focus device
Procedia PDF Downloads 231541 Characterization of Minerals, Elicitors in Spent Mushroom Substrate Extract and Effects on Growth, Yield and the Management of Massava Mosaic Diseases
Authors: Samuel E. Okere, Anthony E. Ataga
Abstract:
Introduction: This paper evaluated the mineral compositions, disease resistance elicitors in Pleurotus ostratus (POWESMS), and Pleurotus tuber-regium water extract spent mushroom substrate (PTWESMS) on the growth, yield, and management of cassava mosaic disease. Materials and Methods: The cassava plantlet (tms 98/0505) were generated through meristem tip culture at the Tissue Culture Laboratory, National Root Crop Research Institute, Umudike before they were transferred to the screen house, University of Port Harcourt Research Farm. The minerals and elicitors contained in the two spent mushroom substrates were evaluated using standard procedures. The treatments for this investigation comprised cassava plants treated with POWESMS, PTWESMS, and untreated cassava as control, which were inoculated with viral inoculum seven days after treatment application. The experiment was laid out in a completely randomized block design with 3 replicates. The data generated were subjected to analysis of variance (ANOVA). Means were separated using Fishers Least Significant Difference at p=0.05. Results: The results obtained revealed that POWESMS contained 19.3, 0.52, and 0.1g/200g substrate of carbohydrate polymers, glycoproteins, and lipid molecules elicitors respectively while it also contained 3.17, 212.1, 17.9,21.8, 58.8 and 111.0 mg/100g substrate for N, P, K, Na, Mg and Ca respectively. Further, PTWESMS contain 1.6, 0.04, and 0.2g/200g of the substrate as carbohydrate polymers, glycoprotein, and lipid respectively; the minerals contained in this substrate were 3.4, 204.8, 8.9, 24.2, 32.2 and 105.5 mg respectively for N, P, K, Na, and Ca. There were also significant differences in the mean values of the number of storage roots, root length, fresh root weight, fresh weight plant biomass, root girth, and whole plant dry biomass, but no significant difference was recorded for harvest index. The result also revealed significant differences in mean values of disease severity index evaluated at 4, 8, 12, 16, 20, 24, and 28 weeks after inoculation (WAI). Conclusion: The aqueous extract of these spent mushrooms substrate have shown outstanding prospect in managing cassava mosaic disease and also improvement in growth and yield of cassava due to the high level of the minerals and elicitors they contain when compared with the control. However, more work is recommended, especially in understanding the mechanism of this induced resistance.Keywords: characterization, elicitors, mosaic, mushroom
Procedia PDF Downloads 1301540 Reactive Sputter Deposition of Titanium Nitride on Silicon Using a Magnetized Sheet Plasma Source
Authors: Janella Salamania, Marcedon Fernandez, Matthew Villanueva Henry Ramos
Abstract:
Titanium nitrite (TiN) a popular functional and decorative coating because of its golden yellow color, high hardness and superior wear resistance. It is also being studied as a diffusion barrier in integrated circuits due to its known chemical stability and low resistivity. While there have been numerous deposition methods done for TiN, most required the heating of substrates at high temperatures. In this work, TiN films are deposited on silicon (111) and (100) substrates without substrate heating using a patented magnetized sheet plasma source. Films were successfully deposited without substrate heating at various target bias, while maintaining a constant 25% N2 to Ar ratio, and deposition of time of 30 minutes. The resulting films exhibited a golden yellow color which is characteristic of TiN. X-ray diffraction patterns show the formation of TiN predominantly oriented in the (111) direction regardless of substrate used. EDX data also confirms the 1:1 stoichiometry of titanium an nitrogen. Ellipsometry measurements estimate the thickness to range from 28 nm to 33 nm. SEM images were also taken to observe the morphology of the film.Keywords: coatings, nitrides, coatings, reactive magnetron sputtering, thin films
Procedia PDF Downloads 3411539 Increase in Specificity of MicroRNA Detection by RT-qPCR Assay Using a Specific Extension Sequence
Authors: Kyung Jin Kim, Jiwon Kwak, Jae-Hoon Lee, Soo Suk Lee
Abstract:
We describe an innovative method for highly specific detection of miRNAs using a specially modified method of poly(A) adaptor RT-qPCR. We use uniquely designed specific extension sequence, which plays important role in providing an opportunity to affect high specificity of miRNA detection. This method involves two steps of reactions as like previously reported and which are poly(A) tailing and reverse-transcription followed by real-time PCR. Firstly, miRNAs are extended by a poly(A) tailing reaction and then converted into cDNA. Here, we remarkably reduced the reaction time by the application of short length of poly(T) adaptor. Next, cDNA is hybridized to the 3’-end of a specific extension sequence which contains miRNA sequence and results in producing a novel PCR template. Thereafter, the SYBR Green-based RT-qPCR progresses with a universal poly(T) adaptor forward primer and a universal reverse primer. The target miRNA, miR-106b in human brain total RNA, could be detected quantitatively in the range of seven orders of magnitude, which demonstrate that the assay displays a dynamic range of at least 7 logs. In addition, the better specificity of this novel extension-based assay against well known poly(A) tailing method for miRNA detection was confirmed by melt curve analysis of real-time PCR product, clear gel electrophoresis and sequence chromatogram images of amplified DNAs.Keywords: microRNA(miRNA), specific extension sequence, RT-qPCR, poly(A) tailing assay, reverse transcription
Procedia PDF Downloads 3081538 The Use of Venous Glucose, Serum Lactate and Base Deficit as Biochemical Predictors of Mortality in Polytraumatized Patients: Acomparative with Trauma and Injury Severity Score and Acute Physiology and Chronic Health Evalution IV
Authors: Osama Moustafa Zayed
Abstract:
Aim of the work: To evaluate the effectiveness of venous glucose, levels of serum lactate and base deficit in polytraumatized patients as simple parameters to predict the mortality in these patients. Compared to the predictive value of Trauma and injury severity (TRISS) and Acute Physiology And Chronic Health Evaluation IV (APACHE IV). Introduction: Trauma is a serious global health problem, accounting for approximately one in 10 deaths worldwide. Trauma accounts for 5 million deaths per year. Prediction of mortality in trauma patients is an important part of trauma care. Several trauma scores have been devised to predict injury severity and risk of mortality. The trauma and injury severity score (TRISS) was most common used. Regardless of the accuracy of trauma scores, is based on an anatomical description of every injury and cannot be assigned to the patients until a full diagnostic procedure has been performed. So we hypothesized that alterations in admission glucose, lactate levels and base deficit would be an early and easy rapid predictor of mortality. Patient and Method: a comparative cross-sectional study. 282 Polytraumatized patients attended to the Emergency Department(ED) of the Suez Canal university Hospital constituted. The period from 1/1/2012 to 1/4/2013 was included. Results: We found that the best cut off value of TRISS probability of survival score for prediction of mortality among poly-traumatized patients is = 90, with 77% sensitivity and 89% specificity using area under the ROC curve (0.89) at (95%CI). APACHE IV demonstrated 67% sensitivity and 95% specificity at 95% CI at cut off point 99. The best cutoff value of Random Blood Sugar (RBS) for prediction of mortality was>140 mg/dl, with 89%, sensitivity, 49% specificity. The best cut off value of base deficit for prediction of mortality was less than -5.6 with 64% sensitivity, 93% specificity. The best cutoff point of lactate for prediction of mortality was > 2.6 mmol/L with 92%, sensitivity, 42% specificity. Conclusion: According to our results from all evaluated predictors of mortality (laboratory and scores) and mortality based on the estimated cutoff values using ROC curves analysis, the highest risk of mortality was found using a cutoff value of 90 in TRISS score while with laboratory parameters the highest risk of mortality was with serum lactate > 2.6 . Although that all of the three parameter are accurate in predicting mortality in poly-traumatized patients and near with each other, as in serum lactate the area under the curve 0.82, in BD 0.79 and 0.77 in RBS.Keywords: APACHE IV, emergency department, polytraumatized patients, serum lactate
Procedia PDF Downloads 2941537 Deposition Rates and Annealing Effects on the Growth of Nb Thin Film on Cu Substrate: Molecular Dynamic Simulation
Authors: Lablali Mohammed, Mes-Adi Hassan, Mazroui M’Hammed
Abstract:
To tackle the complexity of grasping atomic-scale structures and unraveling the factors affecting the development of thin films. In our work, we perform the deposition of Nb atoms on Cu substrates using the molecular dynamics simulation combined with the embedded atom method to describe the interaction between different atoms. We investigated the impact of varying deposition rates and thermal annealing processes on the microstructural, morphological, and mechanical characteristics of the deposited Nb film. Our findings reveal that Nb atom growth on the Cu substrate occurs in island mode, accompanied by the presence of nucleation phenomena during growth. On the other hand, mixing behavior was observed at the interface between the film and the substrate, where Nb penetration is initially limited to the first Cu layer, whereas Cu atoms diffuse until reaching the third layer in the Nb film. Furthermore, Nb exhibits a BCC structure, with a significant concentration observed at a rate of 5 atoms/ps, and annealing further amplifies these percentages. Deposition at different rates leads to distinct levels of compressive normal and biaxial stress.Keywords: molecular dynamics, Nb thin film, structure and morphology, atomic penetration
Procedia PDF Downloads 311536 Influence of the Molar Concentration and Substrate Temperature on Fluorine-Doped Zinc Oxide Thin Films Chemically Sprayed
Authors: J. Ramirez, A. Maldonado, M. de la L. Olvera
Abstract:
The effect of both the molar concentration of the starting solution and the substrate temperature on the electrical, morphological, structural and optical properties of chemically sprayed fluorine-doped zinc oxide (ZnO:F) thin films deposited on glass substrates, is analyzed in this work. All the starting solutions employed were aged for ten days before the deposition. The results show that as the molar concentration increases, a decrease in the electrical resistivity values is obtained, reaching the minimum in films deposited from a 0.4 M solution at 500°C. A further increase in the molar concentration leads to a very slight increase in the resistivity. On the other hand, as the substrate temperature is increased, the resistivity decreases and a tendency towards to minimum value is evidenced; taking the molar concentration as parameter, minimum values are reached at 500°C. The attain of ZnO:F thin films, with a resistivity as low as 7.8×10-3 Ώcm (sheet resistance of 130 Ώ/☐ and film thickness of 600 nm) measured in as-deposited films is reported here for the first time. The concurrent effect of the high molar concentration of the starting solution, the substrate temperature values used, and the ageing of the starting solution, which might cause polymerization of the zinc ions with the fluorine species, enhance the electrical properties. The structure of the films is polycrystalline, with a (002) preferential growth. Molar concentration rules the surface morphology as at low concentration an hexagonal and porous structure is developed changing to a uniform compact and small grain size surface in the films deposited with the high molar concentrations.Keywords: zinc oxide, chemical spray, thin films, TCO
Procedia PDF Downloads 5031535 Development and Investigation of Efficient Substrate Feeding and Dissolved Oxygen Control Algorithms for Scale-Up of Recombinant E. coli Cultivation Process
Authors: Vytautas Galvanauskas, Rimvydas Simutis, Donatas Levisauskas, Vykantas Grincas, Renaldas Urniezius
Abstract:
The paper deals with model-based development and implementation of efficient control strategies for recombinant protein synthesis in fed-batch E.coli cultivation processes. Based on experimental data, a kinetic dynamic model for cultivation process was developed. This model was used to determine substrate feeding strategies during the cultivation. The proposed feeding strategy consists of two phases – biomass growth phase and recombinant protein production phase. In the first process phase, substrate-limited process is recommended when the specific growth rate of biomass is about 90-95% of its maximum value. This ensures reduction of glucose concentration in the medium, improves process repeatability, reduces the development of secondary metabolites and other unwanted by-products. The substrate limitation can be enhanced to satisfy restriction on maximum oxygen transfer rate in the bioreactor and to guarantee necessary dissolved carbon dioxide concentration in culture media. In the recombinant protein production phase, the level of substrate limitation and specific growth rate are selected within the range to enable optimal target protein synthesis rate. To account for complex process dynamics, to efficiently exploit the oxygen transfer capability of the bioreactor, and to maintain the required dissolved oxygen concentration, adaptive control algorithms for dissolved oxygen control have been proposed. The developed model-based control strategies are useful in scale-up of cultivation processes and accelerate implementation of innovative biotechnological processes for industrial applications.Keywords: adaptive algorithms, model-based control, recombinant E. coli, scale-up of bioprocesses
Procedia PDF Downloads 2571534 Comparative Study of the Sensitivity of Two Freshwater Gastropods, Lymnaea Stagnalis and Planorbarius Corneus, to Silver Nanoparticles: Bioaccumulation and Toxicity
Authors: Ting Wang, Pierre Marle, Vera I. Slaveykova, Kristin Schirmer, Wei Liu
Abstract:
Metal-based nanoparticles (NPs) are considered detrimental to aquatic organisms due to their potential accumulation. However, little is known about the mechanisms underlying these effects and their species-specificity. Here, we used stable silver (Ag) NPs (20 nm, from 10 to 500 μg/L) with a low dissolution rate (≤2.4%) to study the bioaccumulation and biological impacts in two freshwater gastropods: Lymnaea stagnalis and Planorbarius corneus. No mortality was detected during the experiments. Ag bioaccumulation showed a dose-related increase with an enhanced concentration in both species after 7d exposure. L. stagnalis displayed a higher accumulation for AgNPs than P. corneus (e.g., up to 18- and 15-fold in hepatopancreas and hemolymph, respectively), which could be due to the more active L. stagnalis having greater contact with suspended AgNPs. Furthermore, the hepatopancreas and stomach were preferred organs for bioaccumulation compared to the kidney, mantle and foot. Regarding biological responses, the hemolymph rather than hepatopancreas appeared more susceptible to oxidative stress elicited by AgNPs, as shown by significantly increasing lipid peroxidation (i.e., formation of malondialdehyde). Neurotoxicity was detected in L. stagnalis when exposed to high concentrations (500 μg/L). Comparison with impacts elicited by dissolved Ag revealed that the effects observed on AgNPs exposure were mainly attributable to NPs. These results highlighted the relationship between the physiological traits, bioaccumulation, and toxicity responses of these two species to AgNPs and demonstrated the necessity of species-specificity considerations when assessing the toxicity of NPs.Keywords: nanotoxicity, freshwater gastropods, species-specificity, metals, physiological traits
Procedia PDF Downloads 631533 Optimizing Rectangular Microstrip Antenna Performance with Nanofiller Integration
Authors: Chejarla Raghunathababu, E. Logashanmugam
Abstract:
An antenna is an assortment of linked devices that function together to transmit and receive radio waves as a single antenna. Antennas occur in a variety of sizes and forms, but the microstrip patch antenna outperforms other types in terms of effectiveness and prediction. These antennas are easy to generate with discreet benefits. Nevertheless, the antenna's effectiveness will be affected because of the patch's shape above a thick dielectric substrate. As a result, a double-pole rectangular microstrip antenna with nanofillers was suggested in this study. By employing nano-composite substances (Fumed Silica and Aluminum Oxide), which are composites of graphene with nanofillers, the physical characteristics of the microstrip antenna, that is, the elevation of the microstrip antenna substrate and the width of the patch microstrip antenna have been improved in this research. The surface conductivity of graphene may be modified to function at specific frequencies. In order to prepare for future wireless communication technologies, a microstrip patch antenna operating at 93 GHz resonant frequency is constructed and investigated. The goal of this study was to reduce VSWR and increase gain. The simulation yielded results for the gain and VSWR, which were 8.26 dBi and 1.01, respectively.Keywords: graphene, microstrip patch antenna, substrate material, wireless communication, nanocomposite material
Procedia PDF Downloads 1111532 Diagnostic Accuracy of the Tuberculin Skin Test for Tuberculosis Diagnosis: Interest of Using ROC Curve and Fagan’s Nomogram
Authors: Nouira Mariem, Ben Rayana Hazem, Ennigrou Samir
Abstract:
Background and aim: During the past decade, the frequency of extrapulmonary forms of tuberculosis has increased. These forms are under-diagnosed using conventional tests. The aim of this study was to evaluate the performance of the Tuberculin Skin Test (TST) for the diagnosis of tuberculosis, using the ROC curve and Fagan’s Nomogram methodology. Methods: This was a case-control, multicenter study in 11 anti-tuberculosis centers in Tunisia, during the period from June to November2014. The cases were adults aged between 18 and 55 years with confirmed tuberculosis. Controls were free from tuberculosis. A data collection sheet was filled out and a TST was performed for each participant. Diagnostic accuracy measures of TST were estimated using ROC curve and Area Under Curve to estimate sensitivity and specificity of a determined cut-off point. Fagan’s nomogram was used to estimate its predictive values. Results: Overall, 1053 patients were enrolled, composed of 339 cases (sex-ratio (M/F)=0.87) and 714 controls (sex-ratio (M/F)=0.99). The mean age was 38.3±11.8 years for cases and 33.6±11 years for controls. The mean diameter of the TST induration was significantly higher among cases than controls (13.7mm vs.6.2mm;p=10-6). Area Under Curve was 0.789 [95% CI: 0.758-0.819; p=0.01], corresponding to a moderate discriminating power for this test. The most discriminative cut-off value of the TST, which were associated with the best sensitivity (73.7%) and specificity (76.6%) couple was about 11 mm with a Youden index of 0.503. Positive and Negative predictive values were 3.11% and 99.52%, respectively. Conclusion: In view of these results, we can conclude that the TST can be used for tuberculosis diagnosis with a good sensitivity and specificity. However, the skin induration measurement and its interpretation is operator dependent and remains difficult and subjective. The combination of the TST with another test such as the Quantiferon test would be a good alternative.Keywords: tuberculosis, tuberculin skin test, ROC curve, cut-off
Procedia PDF Downloads 671531 Comparison of the Classification of Cystic Renal Lesions Using the Bosniak Classification System with Contrast Enhanced Ultrasound and Magnetic Resonance Imaging to Computed Tomography: A Prospective Study
Authors: Dechen Tshering Vogel, Johannes T. Heverhagen, Bernard Kiss, Spyridon Arampatzis
Abstract:
In addition to computed tomography (CT), contrast enhanced ultrasound (CEUS), and magnetic resonance imaging (MRI) are being increasingly used for imaging of renal lesions. The aim of this prospective study was to compare the classification of complex cystic renal lesions using the Bosniak classification with CEUS and MRI to CT. Forty-eight patients with 65 cystic renal lesions were included in this study. All participants signed written informed consent. The agreement between the Bosniak classifications of complex renal lesions ( ≥ BII-F) on CEUS and MRI were compared to that of CT and were tested using Cohen’s Kappa. Sensitivity, specificity, positive and negative predictive values (PPV/NPV) and the accuracy of CEUS and MRI compared to CT in the detection of complex renal lesions were calculated. Twenty-nine (45%) out of 65 cystic renal lesions were classified as complex using CT. The agreement between CEUS and CT in the classification of complex cysts was fair (agreement 50.8%, Kappa 0.31), and was excellent between MRI and CT (agreement 93.9%, Kappa 0.88). Compared to CT, MRI had a sensitivity of 96.6%, specificity of 91.7%, a PPV of 54.7%, and an NPV of 54.7% with an accuracy of 63.1%. The corresponding values for CEUS were sensitivity 100.0%, specificity 33.3%, PPV 90.3%, and NPV 97.1% with an accuracy 93.8%. The classification of complex renal cysts based on MRI and CT scans correlated well, and MRI can be used instead of CT for this purpose. CEUS can exclude complex lesions, but due to higher sensitivity, cystic lesions tend to be upgraded. However, it is useful for initial imaging, for follow up of lesions and in those patients with contraindications to CT and MRI.Keywords: Bosniak classification, computed tomography, contrast enhanced ultrasound, cystic renal lesions, magnetic resonance imaging
Procedia PDF Downloads 1431530 Hybrid Polymer Microfluidic Platform for Studying Endothelial Cell Response to Micro Mechanical Environment
Authors: Mitesh Rathod, Jungho Ahn, Noo Li Jeon, Junghoon Lee
Abstract:
Endothelial cells respond to cues from both biochemical as well as micro mechanical environment. Significant effort has been directed to understand the effects of biochemical signaling, however, relatively little is known about regulation of endothelial cell biology by the micro mechanical environment. Numerous studies have been performed to understand how physical forces regulate endothelial cell behavior. In this regard, past studies have majorly focused on exploring how fluid shear stress governs endothelial cell behavior. Parallel plate flow chambers and rectangular microchannels are routinely employed for applying fluid shear force on endothelial cells. However, these studies fall short in mimicking the in vivo like micro environment from topological aspects. Few studies have only used circular microchannels to replicate in vivo like condition. Seldom efforts have been directed to elucidate the combined effect of topology, substrate rigidity and fluid shear stress on endothelial cell response. In this regard, we demonstrate a facile fabrication process to develop a hybrid polydimethylsiloxane microfluidic platform to study endothelial cell biology. On a single chip microchannels with different cross sections i.e., circular, rectangular and square have been fabricated. In addition, our fabrication approach allows variation in the substrate rigidity along the channel length. Two different variants of polydimethylsiloxane, namely Sylgard 184 and Sylgard 527, were utilized to achieve the variation in rigidity. Moreover, our approach also enables in creating Y bifurcation circular microchannels. Our microfluidic platform thus facilitates for conducting studies pertaining to endothelial cell morphology with respect to change in topology, substrate rigidity and fluid flow on a single chip. The hybrid platform was tested by culturing Human Umbilical Vein Endothelial Cells in circular microchannels with varying substrate rigidity, and exposed to fluid shear stress of 12 dynes/cm² and static conditions. Results indicate the cell area response to flow induced shear stress was governed by the underlying substrate mechanics.Keywords: hybrid, microfluidic platform, PDMS, shear flow, substrate rigidity
Procedia PDF Downloads 2751529 Ge₁₋ₓSnₓ Alloys with Tuneable Energy Band Gap on GaAs (100) Substrate Manufactured by a Modified Magnetron Co-Sputtering
Authors: Li Qian, Jinchao Tong, Daohua Zhang, Weijun Fan, Fei Suo
Abstract:
Photonic applications based on group IV semiconductors have always been an interest but also a challenge for the research community. We report manufacturing group IV Ge₁₋ₓSnₓ alloys with tuneable energy band gap on (100) GaAs substrate by a modified radio frequency magnetron co-sputtering. Images were taken by atomic force microscope, and scanning electron microscope clearly demonstrates a smooth surface profile, and Ge₁₋ₓSnₓ nano clusters are with the size of several tens of nanometers. Transmittance spectra were measured by Fourier Transform Infrared Spectroscopy that showed changing energy gaps with the variation in elementary composition. Calculation results by 8-band k.p method are consistent with measured gaps. Our deposition system realized direct growth of Ge₁₋ₓSnₓ thin film on GaAs (100) substrate by sputtering. This simple deposition method was modified to be able to grow high-quality photonic materials with tuneable energy gaps. This work provides an alternative and successful method for fabricating Group IV photonic semiconductor materials.Keywords: GeSn, crystal growth, sputtering, photonic
Procedia PDF Downloads 1441528 Controlling the Degradation Rate of Biodegradable Mg Implant Using Magnetron-Sputtered (Zr-Nb) Thin Films
Authors: Somayeh Azizi, Mohammad Hossein Ehsani, Amir Zareidoost
Abstract:
In this research, a technique has been developed to reduce the corrosion rate of magnesium (Mg) metal by creating Zr-Nb thin film coatings. In this regard, thin-film coatings of niobium (Nb) zirconium (Zr) double alloy are applied on pure Mg specimens under different processes conditions, such as the change of the substrate temperature, substrate bias, and coating thickness using the magnetron sputtering method. Then, deposited coatings are analyzed in terms of surface features via field-emission scanning electron microscopy (FE-SEM), thin-layer X-ray diffraction (GI-XRD), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), and corrosion tests. Also, nano-scratch tests were carried out to investigate the adhesion of the thin film. The results showed that the (Zr-Nb) thin films could control the degradation rate of Mg in the simulated body fluid (SBF). The nano-scratch studies depicted that the (Zr-Nb) thin films have a proper adhesion with the Mg substrate. Therefore, this technique could be used to enhance the corrosion resistance of bare Mg and could result in improving the performance of the biodegradable Mg implant for orthopedic applications.Keywords: (Zr-Nb) thin film, magnetron sputtering, biodegradable Mg, degradation rate
Procedia PDF Downloads 1201527 Clinical Trial of VEUPLEXᵀᴹ TBI Assay to Help Diagnose Traumatic Brain Injury by Quantifying Glial Fibrillary Acidic Protein and Ubiquitin Carboxy-Terminal Hydrolase L1 in the Serum of Patients Suspected of Mild TBI by Fluorescence Immunoassay
Authors: Moon Jung Kim, Guil Rhim
Abstract:
The clinical sensitivity of the “VEUPLEXTM TBI assay”, a clinical trial medical device, in mild traumatic brain injury was 28.6% (95% CI, 19.7%-37.5%), and the clinical specificity was 94.0% (95% CI, 89.3%). -98.7%). In addition, when the results analyzed by marker were put together, the sensitivity was higher when interpreting the two tests together than the two tests, UCHL1 and GFAP alone. Additionally, when sensitivity and specificity were analyzed based on CT results for the mild traumatic brain injury patient group, the clinical sensitivity for 2 CT-positive cases was 50.0% (95% CI: 1.3%-98.7%), and 19 CT-negative cases. The clinical specificity for cases was 68.4% (95% CI: 43.5% - 87.4%). Since the low clinical sensitivity for the two CT-positive cases was not statistically significant due to the small number of samples analyzed, it was judged necessary to secure and analyze more samples in the future. Regarding the clinical specificity analysis results for 19 CT-negative cases, there were a large number of patients who were actually clinically diagnosed with mild traumatic brain injury but actually received a CT-negative result, and about 31.6% of them showed abnormal results on VEUPLEXTM TBI assay. Although traumatic brain injury could not be detected in 31.6% of the CT scans, the possibility of actually suffering a mild brain injury could not be ruled out, so it was judged that this could be confirmed through follow-up observation of the patient. In addition, among patients with mild traumatic brain injury, CT examinations were not performed in many cases because the symptoms were very mild, but among these patients, about 25% or more showed abnormal results in the VEUPLEXTM TBI assay. In fact, no damage is observed with the naked eye immediately after traumatic brain injury, and traumatic brain injury is not observed even on CT. But in some cases, brain hemorrhage may occur (delayed cerebral hemorrhage) after a certain period of time, so the patients who did show abnormal results on VEUPLEXTM TBI assay should be followed up for the delayed cerebral hemorrhage. In conclusion, it was judged that it was difficult to judge mild traumatic brain injury with the VEUPLEXTM TBI assay only through clinical findings without CT results, that is, based on the GCS value. Even in the case of CT, it does not detect all mild traumatic brain injury, so it is difficult to necessarily judge that there is no traumatic brain injury, even if there is no evidence of traumatic brain injury in CT. And in the long term, more patients should be included to evaluate the usefulness of the VEUPLEXTM TBI assay in the detection of microscopic traumatic brain injuries without using CT.Keywords: brain injury, traumatic brain injury, GFAP, UCHL1
Procedia PDF Downloads 991526 Topochemical Synthesis of Epitaxial Silicon Carbide on Silicon
Authors: Andrey V. Osipov, Sergey A. Kukushkin, Andrey V. Luk’yanov
Abstract:
A method is developed for the solid-phase synthesis of epitaxial layers when the substrate itself is involved into a topochemical reaction and the reaction product grows in the interior of substrate layer. It opens up new possibilities for the relaxation of the elastic energy due to the attraction of point defects formed during the topochemical reaction in anisotropic media. The presented method of silicon carbide (SiC) formation employs a topochemical reaction between the single-crystalline silicon (Si) substrate and gaseous carbon monoxide (CO). The corresponding theory of interaction of point dilatation centers in anisotropic crystals is developed. It is eliminated that the most advantageous location of the point defects is the direction (111) in crystals with cubic symmetry. The single-crystal SiC films with the thickness up to 200 nm have been grown on Si (111) substrates owing to the topochemical reaction with CO. Grown high-quality single-crystal SiC films do not contain misfit dislocations despite the huge lattice mismatch value of ~20%. Also the possibility of growing of thick wide-gap semiconductor films on these templates SiC/Si(111) and, accordingly, its integration into Si electronics, is demonstrated. Finally, the ab initio theory of SiC formation due to the topochemical reaction has been developed.Keywords: epitaxy, silicon carbide, topochemical reaction, wide-bandgap semiconductors
Procedia PDF Downloads 458