Search results for: efficient crow search algorithm
9488 A Hybrid Distributed Algorithm for Multi-Objective Dynamic Flexible Job Shop Scheduling Problem
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a hybrid distributed algorithm has been suggested for multi-objective dynamic flexible job shop scheduling problem. The proposed algorithm is high level, in which several algorithms search the space on different machines simultaneously also it is a hybrid algorithm that takes advantages of the artificial intelligence, evolutionary and optimization methods. Distribution is done at different levels and new approaches are used for design of the algorithm. Apache spark and Hadoop frameworks have been used for the distribution of the algorithm. The Pareto optimality approach is used for solving the multi-objective benchmarks. The suggested algorithm that is able to solve large-size problems in short times has been compared with the successful algorithms of the literature. The results prove high speed and efficiency of the algorithm.Keywords: distributed algorithms, apache-spark, Hadoop, flexible dynamic job shop scheduling, multi-objective optimization
Procedia PDF Downloads 3549487 SC-LSH: An Efficient Indexing Method for Approximate Similarity Search in High Dimensional Space
Authors: Sanaa Chafik, Imane Daoudi, Mounim A. El Yacoubi, Hamid El Ouardi
Abstract:
Locality Sensitive Hashing (LSH) is one of the most promising techniques for solving nearest neighbour search problem in high dimensional space. Euclidean LSH is the most popular variation of LSH that has been successfully applied in many multimedia applications. However, the Euclidean LSH presents limitations that affect structure and query performances. The main limitation of the Euclidean LSH is the large memory consumption. In order to achieve a good accuracy, a large number of hash tables is required. In this paper, we propose a new hashing algorithm to overcome the storage space problem and improve query time, while keeping a good accuracy as similar to that achieved by the original Euclidean LSH. The Experimental results on a real large-scale dataset show that the proposed approach achieves good performances and consumes less memory than the Euclidean LSH.Keywords: approximate nearest neighbor search, content based image retrieval (CBIR), curse of dimensionality, locality sensitive hashing, multidimensional indexing, scalability
Procedia PDF Downloads 3219486 Improving the Performance of Back-Propagation Training Algorithm by Using ANN
Authors: Vishnu Pratap Singh Kirar
Abstract:
Artificial Neural Network (ANN) can be trained using backpropagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a two-term algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.Keywords: neural network, backpropagation, local minima, fast convergence rate
Procedia PDF Downloads 4989485 Swarm Optimization of Unmanned Vehicles and Object Localization
Authors: Venkataramana Sovenahalli Badigar, B. M. Suryakanth, Akshar Prasanna, Karthik Veeramalai, Vishwak Ram Vishwak Ram
Abstract:
Technological advances have led to widespread autonomy in vehicles. Empowering these autonomous with the intelligence to cooperate amongst themselves leads to a more efficient use of the resources available to them. This paper proposes a demonstration of a swarm algorithm implemented on a group of autonomous vehicles. The demonstration involves two ground bots and an aerial drone which cooperate amongst them to locate an object of interest. The object of interest is modelled using a high-intensity light source which acts as a beacon. The ground bots are light sensitive and move towards the beacon. The ground bots and the drone traverse in random paths and jointly locate the beacon. This finds application in various scenarios in where human interference is difficult such as search and rescue during natural disasters, delivering crucial packages in perilous situations, etc. Experimental results show that the modified swarm algorithm implemented in this system has better performance compared to fully random based moving algorithm for object localization and tracking.Keywords: swarm algorithm, object localization, ground bots, drone, beacon
Procedia PDF Downloads 2579484 Solving Process Planning, Weighted Apparent Tardiness Cost Dispatching, and Weighted Processing plus Weight Due-Date Assignment Simultaneously Using a Hybrid Search
Authors: Halil Ibrahim Demir, Caner Erden, Abdullah Hulusi Kokcam, Mumtaz Ipek
Abstract:
Process planning, scheduling, and due date assignment are three important manufacturing functions which are studied independently in literature. There are hundreds of works on IPPS and SWDDA problems but a few works on IPPSDDA problem. Integrating these three functions is very crucial due to the high relationship between them. Since the scheduling problem is in the NP-Hard problem class without any integration, an integrated problem is even harder to solve. This study focuses on the integration of these functions. Sum of weighted tardiness, earliness, and due date related costs are used as a penalty function. Random search and hybrid metaheuristics are used to solve the integrated problem. Marginal improvement in random search is very high in the early iterations and reduces enormously in later iterations. At that point directed search contribute to marginal improvement more than random search. In this study, random and genetic search methods are combined to find better solutions. Results show that overall performance becomes better as the integration level increases.Keywords: process planning, genetic algorithm, hybrid search, random search, weighted due-date assignment, weighted scheduling
Procedia PDF Downloads 3619483 K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors
Authors: Shao-Tzu Huang, Chen-Chien Hsu, Wei-Yen Wang
Abstract:
Matching high dimensional features between images is computationally expensive for exhaustive search approaches in computer vision. Although the dimension of the feature can be degraded by simplifying the prior knowledge of homography, matching accuracy may degrade as a tradeoff. In this paper, we present a feature matching method based on k-means algorithm that reduces the matching cost and matches the features between images instead of using a simplified geometric assumption. Experimental results show that the proposed method outperforms the previous linear exhaustive search approaches in terms of the inlier ratio of matched pairs.Keywords: feature matching, k-means clustering, SIFT, RANSAC
Procedia PDF Downloads 3579482 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine
Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi
Abstract:
To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the Least Square Support Vector Machine optimized by an Improved Sparrow Search Algorithm combined with the Variational Mode Decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of Intrinsic Mode Functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the least Square Support Vector Machine. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.Keywords: load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine
Procedia PDF Downloads 1079481 Speedup Breadth-First Search by Graph Ordering
Abstract:
Breadth-First Search(BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improve the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads. We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.Keywords: breadth-first search, BFS, graph ordering, graph algorithm
Procedia PDF Downloads 1389480 Design of Microwave Building Block by Using Numerical Search Algorithm
Authors: Haifeng Zhou, Tsungyang Liow, Xiaoguang Tu, Eujin Lim, Chao Li, Junfeng Song, Xianshu Luo, Ying Huang, Lianxi Jia, Lianwee Luo, Qing Fang, Mingbin Yu, Guoqiang Lo
Abstract:
With the development of technology, countries gradually allocated more and more frequency spectrums for civilization and commercial usage, especially those high radio frequency bands indicating high information capacity. The field effect becomes more and more prominent in microwave components as frequency increases, which invalidates the transmission line theory and complicate the design of microwave components. Here a modeling approach based on numerical search algorithm is proposed to design various building blocks for microwave circuits to avoid complicated impedance matching and equivalent electrical circuit approximation. Concretely, a microwave component is discretized to a set of segments along the microwave propagation path. Each of the segment is initialized with random dimensions, which constructs a multiple-dimension parameter space. Then numerical searching algorithms (e.g. Pattern search algorithm) are used to find out the ideal geometrical parameters. The optimal parameter set is achieved by evaluating the fitness of S parameters after a number of iterations. We had adopted this approach in our current projects and designed many microwave components including sharp bends, T-branches, Y-branches, microstrip-to-stripline converters and etc. For example, a stripline 90° bend was designed in 2.54 mm x 2.54 mm space for dual-band operation (Ka band and Ku band) with < 0.18 dB insertion loss and < -55 dB reflection. We expect that this approach can enrich the tool kits for microwave designers.Keywords: microwave component, microstrip and stripline, bend, power division, the numerical search algorithm.
Procedia PDF Downloads 3799479 Improved Multi-Objective Particle Swarm Optimization Applied to Design Problem
Authors: Kapse Swapnil, K. Shankar
Abstract:
Aiming at optimizing the weight and deflection of cantilever beam subjected to maximum stress and maximum deflection, Multi-objective Particle Swarm Optimization (MOPSO) with Utopia Point based local search is implemented. Utopia point is used to govern the search towards the Pareto Optimal set. The elite candidates obtained during the iterations are stored in an archive according to non-dominated sorting and also the archive is truncated based on least crowding distance. Local search is also performed on elite candidates and the most diverse particle is selected as the global best. This method is implemented on standard test functions and it is observed that the improved algorithm gives better convergence and diversity as compared to NSGA-II in fewer iterations. Implementation on practical structural problem shows that in 5 to 6 iterations, the improved algorithm converges with better diversity as evident by the improvement of cantilever beam on an average of 0.78% and 9.28% in the weight and deflection respectively compared to NSGA-II.Keywords: Utopia point, multi-objective particle swarm optimization, local search, cantilever beam
Procedia PDF Downloads 5199478 Satellite Imagery Classification Based on Deep Convolution Network
Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu
Abstract:
Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization
Procedia PDF Downloads 3009477 A Variant of a Double Structure-Preserving QR Algorithm for Symmetric and Hamiltonian Matrices
Authors: Ahmed Salam, Haithem Benkahla
Abstract:
Recently, an efficient backward-stable algorithm for computing eigenvalues and vectors of a symmetric and Hamiltonian matrix has been proposed. The method preserves the symmetric and Hamiltonian structures of the original matrix, during the whole process. In this paper, we revisit the method. We derive a way for implementing the reduction of the matrix to the appropriate condensed form. Then, we construct a novel version of the implicit QR-algorithm for computing the eigenvalues and vectors.Keywords: block implicit QR algorithm, preservation of a double structure, QR algorithm, symmetric and Hamiltonian structures
Procedia PDF Downloads 4099476 A Feature Clustering-Based Sequential Selection Approach for Color Texture Classification
Authors: Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Rachid Oulad Haj Thami, Sana El Fkihi
Abstract:
Color and texture are highly discriminant visual cues that provide an essential information in many types of images. Color texture representation and classification is therefore one of the most challenging problems in computer vision and image processing applications. Color textures can be represented in different color spaces by using multiple image descriptors which generate a high dimensional set of texture features. In order to reduce the dimensionality of the feature set, feature selection techniques can be used. The goal of feature selection is to find a relevant subset from an original feature space that can improve the accuracy and efficiency of a classification algorithm. Traditionally, feature selection is focused on removing irrelevant features, neglecting the possible redundancy between relevant ones. This is why some feature selection approaches prefer to use feature clustering analysis to aid and guide the search. These techniques can be divided into two categories. i) Feature clustering-based ranking algorithm uses feature clustering as an analysis that comes before feature ranking. Indeed, after dividing the feature set into groups, these approaches perform a feature ranking in order to select the most discriminant feature of each group. ii) Feature clustering-based subset search algorithms can use feature clustering following one of three strategies; as an initial step that comes before the search, binded and combined with the search or as the search alternative and replacement. In this paper, we propose a new feature clustering-based sequential selection approach for the purpose of color texture representation and classification. Our approach is a three step algorithm. First, irrelevant features are removed from the feature set thanks to a class-correlation measure. Then, introducing a new automatic feature clustering algorithm, the feature set is divided into several feature clusters. Finally, a sequential search algorithm, based on a filter model and a separability measure, builds a relevant and non redundant feature subset: at each step, a feature is selected and features of the same cluster are removed and thus not considered thereafter. This allows to significantly speed up the selection process since large number of redundant features are eliminated at each step. The proposed algorithm uses the clustering algorithm binded and combined with the search. Experiments using a combination of two well known texture descriptors, namely Haralick features extracted from Reduced Size Chromatic Co-occurence Matrices (RSCCMs) and features extracted from Local Binary patterns (LBP) image histograms, on five color texture data sets, Outex, NewBarktex, Parquet, Stex and USPtex demonstrate the efficiency of our method compared to seven of the state of the art methods in terms of accuracy and computation time.Keywords: feature selection, color texture classification, feature clustering, color LBP, chromatic cooccurrence matrix
Procedia PDF Downloads 1369475 Enumerative Search for Crane Schedule in Anodizing Operations
Authors: Kanate Pantusavase, Jaramporn Hassamontr
Abstract:
This research aims to develop an algorithm to generate a schedule of multiple cranes that will maximize load throughputs in anodizing operation. The algorithm proposed utilizes an enumerative strategy to search for constant time between successive loads and crane covering range over baths. The computer program developed is able to generate a near-optimal crane schedule within reasonable times, i.e. within 10 minutes. Its results are compared with existing solutions from an aluminum extrusion industry. The program can be used to generate crane schedules for mixed products, thus allowing mixed-model line balancing to improve overall cycle times.Keywords: crane scheduling, anodizing operations, cycle time minimization
Procedia PDF Downloads 4649474 An Automated Optimal Robotic Assembly Sequence Planning Using Artificial Bee Colony Algorithm
Authors: Balamurali Gunji, B. B. V. L. Deepak, B. B. Biswal, Amrutha Rout, Golak Bihari Mohanta
Abstract:
Robots play an important role in the operations like pick and place, assembly, spot welding and much more in manufacturing industries. Out of those, assembly is a very important process in manufacturing, where 20% of manufacturing cost is wholly occupied by the assembly process. To do the assembly task effectively, Assembly Sequences Planning (ASP) is required. ASP is one of the multi-objective non-deterministic optimization problems, achieving the optimal assembly sequence involves huge search space and highly complex in nature. Many researchers have followed different algorithms to solve ASP problem, which they have several limitations like the local optimal solution, huge search space, and execution time is more, complexity in applying the algorithm, etc. By keeping the above limitations in mind, in this paper, a new automated optimal robotic assembly sequence planning using Artificial Bee Colony (ABC) Algorithm is proposed. In this algorithm, automatic extraction of assembly predicates is done using Computer Aided Design (CAD) interface instead of extracting the assembly predicates manually. Due to this, the time of extraction of assembly predicates to obtain the feasible assembly sequence is reduced. The fitness evaluation of the obtained feasible sequence is carried out using ABC algorithm to generate the optimal assembly sequence. The proposed methodology is applied to different industrial products and compared the results with past literature.Keywords: assembly sequence planning, CAD, artificial Bee colony algorithm, assembly predicates
Procedia PDF Downloads 2379473 A Hybrid ICA-GA Algorithm for Solving Multiobjective Optimization of Production Planning Problems
Authors: Omar Ramzi Jasim, Jalal Sultan Ashour
Abstract:
Production Planning or Master Production Schedule (MPS) is a key interface between marketing and manufacturing, since it links customer service directly to efficient use of production resources. Mismanagement of the MPS is considered as one of fundamental problems in operation and it can potentially lead to poor customer satisfaction. In this paper, a hybrid evolutionary algorithm (ICA-GA) is presented, which integrates the merits of both imperialist competitive algorithm (ICA) and genetic algorithm (GA) for solving multi-objective MPS problems. In the presented algorithm, the colonies in each empire has be represented a small population and communicate with each other using genetic operators. By testing on 5 production scenarios, the numerical results of ICA-GA algorithm show the efficiency and capabilities of the hybrid algorithm in finding the optimum solutions. The ICA-GA solutions yield the lower inventory level and keep customer satisfaction high and the required overtime is also lower, compared with results of GA and SA in all production scenarios.Keywords: master production scheduling, genetic algorithm, imperialist competitive algorithm, hybrid algorithm
Procedia PDF Downloads 4709472 Improved Image Retrieval for Efficient Localization in Urban Areas Using Location Uncertainty Data
Authors: Mahdi Salarian, Xi Xu, Rashid Ansari
Abstract:
Accurate localization of mobile devices based on camera-acquired visual media information usually requires a search over a very large GPS-referenced image database. This paper proposes an efficient method for limiting the search space for image retrieval engine by extracting and leveraging additional media information about Estimated Positional Error (EP E) to address complexity and accuracy issues in the search, especially to be used for compensating GPS location inaccuracy in dense urban areas. The improved performance is achieved by up to a hundred-fold reduction in the search area used in available reference methods while providing improved accuracy. To test our procedure we created a database by acquiring Google Street View (GSV) images for down town of Chicago. Other available databases are not suitable for our approach due to lack of EP E for the query images. We tested the procedure using more than 200 query images along with EP E acquired mostly in the densest areas of Chicago with different phones and in different conditions such as low illumination and from under rail tracks. The effectiveness of our approach and the effect of size and sector angle of the search area are discussed and experimental results demonstrate how our proposed method can improve performance just by utilizing a data that is available for mobile systems such as smart phones.Keywords: localization, retrieval, GPS uncertainty, bag of word
Procedia PDF Downloads 2839471 On Exploring Search Heuristics for improving the efficiency in Web Information Extraction
Authors: Patricia Jiménez, Rafael Corchuelo
Abstract:
Nowadays the World Wide Web is the most popular source of information that relies on billions of on-line documents. Web mining is used to crawl through these documents, collect the information of interest and process it by applying data mining tools in order to use the gathered information in the best interest of a business, what enables companies to promote theirs. Unfortunately, it is not easy to extract the information a web site provides automatically when it lacks an API that allows to transform the user-friendly data provided in web documents into a structured format that is machine-readable. Rule-based information extractors are the tools intended to extract the information of interest automatically and offer it in a structured format that allow mining tools to process it. However, the performance of an information extractor strongly depends on the search heuristic employed since bad choices regarding how to learn a rule may easily result in loss of effectiveness and/or efficiency. Improving search heuristics regarding efficiency is of uttermost importance in the field of Web Information Extraction since typical datasets are very large. In this paper, we employ an information extractor based on a classical top-down algorithm that uses the so-called Information Gain heuristic introduced by Quinlan and Cameron-Jones. Unfortunately, the Information Gain relies on some well-known problems so we analyse an intuitive alternative, Termini, that is clearly more efficient; we also analyse other proposals in the literature and conclude that none of them outperforms the previous alternative.Keywords: information extraction, search heuristics, semi-structured documents, web mining.
Procedia PDF Downloads 3359470 Memetic Algorithm for Solving the One-To-One Shortest Path Problem
Authors: Omar Dib, Alexandre Caminada, Marie-Ange Manier
Abstract:
The purpose of this study is to introduce a novel approach to solve the one-to-one shortest path problem. A directed connected graph is assumed in which all edges’ weights are positive. Our method is based on a memetic algorithm in which we combine a genetic algorithm (GA) and a variable neighborhood search method (VNS). We compare our approximate method with two exact algorithms Dijkstra and Integer Programming (IP). We made experimentations using random generated, complete and real graph instances. In most case studies, numerical results show that our method outperforms exact methods with 5% average gap to the optimality. Our algorithm’s average speed is 20-times faster than Dijkstra and more than 1000-times compared to IP. The details of the experimental results are also discussed and presented in the paper.Keywords: shortest path problem, Dijkstra’s algorithm, integer programming, memetic algorithm
Procedia PDF Downloads 4669469 Downscaling Daily Temperature with Neuroevolutionary Algorithm
Authors: Min Shi
Abstract:
State of the art research with Artificial Neural Networks for the downscaling of General Circulation Models (GCMs) mainly uses back-propagation algorithm as a training approach. This paper introduces another training approach of ANNs, Evolutionary Algorithm. The combined algorithm names neuroevolutionary (NE) algorithm. We investigate and evaluate the use of the NE algorithms in statistical downscaling by generating temperature estimates at interior points given information from a lattice of surrounding locations. The results of our experiments indicate that NE algorithms can be efficient alternative downscaling methods for daily temperatures.Keywords: temperature, downscaling, artificial neural networks, evolutionary algorithms
Procedia PDF Downloads 3499468 Discretization of Cuckoo Optimization Algorithm for Solving Quadratic Assignment Problems
Authors: Elham Kazemi
Abstract:
Quadratic Assignment Problem (QAP) is one the combinatorial optimization problems about which research has been done in many companies for allocating some facilities to some locations. The issue of particular importance in this process is the costs of this allocation and the attempt in this problem is to minimize this group of costs. Since the QAP’s are from NP-hard problem, they cannot be solved by exact solution methods. Cuckoo Optimization Algorithm is a Meta-heuristicmethod which has higher capability to find the global optimal points. It is an algorithm which is basically raised to search a continuous space. The Quadratic Assignment Problem is the issue which can be solved in the discrete space, thus the standard arithmetic operators of Cuckoo Optimization Algorithm need to be redefined on the discrete space in order to apply the Cuckoo Optimization Algorithm on the discrete searching space. This paper represents the way of discretizing the Cuckoo optimization algorithm for solving the quadratic assignment problem.Keywords: Quadratic Assignment Problem (QAP), Discrete Cuckoo Optimization Algorithm (DCOA), meta-heuristic algorithms, optimization algorithms
Procedia PDF Downloads 5179467 Fast Switching Mechanism for Multicasting Failure in OpenFlow Networks
Authors: Alaa Allakany, Koji Okamura
Abstract:
Multicast technology is an efficient and scalable technology for data distribution in order to optimize network resources. However, in the IP network, the responsibility for management of multicast groups is distributed among network routers, which causes some limitations such as delays in processing group events, high bandwidth consumption and redundant tree calculation. Software Defined Networking (SDN) represented by OpenFlow presented as a solution for many problems, in SDN the control plane and data plane are separated by shifting the control and management to a remote centralized controller, and the routers are used as a forwarder only. In this paper we will proposed fast switching mechanism for solving the problem of link failure in multicast tree based on Tabu Search heuristic algorithm and modifying the functions of OpenFlow switch to fasts switch to the pack up sub tree rather than sending to the controller. In this work we will implement multicasting OpenFlow controller, this centralized controller is a core part in our multicasting approach, which is responsible for 1- constructing the multicast tree, 2- handling the multicast group events and multicast state maintenance. And finally modifying OpenFlow switch functions for fasts switch to pack up paths. Forwarders, forward the multicast packet based on multicast routing entries which were generated by the centralized controller. Tabu search will be used as heuristic algorithm for construction near optimum multicast tree and maintain multicast tree to still near optimum in case of join or leave any members from multicast group (group events).Keywords: multicast tree, software define networks, tabu search, OpenFlow
Procedia PDF Downloads 2639466 Multi-Level Priority Based Task Scheduling Algorithm for Workflows in Cloud Environment
Authors: Anju Bala, Inderveer Chana
Abstract:
Task scheduling is the key concern for the execution of performance-driven workflow applications. As efficient scheduling can have major impact on the performance of the system, task scheduling is often chosen for assigning the request to resources in an efficient way based on cloud resource characteristics. In this paper, priority based task scheduling algorithm has been proposed that prioritizes the tasks based on the length of the instructions. The proposed scheduling approach prioritize the tasks of Cloud applications according to the limits set by six sigma control charts based on dynamic threshold values. Further, the proposed algorithm has been validated through the CloudSim toolkit. The experimental results demonstrate that the proposed algorithm is effective for handling multiple task lists from workflows and in considerably reducing Makespan and Execution time.Keywords: cloud computing, priority based scheduling, task scheduling, VM allocation
Procedia PDF Downloads 5179465 Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid
Authors: Roshanak Khodabakhsh Jolfaei, Javad Akbari Torkestani
Abstract:
As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm.Keywords: computational grid, job scheduling, learning automata, dynamic scheduling
Procedia PDF Downloads 3439464 An Efficient Resource Management Algorithm for Mobility Management in Wireless Mesh Networks
Authors: Mallikarjuna Rao Yamarthy, Subramanyam Makam Venkata, Satya Prasad Kodati
Abstract:
The main objective of the proposed work is to reduce the overall network traffic incurred by mobility management, packet delivery cost and to increase the resource utilization. The proposed algorithm, An Efficient Resource Management Algorithm (ERMA) for mobility management in wireless mesh networks, relies on pointer based mobility management scheme. Whenever a mesh client moves from one mesh router to another, the pointer is set up dynamically between the previous mesh router and current mesh router based on the distance constraints. The algorithm evaluated for signaling cost, data delivery cost and total communication cost performance metrics. The proposed algorithm is demonstrated for both internet sessions and intranet sessions. The proposed algorithm yields significantly better performance in terms of signaling cost, data delivery cost, and total communication cost.Keywords: data delivery cost, mobility management, pointer forwarding, resource management, wireless mesh networks
Procedia PDF Downloads 3679463 Travel Planning in Public Transport Networks Applying the Algorithm A* for Metropolitan District of Quito
Authors: M. Fernanda Salgado, Alfonso Tierra, Wilbert Aguilar
Abstract:
The present project consists in applying the informed search algorithm A star (A*) to solve traveler problems, applying it by urban public transportation routes. The digitization of the information allowed to identify 26% of the total of routes that are registered within the Metropolitan District of Quito. For the validation of this information, data were taken in field on the travel times and the difference with respect to the times estimated by the program, resulting in that the difference between them was not greater than 2:20 minutes. We validate A* algorithm with the Dijkstra algorithm, comparing nodes vectors based on the public transport stops, the validation was established through the student t-test hypothesis. Then we verified that the times estimated by the program using the A* algorithm are similar to those registered on field. Furthermore, we review the performance of the algorithm generating iterations in both algorithms. Finally, with these iterations, a hypothesis test was carried out again with student t-test where it was concluded that the iterations of the base algorithm Dijsktra are greater than those generated by the algorithm A*.Keywords: algorithm A*, graph, mobility, public transport, travel planning, routes
Procedia PDF Downloads 2399462 A Generalized Space-Efficient Algorithm for Quantum Bit String Comparators
Authors: Khuram Shahzad, Omar Usman Khan
Abstract:
Quantum bit string comparators (QBSC) operate on two sequences of n-qubits, enabling the determination of their relationships, such as equality, greater than, or less than. This is analogous to the way conditional statements are used in programming languages. Consequently, QBSCs play a crucial role in various algorithms that can be executed or adapted for quantum computers. The development of efficient and generalized comparators for any n-qubit length has long posed a challenge, as they have a high-cost footprint and lead to quantum delays. Comparators that are efficient are associated with inputs of fixed length. As a result, comparators without a generalized circuit cannot be employed at a higher level, though they are well-suited for problems with limited size requirements. In this paper, we introduce a generalized design for the comparison of two n-qubit logic states using just two ancillary bits. The design is examined on the basis of qubit requirements, ancillary bit usage, quantum cost, quantum delay, gate operations, and circuit complexity and is tested comprehensively on various input lengths. The work allows for sufficient flexibility in the design of quantum algorithms, which can accelerate quantum algorithm development.Keywords: quantum comparator, quantum algorithm, space-efficient comparator, comparator
Procedia PDF Downloads 159461 Integrated Genetic-A* Graph Search Algorithm Decision Model for Evaluating Cost and Quality of School Renovation Strategies
Authors: Yu-Ching Cheng, Yi-Kai Juan, Daniel Castro
Abstract:
Energy consumption of buildings has been an increasing concern for researchers and practitioners in the last decade. Sustainable building renovation can reduce energy consumption and carbon dioxide emissions; meanwhile, it also can extend existing buildings useful life and facilitate environmental sustainability while providing social and economic benefits to the society. School buildings are different from other designed spaces as they are more crowded and host the largest portion of daily activities and occupants. Strategies that focus on reducing energy use but also improve the students’ learning environment becomes a significant subject in sustainable school buildings development. A decision model is developed in this study to solve complicated and large-scale combinational, discrete and determinate problems such as school renovation projects. The task of this model is to automatically search for the most cost-effective (lower cost and higher quality) renovation strategies. In this study, the search process of optimal school building renovation solutions is by nature a large-scale zero-one programming determinate problem. A* is suitable for solving deterministic problems due to its stable and effective search process, and genetic algorithms (GA) provides opportunities to acquire global optimal solutions in a short time via its indeterminate search process based on probability. These two algorithms are combined in this study to consider trade-offs between renovation cost and improved quality, this decision model is able to evaluate current school environmental conditions and suggest an optimal scheme of sustainable school buildings renovation strategies. Through adoption of this decision model, school managers can overcome existing limitations and transform school buildings into spaces more beneficial to students and friendly to the environment.Keywords: decision model, school buildings, sustainable renovation, genetic algorithm, A* search algorithm
Procedia PDF Downloads 1189460 An Efficient Algorithm for Global Alignment of Protein-Protein Interaction Networks
Authors: Duc Dong Do, Ngoc Ha Tran, Thanh Hai Dang, Cao Cuong Dang, Xuan Huan Hoang
Abstract:
Global aligning two protein-protein interaction networks is an essentially important task in bioinformatics/computational biology field of study. It is a challenging and widely studied research topic in recent years. Accurately aligned networks allow us to identify functional modules of proteins and/ororthologous proteins from which unknown functions of a protein can be inferred. We here introduce a novel efficient heuristic global network alignment algorithm called FASTAn, including two phases: the first to construct an initial alignment and the second to improve such alignment by exerting a local optimization repeated procedure. The experimental results demonstrated that FASTAn outperformed the state-of-the-art global network alignment algorithm namely SPINAL in terms of both commonly used objective scores and the run-time.Keywords: FASTAn, Heuristic algorithm, biological network alignment, protein-protein interaction networks
Procedia PDF Downloads 6039459 Control of Stability for PV and Battery Hybrid System in Partial Shading
Authors: Weiying Wang, Qi Li, Huiwen Deng, Weirong Chen
Abstract:
The abrupt light change and uneven illumination will make the PV system get rid of constant output power, which will affect the efficiency of the grid connected inverter as well as the stability of the system. To solve this problem, this paper presents a strategy to control the stability of photovoltaic power system under the condition of partial shading of PV array, leading to constant power output, improving the capacity of resisting interferences. Firstly, a photovoltaic cell model considering the partial shading is established, and the backtracking search algorithm is used as the maximum power point to track algorithm under complex illumination. Then, the energy storage system based on the constant power control strategy is used to achieve constant power output. Finally, the effectiveness and correctness of the proposed control method are verified by the joint simulation of MATLAB/Simulink and RTLAB simulation platform.Keywords: backtracking search algorithm, constant power control, hybrid system, partial shading, stability
Procedia PDF Downloads 297