Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 93
Search results for: Shawn J. Marshall
3 How to Assess the Attractiveness of Business Location According to the Mainstream Concepts of Comparative Advantages
Authors: Philippe Gugler
Abstract:
Goal of the study: The concept of competitiveness has been addressed by economic theorists and policymakers for several hundreds of years, with both groups trying to understand the drivers of economic prosperity and social welfare. The goal of this contribution is to address the major useful theoretical contributions that permit to identify the main drivers of a territory’s competitiveness. We first present the major contributions found in the classical and neo-classical theories. Then, we concentrate on two majors schools providing significant thoughts on the competitiveness of locations: the Economic Geography (EG) School and the International Business (IB) School. Methodology: The study is based on a literature review of the classical and neo-classical theories, on the economic geography theories and on the international business theories. This literature review establishes links between these theoretical mainstreams. This work is based on the academic framework establishing a meaningful literature review aimed to respond to our research question and to develop further research in this field. Results: The classical and neo-classical pioneering theories provide initial insights that territories are different and that these differences explain the discrepancies in their levels of prosperity and standards of living. These theories emphasized different factors impacting the level and the growth of productivity in a given area and therefore the degree of their competitiveness. However, these theories are not sufficient to more precisely identify the drivers and enablers of location competitiveness and to explain, in particular, the factors that drive the creation of economic activities, the expansion of economic activities, the creation of new firms and the attraction of foreign firms. Prosperity is due to economic activities created by firms. Therefore, we need more theoretical insights to scrutinize the competitive advantages of territories or, in other words, their ability to offer the best conditions that enable economic agents to achieve higher rates of productivity in open markets. Two major theories provide, to a large extent, the needed insights: the economic geography theory and the international business theory. The economic geography studies scrutinized in this study from Marshall to Porter, aim to explain the drivers of the concentration of specific industries and activities in specific locations. These activity agglomerations may be due to the creation of new enterprises, the expansion of existing firms, and the attraction of firms located elsewhere. Regarding this last possibility, the international business (IB) theories focus on the comparative advantages of locations as far as multinational enterprises (MNEs) strategies are concerned. According to international business theory, the comparative advantages of a location serves firms not only by exploiting their ownership advantages (mostly as far as market seeking, resource seeking and efficiency seeking investments are concerned) but also by augmenting and/or creating new ownership advantages (strategic asset seeking investments). The impact of a location on the competitiveness of firms is considered from both sides: the MNE’s home country and the MNE’s host country.Keywords: competitiveness, economic geography, international business, attractiveness of businesses
Procedia PDF Downloads 1562 Linguistic and Cultural Human Rights for Indigenous Peoples in Education
Authors: David Hough
Abstract:
Indigenous peoples can generally be described as the original or first peoples of a land prior to colonization. While there is no single definition of indigenous peoples, the United Nations has developed a general understanding based on self-identification and historical continuity with pre-colonial societies. Indigenous peoples are often traditional holders of unique languages, knowledge systems and beliefs who possess valuable knowledge and practices which support sustainable management of natural resources. They often have social, economic, political systems, languages and cultures, which are distinct from dominant groups in the society or state where they live. They generally resist attempts by the dominant culture at assimilation and endeavour to maintain and reproduce their ancestral environments and systems as distinctive peoples and communities. In 2007, the United Nations General Assembly passed a declaration on the rights of indigenous peoples, known as UNDRIP. It (in addition to other international instruments such as ILO 169), sets out far-reaching guidelines, which – among other things – attempt to protect and promote indigenous languages and cultures. Paragraphs 13 and 14 of the declaration state the following regarding language, culture and education: Article 13, Paragraph 1: Indigenous peoples have the right to revitalize, use, develop and transmit for future generations their histories, languages, oral traditions, philosophies, writing systems, and literatures, and to designate and retain their own names for communities, places and persons. Article 14, Paragraph I: Indigenous peoples have the right to establish and control their educational systems and institutions providing education in their own languages, in a manner appropriate to their cultural methods of teaching and learning. These two paragraphs call for the right of self-determination in education. Paragraph 13 gives indigenous peoples the right to control the content of their teaching, while Paragraph 14 states that the teaching of this content should be based on methods of teaching and learning which are appropriate to indigenous peoples. This paper reviews an approach to furthering linguistic and cultural human rights for indigenous peoples in education, which supports UNDRIP. It has been employed in countries in Asia and the Pacific, including the Republic of the Marshall Islands, the Federated States of Micronesia, Far East Russia and Nepal. It is based on bottom-up community-based initiatives where students, teachers and local knowledge holders come together to produce classroom materials in their own languages that reflect their traditional beliefs and value systems. They may include such things as knowledge about herbal medicines and traditional healing practices, local history, numerical systems, weights and measures, astronomy and navigation, canoe building, weaving and mat making, life rituals, feasts, festivals, songs, poems, etc. Many of these materials can then be mainstreamed into math, science language arts and social studies classes.Keywords: Indigenous peoples, linguistic and cultural human rights, materials development, teacher training, traditional knowledge
Procedia PDF Downloads 2501 The Artificial Intelligence Driven Social Work
Authors: Avi Shrivastava
Abstract:
Our world continues to grapple with a lot of social issues. Economic growth and scientific advancements have not completely eradicated poverty, homelessness, discrimination and bias, gender inequality, health issues, mental illness, addiction, and other social issues. So, how do we improve the human condition in a world driven by advanced technology? The answer is simple: we will have to leverage technology to address some of the most important social challenges of the day. AI, or artificial intelligence, has emerged as a critical tool in the battle against issues that deprive marginalized and disadvantaged groups of the right to enjoy benefits that a society offers. Social work professionals can transform their lives by harnessing it. The lack of reliable data is one of the reasons why a lot of social work projects fail. Social work professionals continue to rely on expensive and time-consuming primary data collection methods, such as observation, surveys, questionnaires, and interviews, instead of tapping into AI-based technology to generate useful, real-time data and necessary insights. By leveraging AI’s data-mining ability, we can gain a deeper understanding of how to solve complex social problems and change lives of people. We can do the right work for the right people and at the right time. For example, AI can enable social work professionals to focus their humanitarian efforts on some of the world’s poorest regions, where there is extreme poverty. An interdisciplinary team of Stanford scientists, Marshall Burke, Stefano Ermon, David Lobell, Michael Xie, and Neal Jean, used AI to spot global poverty zones – identifying such zones is a key step in the fight against poverty. The scientists combined daytime and nighttime satellite imagery with machine learning algorithms to predict poverty in Nigeria, Uganda, Tanzania, Rwanda, and Malawi. In an article published by Stanford News, Stanford researchers use dark of night and machine learning, Ermon explained that they provided the machine-learning system, an application of AI, with the high-resolution satellite images and asked it to predict poverty in the African region. “The system essentially learned how to solve the problem by comparing those two sets of images [daytime and nighttime].” This is one example of how AI can be used by social work professionals to reach regions that need their aid the most. It can also help identify sources of inequality and conflict, which could reduce inequalities, according to Nature’s study, titled The role of artificial intelligence in achieving the Sustainable Development Goals, published in 2020. The report also notes that AI can help achieve 79 percent of the United Nation’s (UN) Sustainable Development Goals (SDG). AI is impacting our everyday lives in multiple amazing ways, yet some people do not know much about it. If someone is not familiar with this technology, they may be reluctant to use it to solve social issues. So, before we talk more about the use of AI to accomplish social work objectives, let’s put the spotlight on how AI and social work can complement each other.Keywords: social work, artificial intelligence, AI based social work, machine learning, technology
Procedia PDF Downloads 102