Search results for: Valentina Manna
2 Blood Thicker Than Water: A Case Report on Familial Ovarian Cancer
Authors: Joanna Marie A. Paulino-Morente, Vaneza Valentina L. Penolio, Grace Sabado
Abstract:
Ovarian cancer is extremely hard to diagnose in its early stages, and those afflicted at the time of diagnosis are typically asymptomatic and in the late stages of the disease, with metastasis to other organs. Ovarian cancers often occur sporadically, with only 5% associated with hereditary mutations. Mutations in the BRCA1 and BRCA2 tumor suppressor genes have been found to be responsible for the majority of hereditary ovarian cancers. One type of ovarian tumor is Malignant Mixed Mullerian Tumor (MMMT), which is a very rare and aggressive type, accounting for only 1% of all ovarian cancers. Reported is a case of a 43-year-old G3P3 (3003), who came into our institution due to a 2-month history of difficulty of breathing. Family history reveals that her eldest and younger sisters both died of ovarian malignancy, with her younger sister having a histopathology report of endometrioid ovarian carcinoma, left ovary stage IIIb. She still has 2 asymptomatic sisters. Physical examination pointed to pleural effusion of right lung, and presence of bilateral ovarian new growth, which had a Sassone score of 13. Admitting Diagnosis was G3P3 (3003), Ovarian New Growth, bilateral, Malignant; Pleural effusion secondary to malignancy. BRCA was requested to establish a hereditary mutation; however, the patient had no funds. Once the patient was stabilized, TAHBSO with surgical staging was performed. Intraoperatively, the pelvic cavity was occupied by firm, irregularly shaped ovaries, with a colorectal metastasis. Microscopic sections from both ovaries and the colorectal metastasis had pleomorphic tumor cells lined by cuboidal to columnar epithelium exhibiting glandular complexity, displaying nuclear atypia and increased nuclear-cytoplasmic ratio, which are infiltrating the stroma, consistent with the features of Malignant Mixed Mullerian Tumor, since MMMT is composed histologically of malignant epithelial and sarcomatous elements. In conclusion, discussed is the clinic-pathological feature of a patient with primary ovarian Malignant Mixed Mullerian Tumor, a rare malignancy comprising only 1% of all ovarian neoplasms. Also, by understanding the hereditary ovarian cancer syndromes and its relation to this patient, it cannot be overemphasized that a comprehensive family history is really fundamental for early diagnosis. The familial association of the disease, given that the patient has two sisters who were diagnosed with an advanced stage of ovarian cancer and succumbed to the disease at a much earlier age than what is reported in the general population, points to a possible hereditary syndrome which occurs in only 5% of ovarian neoplasms. In a low-resource setting, being in a third world country, the following will be recommended for monitoring and/or screening women who are at high risk for developing ovarian cancer, such as the remaining sisters of the patient: 1) Physical examination focusing on the breast, abdomen, and rectal area every 6 months. 2) Transvaginal sonography every 6 months. 3) Mammography annually. 4) CA125 for postmenopausal women. 5) Genetic testing for BRCA1 and BRCA2 will be reserved for those who are financially capable.Keywords: BRCA, hereditary breast-ovarian cancer syndrome, malignant mixed mullerian tumor, ovarian cancer
Procedia PDF Downloads 2891 Metal-Organic Frameworks-Based Materials for Volatile Organic Compounds Sensing Applications: Strategies to Improve Sensing Performances
Authors: Claudio Clemente, Valentina Gargiulo, Alessio Occhicone, Giovanni Piero Pepe, Giovanni Ausanio, Michela Alfè
Abstract:
Volatile organic compound (VOC) emissions represent a serious risk to human health and the integrity of the ecosystems, especially at high concentrations. For this reason, it is very important to continuously monitor environmental quality and develop fast and reliable portable sensors to allow analysis on site. Chemiresistors have become promising candidates for VOC sensing as their ease of fabrication, variety of suitable sensitive materials, and simple sensing data. A chemoresistive gas sensor is a transducer that allows to measure the concentration of an analyte in the gas phase because the changes in resistance are proportional to the amount of the analyte present. The selection of the sensitive material, which interacts with the target analyte, is very important for the sensor performance. The most used VOC detection materials are metal oxides (MOx) for their rapid recovery, high sensitivity to various gas molecules, easy fabrication. Their sensing performance can be improved in terms of operating temperature, selectivity, and detection limit. Metal-organic frameworks (MOFs) have attracted a lot of attention also in the field of gas sensing due to their high porosity, high surface area, tunable morphologies, structural variety. MOFs are generated by the self-assembly of multidentate organic ligands connecting with adjacent multivalent metal nodes via strong coordination interactions, producing stable and highly ordered crystalline porous materials with well-designed structures. However, most MOFs intrinsically exhibit low electrical conductivity. To improve this property, MOFs can be combined with organic and inorganic materials in a hybrid fashion to produce composite materials or can be transformed into more stable structures. MOFs, indeed, can be employed as the precursors of metal oxides with well-designed architectures via the calcination method. The MOF-derived MOx partially preserved the original structure with high surface area and intrinsic open pores, which act as trapping centers for gas molecules, and showed a higher electrical conductivity. Core-shell heterostructures, in which the surface of a metal oxide core is completely coated by a MOF shell, forming a junction at the core-shell heterointerface, can also be synthesized. Also, nanocomposite in which MOF structures are intercalated with graphene related materials can also be produced, and the conductivity increases thanks to the high mobility of electrons of carbon materials. As MOF structures, zinc-based MOFs belonging to the ZIF family were selected in this work. Several Zn-based materials based and/or derived from MOFs were produced, structurally characterized, and arranged in a chemo resistive architecture, also exploring the potentiality of different approaches of sensing layer deposition based on PLD (pulsed laser deposition) and, in case of thermally labile materials, MAPLE (Matrix Assisted Pulsed Laser Evaporation) to enhance the adhesion to the support. The sensors were tested in a controlled humidity chamber, allowing for the possibility of varying the concentration of ethanol, a typical analyte chosen among the VOCs for a first survey. The effect of heating the chemiresistor to improve sensing performances was also explored. Future research will focus on exploring new manufacturing processes for MOF-based gas sensors with the aim to improve sensitivity, selectivity and reduce operating temperatures.Keywords: chemiresistors, gas sensors, graphene related materials, laser deposition, MAPLE, metal-organic frameworks, metal oxides, nanocomposites, sensing performance, transduction mechanism, volatile organic compounds
Procedia PDF Downloads 62