Search results for: rolling stock
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1028

Search results for: rolling stock

938 Quantifying Uncertainties in an Archetype-Based Building Stock Energy Model by Use of Individual Building Models

Authors: Morten Brøgger, Kim Wittchen

Abstract:

Focus on reducing energy consumption in existing buildings at large scale, e.g. in cities or countries, has been increasing in recent years. In order to reduce energy consumption in existing buildings, political incentive schemes are put in place and large scale investments are made by utility companies. Prioritising these investments requires a comprehensive overview of the energy consumption in the existing building stock, as well as potential energy-savings. However, a building stock comprises thousands of buildings with different characteristics making it difficult to model energy consumption accurately. Moreover, the complexity of the building stock makes it difficult to convey model results to policymakers and other stakeholders. In order to manage the complexity of the building stock, building archetypes are often employed in building stock energy models (BSEMs). Building archetypes are formed by segmenting the building stock according to specific characteristics. Segmenting the building stock according to building type and building age is common, among other things because this information is often easily available. This segmentation makes it easy to convey results to non-experts. However, using a single archetypical building to represent all buildings in a segment of the building stock is associated with loss of detail. Thermal characteristics are aggregated while other characteristics, which could affect the energy efficiency of a building, are disregarded. Thus, using a simplified representation of the building stock could come at the expense of the accuracy of the model. The present study evaluates the accuracy of a conventional archetype-based BSEM that segments the building stock according to building type- and age. The accuracy is evaluated in terms of the archetypes’ ability to accurately emulate the average energy demands of the corresponding buildings they were meant to represent. This is done for the buildings’ energy demands as a whole as well as for relevant sub-demands. Both are evaluated in relation to the type- and the age of the building. This should provide researchers, who use archetypes in BSEMs, with an indication of the expected accuracy of the conventional archetype model, as well as the accuracy lost in specific parts of the calculation, due to use of the archetype method.

Keywords: building stock energy modelling, energy-savings, archetype

Procedia PDF Downloads 155
937 Exchange Traded Products on the Warsaw Stock Exchange

Authors: Piotr Prewysz-Kwinto

Abstract:

A dynamic development of financial market is accompanied by the emergence of new products on stock exchanges which give absolutely new possibilities of investing money. Currently, the most innovative financial instruments offered to investors are exchange traded products (ETP). They can be defined as financial instruments whose price depends on the value of the underlying instrument. Thus, they offer investors a possibility of making a profit that results from the change in value of the underlying instrument without having to buy it. Currently, the Warsaw Stock Exchange offers many types of ETPs. They are investment products with full or partial capital protection, products without capital protection as well as leverage products, issued on such underlying instruments as indices, sector indices, commodity indices, prices of energy commodities, precious metals, agricultural produce or prices of shares of domestic and foreign companies. This paper presents the mechanism of functioning of ETP available on the Warsaw Stock Exchange and the results of the analysis of statistical data on these financial instruments.

Keywords: exchange traded products, financial market, investment, stock exchange

Procedia PDF Downloads 349
936 Lexicon-Based Sentiment Analysis for Stock Movement Prediction

Authors: Zane Turner, Kevin Labille, Susan Gauch

Abstract:

Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.

Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction

Procedia PDF Downloads 128
935 Lexicon-Based Sentiment Analysis for Stock Movement Prediction

Authors: Zane Turner, Kevin Labille, Susan Gauch

Abstract:

Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.

Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction

Procedia PDF Downloads 170
934 Multi-Level Framework for Effective Use of Stock Ordering System: Case Study of Small Enterprises in Kgautswane

Authors: Lethamaga Tladi, Ray Kekwaletswe

Abstract:

This study sought to conceptualise a multi-level framework for the effective use of stock ordering system in small enterprises in a rural area context. The interpretive research methodology has been used to enable the researcher to analyse, in-depth, and the subjective meanings of small enterprises’ employees in using the stock ordering system. The empirical data was collected from 13 small enterprises’ employees as participants through semi-structured interviews and observations. Interpretive Phenomenological Analysis (IPA) approach was used to analyse the small enterprises’ employee’s own account of lived experiences in relations to stock ordering system use in terms of their relatedness to, and cognitive engagement with. A case study of Kgautswane, a rural area in Limpopo Province, South Africa, served as a social context where the phenomenon manifested. Technology-Organisation-Environment Theory (TOE), Technology-to-Performance Chain Model (TPC), and Representation Theory (RT) underpinned this study. In this multi-level study, the findings revealed that; At the organisational level, the effective use of stock ordering system was found to be associated with the organisational performance gains such as efficiency, productivity, quality, competitiveness, and market share. Equally so, at the individual level, the effective use of stock ordering system minimised the end-user’s efforts and time to accomplish their tasks, which yields improved individual performance. The Multi-level framework for effective use of stock ordering system was presented.

Keywords: effective use, multi-dimensions of use, multi-level of use, multi-level research, small enterprises, stock ordering system

Procedia PDF Downloads 169
933 Wear Measurement of Thermomechanical Parameters of the Metal Carbide

Authors: Riad Harouz, Brahim Mahfoud

Abstract:

The threads and the circles on reinforced concrete are obtained by process of hot rolling with pebbles finishers in metal carbide which present a way of rolling around the outside diameter. Our observation is that this throat presents geometrical wear after the end of its cycle determined in tonnage. In our study, we have determined, in a first step, experimentally measurements of the wear in terms of thermo-mechanical parameters (Speed, Load, and Temperature) and the influence of these parameters on the wear. In the second stage, we have developed a mathematical model of lifetime useful for the prognostic of the wear and their changes.

Keywords: lifetime, metal carbides, modeling, thermo-mechanical, wear

Procedia PDF Downloads 312
932 Heterogeneous Intelligence Traders and Market Efficiency: New Evidence from Computational Approach in Artificial Stock Markets

Authors: Yosra Mefteh Rekik

Abstract:

A computational agent-based model of financial markets stresses interactions and dynamics among a very diverse set of traders. The growing body of research in this area relies heavily on computational tools which by-pass the restrictions of an analytical method. The main goal of this research is to understand how the stock market operates and behaves how to invest in the stock market and to study traders’ behavior within the context of the artificial stock markets populated by heterogeneous agents. All agents are characterized by adaptive learning behavior represented by the Artificial Neuron Networks. By using agent-based simulations on artificial market, we show that the existence of heterogeneous agents can explain the price dynamics in the financial market. We investigate the relation between market diversity and market efficiency. Our empirical findings demonstrate that greater market heterogeneity play key roles in market efficiency.

Keywords: agent-based modeling, artificial stock market, heterogeneous expectations, financial stylized facts, computational finance

Procedia PDF Downloads 439
931 Effect of Alloying Elements and Hot Forging/Rolling Reduction Ratio on Hardness and Impact Toughness of Heat Treated Low Alloy Steels

Authors: Mahmoud M. Tash

Abstract:

The present study was carried out to investigate the effect of alloying elements and thermo-mechanical treatment (TMT) i.e. hot rolling and forging with different reduction ratios on the hardness (HV) and impact toughness (J) of heat-treated low alloy steels. An understanding of the combined effect of TMT and alloying elements and by measuring hardness, impact toughness, resulting from different heat treatment following TMT of the low alloy steels, it is possible to determine which conditions yielded optimum mechanical properties and high strength to weight ratio. Experimental Correlations between hot work reduction ratio, hardness and impact toughness for thermo-mechanically heat treated low alloy steels are analyzed quantitatively, and both regression and mathematical hardness and impact toughness models are developed.

Keywords: hot forging, hot rolling, heat treatment, hardness (HV), impact toughness (J), microstructure, low alloy steels

Procedia PDF Downloads 517
930 Stock Characteristics and Herding Formation: Evidence from the United States Equity Market

Authors: Chih-Hsiang Chang, Fang-Jyun Su

Abstract:

This paper explores whether stock characteristics influence the herding formation among investors in the US equity market. To extend the research scope of the existing literature, this paper further examines the role that stock risk characteristics play in the US equity market, and the way they influence investors’ decision-making. First, empirical results show that whether general stocks or high-risk stocks, there are no herding behaviors among the investors in the US equity market during the whole research period or during four great events. Moreover, stock characteristics have great influence on investors’ trading decisions. Finally, there is a bidirectional lead-lag relationship of the herding formation between high-risk stocks and low-risk stocks, but the influence of high-risk stocks on the low-risk stocks is stronger than that of low-risk stocks on the high-risk stocks.

Keywords: stock characteristics, herding formation, investment decision, US equity market, lead-lag relationship

Procedia PDF Downloads 275
929 Using Historical Data for Stock Prediction

Authors: Sofia Stoica

Abstract:

In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.

Keywords: finance, machine learning, opening price, stock market

Procedia PDF Downloads 194
928 The Impact of the Global Financial Crises on MILA Stock Markets

Authors: Miriam Sosa, Edgar Ortiz, Alejandra Cabello

Abstract:

This paper examines the volatility changes and leverage effects of the MILA stock markets and their changes since the 2007 global financial crisis. This group integrates the stock markets from Chile, Colombia, Mexico and Peru. Volatility changes and leverage effects are tested with a symmetric GARCH (1,1) and asymmetric TARCH (1,1) models with a dummy variable in the variance equation. Daily closing prices of the stock indexes of Chile (IPSA), Colombia (COLCAP), Mexico (IPC) and Peru (IGBVL) are examined for the period 2003:01 to 2015:02. The evidence confirms the presence of an overall increase in asymmetric market volatility in the Peruvian share market since the 2007 crisis.

Keywords: financial crisis, Latin American Integrated Market, TARCH, GARCH

Procedia PDF Downloads 279
927 Effect of Heat Treatment on Columnar Grain Growth and Goss Texture on Surface in Grain-Oriented Electrical Steels

Authors: Jungkyun Na, Jaesang Lee, Yang Mo Koo

Abstract:

In this study to find a replacement for expensive secondary recrystallization in GO electrical steel production, effect of heat treatment on the formation of columnar grain and Goss texture is investigated. The composition of the sample is Fe-2.0Si-0.2C. This process involves repeating of cold rolling and decarburization as a replacement for secondary recrystallization. By cold-rolling shear band is made and Goss grain grows from shear band by decarburization. By doing another cold rolling, some Goss texture is newly formed from the shear band, and some Goss texture is retained in microbands. To determine whether additional heat treatment with H2 atmosphere is needed on decarburization process for growth of Goss texture, comparing between decarburization and heat treatment with H2 atmosphere is performed. Also, to find optimum condition for heat treatment, heat treatment with various time and temperature is performed. It was found that increase in the number of cold rolling and heat treatment increases Goss texture. Both high Goss texture and good columnar structure is achieved at 900℃, and this temperature is within a+r phase region. Heat treatment at a temperature higher than a+r phase region caused carbon diffusion and this made layer with Goss grain decrease.

Keywords: electrical steel, Goss texture, columnar structure, normal grain growth

Procedia PDF Downloads 219
926 Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process

Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.

Abstract:

In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.

Keywords: hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness

Procedia PDF Downloads 422
925 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph

Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.

Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction

Procedia PDF Downloads 425
924 Exposing Investor Sentiment In Stock Returns

Authors: Qiang Bu

Abstract:

This paper compares the explanatory power of sentiment level and sentiment shock. The preliminary test results show that sentiment shock plays a more significant role in explaining stocks returns, including the raw return and abnormal return. We also find that sentiment shock beta has a higher statistical significance than sentiment beta. These finding sheds new light on the relationship between investor sentiment and stock returns.

Keywords: sentiment level, sentiment shock, explanatory power, abnormal stock return, beta

Procedia PDF Downloads 137
923 Does Pakistan Stock Exchange Offer Diversification Benefits to Regional and International Investors: A Time-Frequency (Wavelets) Analysis

Authors: Syed Jawad Hussain Shahzad, Muhammad Zakaria, Mobeen Ur Rehman, Saniya Khaild

Abstract:

This study examines the co-movement between the Pakistan, Indian, S&P 500 and Nikkei 225 stock markets using weekly data from 1998 to 2013. The time-frequency relationship between the selected stock markets is conducted by using measures of continuous wavelet power spectrum, cross-wavelet transform and cross (squared) wavelet coherency. The empirical evidence suggests strong dependence between Pakistan and Indian stock markets. The co-movement of Pakistani index with U.S and Japanese, the developed markets, varies over time and frequency where the long-run relationship is dominant. The results of cross wavelet and wavelet coherence analysis indicate moderate covariance and correlation between stock indexes and the markets are in phase (i.e. cyclical in nature) over varying durations. Pakistan stock market was lagging during the entire period in relation to Indian stock market, corresponding to the 8~32 and then 64~256 weeks scale. Similar findings are evident for S&P 500 and Nikkei 225 indexes, however, the relationship occurs during the later period of study. All three wavelet indicators suggest strong evidence of higher co-movement during 2008-09 global financial crises. The empirical analysis reveals a strong evidence that the portfolio diversification benefits vary across frequencies and time. This analysis is unique and have several practical implications for regional and international investors while assigning the optimal weightage of different assets in portfolio formulation.

Keywords: co-movement, Pakistan stock exchange, S&P 500, Nikkei 225, wavelet analysis

Procedia PDF Downloads 358
922 The Potential Dark and Bright Part of Behavioral Biases in Investor’s Investment Decisions: Mediated Moderation of Stock Market Anomalies and Financial Literacy

Authors: Zain Ul Abideen

Abstract:

The study examines the potentially dark and bright parts of behavioral biases in investors’ investment decisions in the Pakistani equity market. These biases, directly and indirectly, play a comprehensive role in controlling and deciding the investor’s investment decisions. Stock market anomalies are used as a mediator, while financial literacy is used as a moderator to check the mentioned relationship. The sample consisted of investors who have trading experience of more than two years in the stock market. The result indicates that calendar anomalies do not mediate between overconfidence bias and investment decisions. However, the study investigates the mediating role of fundamental and technical anomalies between overconfidence bias and investment decisions. Furthermore, calendar anomalies play a significant role between the disposition effect and investment decisions. Calendar anomalies also mediate between herding bias and investment decisions. Financial literacy significantly moderates between behavioral biases and stock market anomalies. This research would be beneficial for individual and professional investors in their investment decisions. They should be financially literate, consequently less biased and have no market anomalies. Investors in emerging and developed economies can make optimal decisions in their respective stock markets.

Keywords: behavioral biases, financial literacy, stock market anomalies, investment decision

Procedia PDF Downloads 72
921 Effect of Addition and Reduction of Sharia Index Constituents

Authors: Rosyidah, Permata Wulandari

Abstract:

We investigate the price effect of addition and deletions from the Indonesia Sharia Stock Index (ISSI) and Jakarta Islamic Index (JII). Using event study methodology, we measure abnormal returns for firms over the period June 2019 - to December 2021. Through the sample of 107 additions and 95 deletions, we find evidence to support the theory of Muslim country investment behavior. We find that additions to the Islamic index led to a significant positive stock market reaction and deletions to the Islamic index led to a negative stock market reaction on Jakarta Islamic Index (JII) and there is no significant reaction of addition and deletion on Indonesia Sharia Stock Index (ISSI).

Keywords: abnormal return, abnormal volume, event study, index changes, sharia index

Procedia PDF Downloads 131
920 Unveiling the Black Swan of the Inflation-Adjusted Real Excess Returns-Risk Nexus: Evidence From Pakistan Stock Exchange

Authors: Mohammad Azam

Abstract:

The purpose of this study is to investigate risk and real excess portfolio returns using inflation adjusted risk-free rates, a measuring technique that focuses on the momentum augmented Fama-French six-factor model and use monthly data from 1994 to 2022. With the exception of profitability, the data show that market, size, value, momentum, and investment factors are all strongly associated to excess portfolio stock returns using ordinary lease square regression technique. According to the Gibbons, Ross, and Shanken test, the momentum augmented Fama-French six-factor model outperforms the market. This technique discovery may be utilised by academics and professionals to acquire an in-depth knowledge of the Pakistan Stock Exchange across a broad stock pattern for investing decisions and portfolio construction.

Keywords: real excess portfolio returns, momentum augmented fama & french five-factor model, GRS-test, pakistan stock exchange

Procedia PDF Downloads 102
919 Corporate Governance and Firms` Performance: Evidence from Quoted Firms on the Nigerian Stock Exchange

Authors: Ogunwole Cecilia Oluwakemi, Wahid Damilola Olanipekun, Omoyele Olufemi Samuel, Timothy Ayomitunde Aderemi

Abstract:

The issues relating to corporate governance in both locally and internationally managed firms cannot be overemphasized because the lack of efficient corporate governance could orchestrate serious problems in any organization. Against this backdrop, this study examines the nexus between corporate governance and performance of firms from 2012 to 2020, using the case study of the Nigerian stock exchange. Consequently, data was collected from forty (40) listed firms on the Nigerian Stock Exchange. The study employed a fixed effect technique of estimation to address the objective of the study. It was discovered from the study that the influence of corporate governance components such as gender diversity, board independence and managerial ownership led to a significant positive impact on the performance of the firms under the investigation. In view of the above finding, this study makes the following recommendations for the policymakers in Nigeria that anytime the goal of the policymakers is the improvement of performance of the listed firms in the Nigerian stock exchange, board independence and a balance in the inclusion of male and female among the board of directors should be encouraged in these firms.

Keywords: corporate, governance, firms, performance, Nigeria, stock, exchange

Procedia PDF Downloads 178
918 Collect Meaningful Information about Stock Markets from the Web

Authors: Saleem Abuleil, Khalid S. Alsamara

Abstract:

Events represent a significant source of information on the web; they deliver information about events that occurred around the world in all kind of subjects and areas. These events can be collected and organized to provide valuable and useful information for decision makers, researchers, as well as any person seeking knowledge. In this paper, we discuss an ongoing research to target stock markets domain to observe and record changes (events) when they happen, collect them, understand the meaning of each one of them, and organize the information along with meaning in a well-structured format. By using Semantic Role Labeling (SRL) technique, we identified four factors for each event in this paper: verb of action and three roles associated with it, entity name, attribute, and attribute value. We have generated a set of rules and techniques to support our approach to analyze and understand the meaning of the events taking place in stock markets.

Keywords: natuaral language processing, Arabic language, event extraction and understanding, sematic role labeling, stock market

Procedia PDF Downloads 393
917 Training Volume and Myoelectric Responses of Lower Body Muscles with Differing Foam Rolling Periods

Authors: Humberto Miranda, Haroldo G. Santana, Gabriel A. Paz, Vicente P. Lima, Jeffrey M. Willardson

Abstract:

Foam rolling is a practice that has increased in popularity before and after strength training. The purpose of this study was to compare the acute effects of different foam rolling periods for the lower body muscles on subsequent performance (total repetitions and training volume), myoelectric activity and rating of perceived exertion in trained men. Fourteen trained men (26.2 ± 3.2 years, 178 ± 0.04 cm height, 82.2 ± 10 kg weight and body mass index 25.9 ± 3.3kg/m2) volunteered for this study. Four repetition maximum (4-RM) loads were determined for hexagonal bar deadlift and 45º angled leg press during test and retest sessions over two nonconsecutive days. Five experimental protocols were applied in a randomized design, which included: a traditional protocol (control)—a resistance training session without prior foam rolling; or resistance training sessions performed following one (P1), two (P2), three (P3), or four (P4) sets of 30 sec. foam rolling for the lower extremity musculature. Subjects were asked to roll over the medial and lateral aspects of each muscle group with as much pressure as possible. All foam rolling was completed at a cadence of 50 bpm. These procedures were performed on both sides unilaterally as described below. Quadriceps: between the apex of the patella and the ASIS; Hamstring: between the gluteal fold and popliteal fossa; Triceps surae: between popliteal fossa and calcaneus tendon. The resistance training consisted of five sets with 4-RM loads and two-minute rest intervals between sets, and a four-minute rest interval between the hexagonal bar deadlift and the 45º angled leg press. The number of repetitions completed, the myoelectric activity of vastus lateralis (VL), vastus medialis oblique (VMO), semitendinosus (SM) and medial gastrocnemius (GM) were recorded, as well as the rating of perceived exertion for each protocol. There were no differences between the protocols in the total repetitions for the hexagonal bar deadlift (Control - 16.2 ± 5.9; P1 - 16.9 ± 5.5; P2 - 19.2 ± 5.7; P3 - 19.4 ± 5.2; P4 - 17.2 ± 8.2) (p > 0.05) and 45º angled leg press (Control - 23.3 ± 9.7; P1 - 25.9 ± 9.5; P2 - 29.1 ± 13.8; P3 - 28.0 ± 11.7; P4 - 30.2 ± 11.2) exercises. Similar results between protocols were also noted for myoelectric activity (p > 0.05) and rating of perceived exertion (p > 0.05). Therefore, the results of the present study indicated no deleterious effects on performance, myoelectric activity and rating of perceived exertion responses during lower body resistance training.

Keywords: self myofascial release, foam rolling, electromyography, resistance training

Procedia PDF Downloads 226
916 An Empirical Study of the Best Fitting Probability Distributions for Stock Returns Modeling

Authors: Jayanta Pokharel, Gokarna Aryal, Netra Kanaal, Chris Tsokos

Abstract:

Investment in stocks and shares aims to seek potential gains while weighing the risk of future needs, such as retirement, children's education etc. Analysis of the behavior of the stock market returns and making prediction is important for investors to mitigate risk on investment. Historically, the normal variance models have been used to describe the behavior of stock market returns. However, the returns of the financial assets are actually skewed with higher kurtosis, heavier tails, and a higher center than the normal distribution. The Laplace distribution and its family are natural candidates for modeling stock returns. The Variance-Gamma (VG) distribution is the most sought-after distributions for modeling asset returns and has been extensively discussed in financial literatures. In this paper, it explore the other Laplace family, such as Asymmetric Laplace, Skewed Laplace, Kumaraswamy Laplace (KS) together with Variance-Gamma to model the weekly returns of the S&P 500 Index and it's eleven business sector indices. The method of maximum likelihood is employed to estimate the parameters of the distributions and our empirical inquiry shows that the Kumaraswamy Laplace distribution performs much better for stock returns modeling among the choice of distributions used in this study and in practice, KS can be used as a strong alternative to VG distribution.

Keywords: stock returns, variance-gamma, kumaraswamy laplace, maximum likelihood

Procedia PDF Downloads 70
915 StockTwits Sentiment Analysis on Stock Price Prediction

Authors: Min Chen, Rubi Gupta

Abstract:

Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.

Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing

Procedia PDF Downloads 157
914 Price to Earnings Growth (PEG) Predicting Future Returns Better than the Price to Earnings (PE) Ratio

Authors: Lindrianasari Stefanie, Aminah Khairudin

Abstract:

This study aims to provide empirical evidence regarding the ability of Price to Earnings Ratio and PEG Ratio in predicting future stock returns issuers. The samples used in this study are stocks that go into LQ45. The main contribution is to assign empirical evidence if the PEG Ratio can provide optimum return compared to Price to Earnings Ratio. This study used a sample of the entire company into the group LQ45 with the period of observation. The data used is limited to the financial statements of a company incorporated in LQ45 period July 2013-July 2014, using the financial statements and the position of the company's closing stock price at the end of 2010 as a reference benchmark for the growth of the company's stock price compared to the closing price of 2013. This study found that the method of PEG Ratio can outperform the method of PE ratio in predicting future returns on the stock portfolio of LQ45.

Keywords: price to earnings growth, price to earnings ratio, future returns, stock price

Procedia PDF Downloads 412
913 Advancing Microstructure Evolution in Tungsten Through Rolling in Laser Powder Bed Fusion

Authors: Narges Shayesteh Moghaddam

Abstract:

Tungsten (W), a refractory metal known for its remarkably high melting temperature, offers tremendous potential for use in challenging environments prevalent in sectors such as space exploration, defense, and nuclear industries. Additive manufacturing, especially the Laser Powder-Bed Fusion (LPBF) technique, emerges as a beneficial method for fabricating tungsten parts. This technique enables the production of intricate components while simultaneously reducing production lead times and associated costs. However, the inherent brittleness of tungsten and its tendency to crack under high-temperature conditions pose significant challenges to the manufacturing process. Our research primarily focuses on the process of rolling tungsten parts in a layer-by-layer manner in LPBF and the subsequent changes in microstructure. Our objective is not only to identify the alterations in the microstructure but also to assess their implications on the physical properties and performance of the fabricated tungsten parts. To examine these aspects, we conducted an extensive series of experiments that included the fabrication of tungsten samples through LPBF and subsequent characterization using advanced materials analysis techniques. These investigations allowed us to scrutinize shifts in various microstructural features, including, but not limited to, grain size and grain boundaries occurring during the rolling process. The results of our study provide crucial insights into how specific factors, such as plastic deformation occurring during the rolling process, influence the microstructural characteristics of the fabricated parts. This information is vital as it provides a foundation for understanding how the parameters of the layer-by-layer rolling process affect the final tungsten parts. Our research significantly broadens the current understanding of microstructural evolution in tungsten parts produced via the layer-by-layer rolling process in LPBF. The insights obtained will play a pivotal role in refining and optimizing manufacturing parameters, thus improving the mechanical properties of tungsten parts and, therefore, enhancing their performance. Furthermore, these findings will contribute to the advancement of manufacturing techniques, facilitating the wider application of tungsten parts in various high-demand sectors. Through these advancements, this research represents a significant step towards harnessing the full potential of tungsten in high-temperature and high-stress applications.

Keywords: additive manufacturing, rolling, tungsten, refractory materials

Procedia PDF Downloads 99
912 Day of the Week Patterns and the Financial Trends' Role: Evidence from the Greek Stock Market during the Euro Era

Authors: Nikolaos Konstantopoulos, Aristeidis Samitas, Vasileiou Evangelos

Abstract:

The purpose of this study is to examine if the financial trends influence not only the stock markets’ returns, but also their anomalies. We choose to study the day of the week effect (DOW) for the Greek stock market during the Euro period (2002-12), because during the specific period there are not significant structural changes and there are long term financial trends. Moreover, in order to avoid possible methodological counterarguments that usually arise in the literature, we apply several linear (OLS) and nonlinear (GARCH family) models to our sample until we reach to the conclusion that the TGARCH model fits better to our sample than any other. Our results suggest that in the Greek stock market there is a long term predisposition for positive/negative returns depending on the weekday. However, the statistical significance is influenced from the financial trend. This influence may be the reason why there are conflict findings in the literature through the time. Finally, we combine the DOW’s empirical findings from 1985-2012 and we may assume that in the Greek case there is a tendency for long lived turn of the week effect.

Keywords: day of the week effect, GARCH family models, Athens stock exchange, economic growth, crisis

Procedia PDF Downloads 411
911 Preventive Maintenance of Rotating Machinery Based on Vibration Diagnosis of Rolling Bearing

Authors: T. Bensana, S. Mekhilef

Abstract:

The methodology of vibration based condition monitoring technology has been developing at a rapid stage in the recent years suiting to the maintenance of sophisticated and complicated machines. The ability of wavelet analysis to efficiently detect non-stationary, non-periodic, transient features of the vibration signal makes it a demanding tool for condition monitoring. This paper presents a methodology for fault diagnosis of rolling element bearings based on wavelet envelope power spectrum technique is analysed in both the time and frequency domains. In the time domain the auto-correlation of the wavelet de-noised signal is applied to evaluate the period of the fault pulses. However, in the frequency domain the wavelet envelope power spectrum has been used to identify the fault frequencies with the single sided complex Laplace wavelet as the mother wavelet function. Results show the superiority of the proposed method and its effectiveness in extracting fault features from the raw vibration signal.

Keywords: preventive maintenance, fault diagnostics, rolling element bearings, wavelet de-noising

Procedia PDF Downloads 380
910 Study of 'Rolled in Scale' and 'Rolled in Scum' in Automotive Grade Cold-Rolled Annealed Steel Sheet

Authors: Soumendu Monia, Vaibhav Jain, Hrishikesh Jugade, Manashi Adhikary, Goutam Mukhopadhyay

Abstract:

'Rolled in scale' (RIS) and 'Rolled in Scum' (RISc) are two superficial surface defects on cold rolled and annealed steel sheets which affect the aesthetics of surface and thereby that of the end-product. Both the defects are believed to be originating from distinctly different sources having different mechanisms of formation. However, due to their similar physical appearance, RIS and RISc are generally confused with each other and hence attaining the exact root cause for elimination of the defect becomes difficult. RIS appears irregular in shape, sometimes scattered, and always oriented in rolling direction. RISc is generally oval shaped, having identifiable pointed edges and mostly oriented in rolling direction. Visually, RIS appears to be greyish in colour whereas RISc is whitish in colour. Both the defects have quite random occurrence and do not leave any imprints on the reverse-side of the sheet. In the current study, an attempt has been made to differentiate these two similar looking surface defects using various metallographic and characterization techniques. Systematic experiments have been carried out to identify possible mechanisms of formation of these defects. Detailed characterization revealed basic differences between RIS and RISc with respect to their surface morphology. To summarize, RIS was observed as a residue of an otherwise under-pickled scale patch on surface, after it has been subjected to cold rolling and annealing in a batch/continuous furnace. Whereas RISc was found to be a localized rubbing of the surface, at the time of cold rolling itself, resulting in a rough surface texture.

Keywords: annealing, rolled in scale, rolled in scum, skin panel

Procedia PDF Downloads 190
909 Soft Computing Employment to Optimize Safety Stock Levels in Supply Chain Dairy Product under Supply and Demand Uncertainty

Authors: Riyadh Jamegh, Alla Eldin Kassam, Sawsan Sabih

Abstract:

In order to overcome uncertainty conditions and inability to meet customers' requests due to these conditions, organizations tend to reserve a certain safety stock level (SSL). This level must be chosen carefully in order to avoid the increase in holding cost due to excess in SSL or shortage cost due to too low SSL. This paper used soft computing fuzzy logic to identify optimal SSL; this fuzzy model uses the dynamic concept to cope with high complexity environment status. The proposed model can deal with three input variables, i.e., demand stability level, raw material availability level, and on hand inventory level by using dynamic fuzzy logic to obtain the best SSL as an output. In this model, demand stability, raw material, and on hand inventory levels are described linguistically and then treated by inference rules of the fuzzy model to extract the best level of safety stock. The aim of this research is to provide dynamic approach which is used to identify safety stock level, and it can be implanted in different industries. Numerical case study in the dairy industry with Yogurt 200 gm cup product is explained to approve the validity of the proposed model. The obtained results are compared with the current level of safety stock which is calculated by using the traditional approach. The importance of the proposed model has been demonstrated by the significant reduction in safety stock level.

Keywords: inventory optimization, soft computing, safety stock optimization, dairy industries inventory optimization

Procedia PDF Downloads 126