Search results for: mathematical learning activities
2346 Improving Medication Understanding, Use and Self-Efficacy among Stroke Patients: A Randomised Controlled Trial; Study Protocol
Authors: Jamunarani Appalasamy, Tha Kyi Kyi, Quek Kia Fatt, Joyce Pauline Joseph, Anuar Zaini M. Zain
Abstract:
Background: The Health Belief Theory had always been associated with chronic disease management. Various health behaviour concepts and perception branching from this Health Belief Theory had involved with medication understanding, use, and self-efficacy which directly link to medication adherence. In a previous quantitative and qualitative study, stroke patients in Malaysia were found to be strongly believing information obtained by various sources such as the internet and social communication. This action leads to lower perception of their stroke preventative medication benefit which in long-term creates non-adherence. Hence, this study intends to pilot an intervention which uses audio-visual concept incorporated with mHealth service to enhance learning and self-reflection among stroke patients to manage their disease. Methods/Design: Twenty patients will be allocated to a proposed intervention whereas another twenty patients are allocated to the usual treatment. The intervention involves a series of developed audio-visual videos sent via mobile phone which later await for responses and feedback from the receiver (patient) via SMS or recorded calls. The primary outcome would be the medication understanding, use and self-efficacy measured over two months pre and post intervention. Secondary outcome is measured from changes of blood parameters and other self-reported questionnaires. Discussion: This study shall also assess uptake/attrition, feasibility, and acceptability of this intervention. Trial Registration: NMRR-15-851-24737 (IIR)Keywords: health belief, medication understanding, medication use, self-efficacy
Procedia PDF Downloads 2202345 Application of Sentinel-2 Data to Evaluate the Role of Mangrove Conservation and Restoration on Aboveground Biomass
Authors: Raheleh Farzanmanesh, Christopher J. Weston
Abstract:
Mangroves are forest ecosystems located in the inter-tidal regions of tropical and subtropical coastlines that provide many valuable economic and ecological benefits for millions of people, such as preventing coastal erosion, providing breeding, and feeding grounds, improving water quality, and supporting the well-being of local communities. In addition, mangroves capture and store high amounts of carbon in biomass and soils that play an important role in combating climate change. The decline in mangrove area has prompted government and private sector interest in mangrove conservation and restoration projects to achieve multiple Sustainable Development Goals, from reducing poverty to improving life on land. Mangrove aboveground biomass plays an essential role in the global carbon cycle, climate change mitigation and adaptation by reducing CO2 emissions. However, little information is available about the effectiveness of mangrove sustainable management on mangrove change area and aboveground biomass (AGB). Here, we proposed a method for mapping, modeling, and assessing mangrove area and AGB in two Global Environment Facility (GEF) blue forests projects based on Sentinel-2 Level 1C imagery during their conservation lifetime. The SVR regression model was used to estimate AGB in Tahiry Honko project in Madagascar and the Abu Dhabi Blue Carbon Demonstration Project (Abu Dhabi Emirates. The results showed that mangrove forests and AGB declined in the Tahiry Honko project, while in the Abu Dhabi project increased after the conservation initiative was established. The results provide important information on the impact of mangrove conservation activities and contribute to the development of remote sensing applications for mapping and assessing mangrove forests in blue carbon initiatives.Keywords: blue carbon, mangrove forest, REDD+, aboveground biomass, Sentinel-2
Procedia PDF Downloads 732344 Exclusive Value Adding by iCenter Analytics on Transient Condition
Authors: Zhu Weimin, Allegorico Carmine, Ruggiero Gionata
Abstract:
During decades of Baker Hughes (BH) iCenter experience, it is demonstrated that in addition to conventional insights on equipment steady operation conditions, insights on transient conditions can add significant and exclusive value for anomaly detection, downtime saving, and predictive maintenance. Our work shows examples from the BH iCenter experience to introduce the advantages and features of using transient condition analytics: (i) Operation under critical engine conditions: e.g., high level or high change rate of temperature, pressure, flow, vibration, etc., that would not be reachable in normal operation, (ii) Management of dedicated sub-systems or components, many of which are often bottlenecks for reliability and maintenance, (iii) Indirect detection of anomalies in the absence of instrumentation, (iv) Repetitive sequences: if data is properly processed, the engineering features of transients provide not only anomaly detection but also problem characterization and prognostic indicators for predictive maintenance, (v) Engine variables accounting for fatigue analysis. iCenter has been developing and deploying a series of analytics based on transient conditions. They are contributing to exclusive value adding in the following areas: (i) Reliability improvement, (ii) Startup reliability improvement, (iii) Predictive maintenance, (iv) Repair/overhaul cost down. Illustrative examples for each of the above areas are presented in our study, focusing on challenges and adopted techniques ranging from purely statistical approaches to the implementation of machine learning algorithms. The obtained results demonstrate how the value is obtained using transient condition analytics in the BH iCenter experience.Keywords: analytics, diagnostics, monitoring, turbomachinery
Procedia PDF Downloads 742343 Developing Countries and the Entrepreneurial Intention of Postgraduates: A Study of Nigerian Postgraduates in UUM
Authors: Mahmoud Ahmad Mahmoud
Abstract:
The surge in unemployment among nations and the understanding of the important role played by entrepreneurship in job creation by researchers and policy makers have steered to the postulation that entrepreneurship activities can be spurred through the development of entrepreneurial intentions. Notwithstanding, entrepreneurial intention studies are very scarce in the developing world especially in the African continent. Even among the developed countries, studies of entrepreneurial intention were mostly focused on the undergraduate candidates. This paper therefore, aimed at filling the gap by employing the descriptive quantitative survey method to examine the entrepreneurial intention of 158 Nigerian postgraduate candidates of Universiti Utara Malaysia (UUM), comprising 46 Masters and 112 PhD candidates who are studying in the College of Business (COB), College of Arts and Sciences (CAS) and College of Legal, Government and International Studies (COLGIS), the theory of planned behaviour (TPB) model was used due its reputable validity, with attitudes, subjective norms and perceived behavioural control as the independent variables. Preliminary analysis and data screening were conducted which qualifies the data to the multivariate analysis assumptions. The reliability test was performed using the Cronbach Alpha method which shows all variables as reliable with a value of >0.70. However, the data is free from the multicollinearity issue with all factors in the Pearson correlation having <0.9 value and the VIF having <10. Regression analysis has shown the sufficiency and predictive capability of the TPB model to entrepreneurship intention with attitude, subjective norms and perceived behavioural control being positively and significantly related to the entrepreneurial intention of Nigerian postgraduates. Considering the Beta values, perceived behavioural control emerged as the strongest factor that influences the postgraduates entrepreneurial intention. Developing countries are therefore, recommended to make efforts in redesigning their entrepreneurship development policies to fit candidates of the highest level of academia. Further studies should replicate in a larger sample that comprises more than one university and more than one developing country.Keywords: attitude, entrepreneurial intention, Nigeria, perceived behavioral control, postgraduates, subjective norms
Procedia PDF Downloads 4332342 Molecular Characterization of Ovine Herpesvirus 2 Strains Based on Selected Glycoprotein and Tegument Genes
Authors: Fulufhelo Amanda Doboro, Kgomotso Sebeko, Stephen Njiro, Moritz Van Vuuren
Abstract:
Ovine herpesvirus 2 (OvHV-2) genome obtained from the lymphopblastoid cell line of a BJ1035 cow was recently sequenced in the United States of America (USA). Information on the sequences of OvHV-2 genes obtained from South African strains from bovine or other African countries and molecular characterization of OvHV-2 is not documented. Present investigation provides information on the nucleotide and derived amino acid sequences and genetic diversity of Ov 7, Ov 8 ex2, ORF 27 and ORF 73 genes, of these genes from OvHV-2 strains circulating in South Africa. Gene-specific primers were designed and used for PCR of DNA extracted from 42 bovine blood samples that previously tested positive for OvHV-2. The expected PCR products of 495 bp, 253 bp, 890 bp and 1632 bp respectively for Ov 7, Ov 8 ex2, ORF 27 and ORF 73 genes were sequenced and multiple sequence analysis done on the selected regions of the sequenced PCR products. Two genotypes for ORF 27 and ORF 73 gene sequences, and three genotypes for Ov 7 and Ov 8 ex2 gene sequences were identified, and similar groupings for the derived amino acid sequences were obtained for each gene. Nucleotide and amino acid sequence variations that led to the identification of the different genotypes included SNPs, deletions and insertions. Sequence analysis of Ov 7 and ORF 27 genes revealed variations that distinguished between sequences from SA and reference OvHV-2 strains. The implication of geographic origin among SA sequences was difficult to evaluate because of random distribution of genotypes in the different provinces, for each gene. However, socio-economic factors such as migration of people with animals, or transportation of animals for agricultural or business use from one province to another are most likely to be responsible for this observation. The sequence variations observed in this study have no impact on the antibody binding activities of glycoproteins encoded by Ov 7, Ov 8 ex2 and ORF 27 genes, as determined by prediction of the presence of B cell epitopes using BepiPred 1.0. The findings of this study will be used for selection of gene candidates for the development of diagnostic assays and vaccine development as well.Keywords: amino acid, genetic diversity, genes, nucleotide
Procedia PDF Downloads 4922341 Characterisation of Chitooligomers Prepared with the Aid of Cellulase, Xylanase and Chitosanase
Authors: Anna Zimoch-Korzycka, Dominika Kulig, Andrzej Jarmoluk
Abstract:
The aim of this study was to obtain chitooligosaccharides from chitosan with better functional properties using three different enzyme preparations and compare the products of enzymatic hydrolysis. Commercially available cellulase (CL), xylanase (X) and chitosanase (CS) preparations were used to investigate hydrolytic activity on chitosan (CH) with low molecular weight and DD of 75-85%. It has been reported that CL and X have side activities of other enzymes, such as β-glucanase or β-glucosidase. CS enzyme has a foreign activity of chitinase. Each preparation was used in 1000 U of activity and in the same reaction conditions. The degree of deacetylation and molecular weight of chitosan were specified using titration and viscometric methods, respectively. The hydrolytic activity of enzymes preparations on chitosan was monitored by dynamic viscosity measurement. After 4 h reaction with stirring, solutions were filtered and chitosan oligomers were isolated by methanol solution into two fractions: precipitate (A) and supernatant (B). A Fourier-transform infrared spectroscopy was used to characterize the structural changes of chitosan oligomers fractions and initial chitosan. Furthermore, the solubility of lyophilized hydrolytic mixture (C) and two chitooligomers fractions (A, B) of each enzyme hydrolysis was assayed. The antioxidant activity of chitosan oligomers was evaluated as DPPH free radical scavenging activity. The dynamic viscosity measured after addition of enzymes preparation to the chitosan solution decreased dramatically over time in the sample with X in comparison to solution without the enzyme. For mixtures with CL and CS, lower viscosities were also recorded but not as low as the ones with X. A and B fractions were characterized by the most similar viscosity obtained by the xylanase hydrolysis and were 15 mPas and 9 mPas, respectively. Structural changes of chitosan oligomers A, B, C and their differences related with various enzyme preparations used were confirmed. Water solubility of A fractions was not possible to filter and the result was not recorded. Solubility of supernatants was approximately 95% and was higher than hydrolytic mixture. It was observed that the DPPH radical scavenging effect of A, B, C samples is the highest for X products and was approximately 13, 17, 19% respectively. In summary, a mixture of chitooligomers may be useful for the design of edible protective coatings due to the improved biophysical properties.Keywords: cellulase, xylanase, chitosanase, chitosan, chitooligosaccharides
Procedia PDF Downloads 3262340 Effects of Arts-Mediated Mother-Child Dyads Mindfulness-Based Intervention for Korean Children with ADHD: On Behaviors in Children and Subjective Psychological States in Mothers
Authors: Jeongil Kim
Abstract:
The present study examined the effects of arts-mediated mother-child dyads mindfulness-based intervention for Korean children with attention deficit hyperactivity disorder (ADHD) and their mothers, on behaviors in children and subjective psychological states in mothers. Four elementary school boys with ADHD and their mothers participated in the study. Using a multiple baseline design across four mother-child dyads, data were collected on the target behaviors (disruptive behavior, on-task behavior, and compliance in class) in children using a 10-second partial interval recording system and on the subjective psychological states in mothers using four questionnaires (on perceived stress, burnout, mindfulness, and satisfaction with life). The intervention consisted of a) mindfulness training, b) mindfulness practice, and c) mindful management of body and feeling. The arts activities, making a coiled clay pot and Korean traditional music performance, were utilized to facilitate the environment to help each participant to understand the content and progress of the intervention program. The results showed that all four dyads showed improvement in adaptive behaviors in the children (increase in on-task behavior; decrease in disruptive behavior) and positive change in subjective psychological states in the mothers (increase in scores of mindfulness and satisfaction with life; decrease in scores of perceived stress and burnout). The changes in the children’s behaviors and in the mothers’ subjective psychological states were maintained when the intervention was drawn and generalized in novel settings. The results suggest that arts-mediated mother-child dyads mindfulness-based intervention would be a mutual benefiting strategy to support both children with ADHD and their mothers who experience diverse challenges in behavioral and psychological aspects.Keywords: mindfulness, attention deficit hyperactivity disorder (ADHD), arts-mediated, behavior, psychological well-being, child-mother
Procedia PDF Downloads 1812339 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks
Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas
Abstract:
Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model
Procedia PDF Downloads 592338 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets
Authors: Kothuri Sriraman, Mattupalli Komal Teja
Abstract:
In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm
Procedia PDF Downloads 3492337 Identification of Rurban Centres in Determining Regional Development in the Hinterland of Koch Bihar, West Bengal, India
Authors: Ballari Bagchi
Abstract:
The dynamism ingrained in the process of urban-rural integration is manifested in the emergence of rurban settlements, referring to areas that combine the characteristics of agricultural activities found in rural zones with those of suburban living areas and industrialised zones. The concept of rurbanisation refers to the idea of introducing urban conveniences and opportunities, to rural areas in an attempt to stem rural urban migration. In the backdrop of the worldwide problem of disharmonised urban-rural dependence and the associated problems in urban and rural areas, the present study seeks to explore the potentialities of few settlements having a blend of rural and urban characteristics in the urban field of Koch Bihar. The prime concern of the present paper is three-fold: (i) to identify the rurban centres, (ii) to analyse the spatial integration of these identified centres with the rural areas situated in the urban periphery, and (iii) to suggest the necessities to be introduced in these settlements. The methodology applied here includes rurban index, gravity model, and functional classification of rurban centres, correlation and regression analysis and cartographic representation of data collected through primary and secondary sources. The investigation has identified a number of settlements potentially viable to be termed as rurban centres which may render services to the other less equipped rural areas in all aspects of life and thereby would lessen the burden on Koch Bihar urban centre. The levels of infrastructure of these settlements should be such that it might even attract the urban population in a reverse direction. The villages belonging to the lower rung of these service settlements would require metalled road connection with these intermediate settlements in addition to their connection with the core town. That is to say, a proper policy needs to be adopted in this regard to furnish these settlements with required infrastructures for serving their own population as well as the population of other villages. As a consequence of that, the idea of a well-coordinated settlement hierarchy may emerge in future.Keywords: Hinterland, rurban, settlement hierarchy, urban-rural integration
Procedia PDF Downloads 3132336 In vitro Antifungal Activity of Methanolic Extracts of Eight Various Cultivar of Persian Punica granatum L. against Candida Species
Authors: Shahindokht Bassiri-Jahromi, Mohammad Reza Pourshafie, Farzad Katiraee, Mannan Hajimahmoodi, Ehsan Mostafavi, Malihe Talebi
Abstract:
Objective: Resistance of Candida species to antifungal agents has potentially serious implications for management of infections. Candida species are now fourth common organisms isolated from hospitalized patients. It is important to increase effective therapy. In the past decade, numerous reports of treatment failures were reported. Prevention and control of these infections will require new antimicrobial agents. Plant-derived antifungal have always been a source of novel therapeutics. The aim of this study was to investigate the antifungal effect of methanolic extract of pomegranate peel and pulp against Candida species. Material and Methods: Eight cultivars of Punica granatum L. were collected from Saveh Agricultural Investigation Center in Iran. Both pomegranate pulp and peel were dried and powdered separately. The dried powders were extracted by using a soxhlet extractor. The antifungal effect of methanolic extract of pomegranate peel and pulp were determined in vitro by minimum inhibitory concentration (MIC) against five standard species of (ATCC 10231), C. parapsilosis (ATCC 22019), C. tropicalis (ATCC 750), C. glabrata (PTCC 5297), and C. kroseii (PTCC 5295). Results: Maximum inhibitions of antifungal effect were attributed to peel extract pomegranate cultivar and Candida species. The most potential antifungal inhibition among 8 different cultivars observed by sour malas, sour white peel, and sour summer extracts respectively, against five Candida strains. The antifungal activity of pulp extracts against Candida species was approximately negative. Conclusion: The use of Punica granatum peel extract has been shown to possess antifungal activities. The phytochemistry and pharmacological actions of Punica granatum peel components suggest a wide range of clinical applications for the treatment and prevention of candidiasis.Keywords: antifungal activity, Candida species, Punica granatum L., pharmacognosy
Procedia PDF Downloads 4832335 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification
Authors: Jianhong Xiang, Rui Sun, Linyu Wang
Abstract:
In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification
Procedia PDF Downloads 792334 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics
Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo
Abstract:
Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model
Procedia PDF Downloads 1562333 English Test Success among Syrian Refugee Girls Attending Language Courses in Lebanon
Authors: Nina Leila Mussa
Abstract:
Background: The devastating effects of the war on Syria’s educational infrastructure has been widely reported, with millions of children denied access. However, among those who resettled in Lebanon, the impact of receiving educational assistance on their abilities to pass the English entrance exam is not well described. The aim of this study was to identify predictors of success among Syrian refugees receiving English language courses in a Lebanese university. Methods: The database of Syrian refugee girls matriculated in English courses at the American University of Beirut (AUB) was reviewed. The study period was 7/2018-09/2020. Variables compared included: family size and income, welfare status, parents’ education, English proficiency, access to the internet, and need for external help with homework. Results: For the study period, there were 28 girls enrolled. The average family size was 6 (range 4-9), with eight having completed primary, 14 secondary education, and 6 graduated high school. Eighteen were single-income families. After 12 weeks of English courses, 16 passed the Test of English as Foreign Language (TOEFL) from the first attempt, and 12 failed. Out of the 12, 8 received external help, and 6 passed on the second attempt, which brings the total number of successful passing to 22. Conclusion: Despite the tragedy of war, girls receiving assistance in learning English in Lebanon are able to pass the basic language test. Investment in enhancing those educational experiences will be determinantal in achieving widespread progress among those at-risk children.Keywords: refugee girls, TOEFL, education, success
Procedia PDF Downloads 1232332 The Fishery Regulations in the Egyptian Marine Fisheries and Its Effectiveness
Authors: Sahar Fahmy Mehanna
Abstract:
Wild fisheries and aquaculture offer excellent opportunities to decrease hunger and improve nutrition, relieve poverty, create economic growth and guarantee healthier use of natural resources. Employment in fisheries and aquaculture has grown continuously quicker than in the agriculture sector, providing up to 55 million jobs worldwide. Fisheries and aquaculture supplied Egypt with 2.1 million tons of fish in 2021, mostly used as food for people. Fish production in Egypt has grown dramatically in the last three decades, where fish production increased from about 346 thousand tons in 1990 to up to 2.1 million tons in 2021. In contrast to natural resources, which increased by only 30% in the period from 1990 to 2021, aquaculture production increased by 2502% during the same period. The majority of wild fisheries production in Egypt arises from coastal areas, where pollution is one of the main challenges severely affected both the productivity and quality of fish stocks. Our marine resources are at the risk of irreversible loss to habitats, ecological functions, and biodiversity because of overfishing, pollution, destructive fishing methods, climatic changes, unsustainable coastal area development and the competing demands from different industrial uses and human activities. Illegal, Unreported and Unregulated (IUU) Fishing continues to be a big challenge to achieve sustainable fisheries. Furthermore, poor governance, management and practices are a further challenge. Reducing overfishing, stimulating responsible and sustainable fisheries management, applying aquaculture new and friendly practices and conserving the marine environment health are among the government’s best opportunities to provide highly nutritious food to the increasing population in Egypt. The present presentation will discuss the fishery regulations in the Egyptian marine fisheries that taken to maintain, protect and promote the different Egyptian marine environments and to what extent these regulations were effective.Keywords: egypt, marine fisheries, fishery regulations, fisheries management, Marine ecosystem conservation
Procedia PDF Downloads 692331 Education in Schools and Public Policy in India
Authors: Sujeet Kumar
Abstract:
Education has greater importance particularly in terms of increasing human capital and economic competitiveness. It plays a crucial role in terms of cognitive and skill development. Its plays a vital role in process of socialization, fostering social justice, and enhancing social cohesion. Policy related to education has been always a priority for developed countries, which is later adopted by developing countries also. The government of India has also brought change in education polices in line with recognizing change at national and supranational level. However, quality education is still not become an open door for every child in India and several reports are produced year to year about level of school education in India. This paper is concerned with schooling in India. Particularly, it focuses on two government and two private schools in Bihar, but reference has made to schools in Delhi especially around slum communities. The paper presents brief historical context and an overview of current school systems in India. Later, it focuses on analysis of current development in policy in reference with field observation, which is anchored around choice, diversity, market – orientation and gap between different groups of pupils. There is greater degree of difference observed at private and government school levels in terms of quality of teachers, method of teaching and overall environment of learning. The paper concludes that the recent policy development in education particularly Sarva Siksha Abhiyaan (SAA) and Right to Education Act (2009) has required renovating new approach to bridge the gap through broader consultation at grassroots and participatory approach with different stakeholders.Keywords: education, public policy, participatory approach
Procedia PDF Downloads 3942330 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining
Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie
Abstract:
With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.Keywords: classification, data mining, machine learning, online shopping, WEKA
Procedia PDF Downloads 3522329 Verification and Validation of Simulated Process Models of KALBR-SIM Training Simulator
Authors: T. Jayanthi, K. Velusamy, H. Seetha, S. A. V. Satya Murty
Abstract:
Verification and Validation of Simulated Process Model is the most important phase of the simulator life cycle. Evaluation of simulated process models based on Verification and Validation techniques checks the closeness of each component model (in a simulated network) with the real system/process with respect to dynamic behaviour under steady state and transient conditions. The process of Verification and validation helps in qualifying the process simulator for the intended purpose whether it is for providing comprehensive training or design verification. In general, model verification is carried out by comparison of simulated component characteristics with the original requirement to ensure that each step in the model development process completely incorporates all the design requirements. Validation testing is performed by comparing the simulated process parameters to the actual plant process parameters either in standalone mode or integrated mode. A Full Scope Replica Operator Training Simulator for PFBR - Prototype Fast Breeder Reactor has been developed at IGCAR, Kalpakkam, INDIA named KALBR-SIM (Kalpakkam Breeder Reactor Simulator) wherein the main participants are engineers/experts belonging to Modeling Team, Process Design and Instrumentation and Control design team. This paper discusses the Verification and Validation process in general, the evaluation procedure adopted for PFBR operator training Simulator, the methodology followed for verifying the models, the reference documents and standards used etc. It details out the importance of internal validation by design experts, subsequent validation by external agency consisting of experts from various fields, model improvement by tuning based on expert’s comments, final qualification of the simulator for the intended purpose and the difficulties faced while co-coordinating various activities.Keywords: Verification and Validation (V&V), Prototype Fast Breeder Reactor (PFBR), Kalpakkam Breeder Reactor Simulator (KALBR-SIM), steady state, transient state
Procedia PDF Downloads 2662328 The Influence of the Institutional Environment in Increasing Wealth: The Case of Women Business Operators in a Rural Setting
Authors: S. Archsana, Vajira Balasuriya
Abstract:
In Trincomalee of Sri Lanka, a post-conflict area, resettlement projects and policy initiatives are taking place to improve the wealth of the rural communities through promoting economic activities by way of encouraging the rural women to opt to commence and operate Micro and Small Scale (MSS) businesses. This study attempts to identify the manner in which the institutional environment could facilitate these MSS businesses owned and operated by women in the rural environment. The respondents of this study are the beneficiaries of the Divi Neguma Development Training Program (DNDTP); a project designed to aid women owned MSS businesses, in Trincomalee district. 96 women business operators, who had obtained financing facilities from the DNDTP, are taken as the sample based on fixed interval random sampling method. The study reveals that primary challenges encountered by 82% of the women business operators are lack of initial capital followed by 71% initial market finding and 35% access to technology. The low level of education and language barriers are the constraints in accessing support agencies/service providers. Institutional support; specifically management and marketing services, have a significant relationship with wealth augmentation. Institutional support at the setting-up stage of businesses are thin whereas terms and conditions of the finance facilities are perceived as ‘too challenging’. Although diversification enhances wealth of the rural women business operators, assistance from the institutional framework to prepare financial reports that are required for business expansion is skinny. The study further reveals that institutional support is very much weak in terms of providing access to new technology and identifying new market networks. A mechanism that could facilitate the institutional framework to support the rural women business operators to access new technology and untapped market segments, and assistance in preparation of legal and financial documentation is recommended.Keywords: business facilitation, institutional support, rural women business operators, wealth augmentation
Procedia PDF Downloads 4382327 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models
Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai
Abstract:
Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.Keywords: plant identification, CNN, image processing, vision transformer, classification
Procedia PDF Downloads 1042326 Studying the Impact of Farmers Field School on Vegetable Production in Peshawar District of Khyber Pakhtunkhwa Province of Pakistan
Authors: Muhammad Zafarullah Khan, Sumeera Abbasi
Abstract:
The Farmers Field School (FFS) learning approach aims to improve knowledge of the farmers through integrated crop management and provide leadership in their decision making process. The study was conducted to assess the impact of FFS on vegetables production before and after FFS intervention in four villages of district Peshawar in cropping season 2012, by interviewing 80 FFS respondents, twenty from each selected village. It was observed from the study results that all the respondents were satisfied from the impact of FFS and they informed an increased in production in vegetables. It was further observed that after the implementation of FFS the sowing seed rate of tomato and cucumber were decreased from 0.185kg/kanal to 0.100 kg/ kanal and 0.120kg/kanal to 0.010kg/kanal where as the production of tomato and cucumber were increased from 8158.75kgs/kanal to 10302. 5kgs/kanal and 3230kgs/kanal to 5340kgs/kanal, respectively. The cost of agriculture inputs per kanal including seed cost, crop management, Farm Yard Manure, and weedicides in case of tomato were reduced by Rs.28, Rs. 3170, Rs.658and Rs 205 whereas in cucumber reduced by Rs.35, Rs.570, Rs 80 and Rs.430 respectively. Only fertilizers cost was increased by Rs. 2200 in case of tomato and Rs 465 in case of cucumber. Overall the cost was reduced to Rs 545 in tomato and Rs 490 in cucumber production.FFS provided a healthy vegetables and also reduced input cost by adopting integrated crop management. Therefore the promotion of FFS is needed to be planned for farmers to reduce cost of production, so that the more farmers should be benefited.Keywords: impact, farmer field schools, vegetable production, Peshawar Khyber Pakhtunkhwa
Procedia PDF Downloads 2562325 Comparative Study Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine
Procedia PDF Downloads 4102324 Academic Literacy: A Study of L2 Academic Reading Literacy among a Group of EFL/ESL Postgraduate Arab Learners in a British University
Authors: Hanadi Khadawardi
Abstract:
The current study contributes to research on foreign/second language (L2) academic reading by presenting a significant case study, which seeks to investigate specific groups of international (Arab) postgraduate students’ L2 academic reading practices in the UK educational context. In particular, the study scrutinises postgraduate students’ L2 paper-based and digital-based academic reading strategies, and their use of digital aids while engaged in L2 academic reading. To this end, the study investigates Arab readers’ attitudes toward digital L2 academic reading. The study aims to compare between paper and digital L2 academic reading strategies that the students employ and which reading formats they prefer. This study tracks Masters-level students and examines the way in which their reading strategies and attitudes change throughout their Masters programme in the UK educational context. The academic reading strategies and attitudes of five students from four different disciplines (Health Science, Psychology, Management, and Education) are investigated at two points during their one-year Masters programmes. In addition, the study investigates the same phenomenon with 15 Saudi PhD students drawn from seven different disciplines (Computer Science, Engineering, Psychology, Management, Marketing, Health Science, and Applied Linguistics) at one period of their study in the same context. The study uses think-aloud protocol, field notes, stimulated recall, and semi-structured interviews to collect data. The data is analysed qualitatively. The results of the study will explain the process of learning in terms of reading L2 paper and digital academic texts in the L2 context.Keywords: EFL: English as a foreign language, ESL: English as a second language, L: Language
Procedia PDF Downloads 3812323 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation
Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu
Abstract:
This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.Keywords: machine learning, neural network, pressurized water reactor, supervisory controller
Procedia PDF Downloads 1562322 Q-Efficient Solutions of Vector Optimization via Algebraic Concepts
Authors: Elham Kiyani
Abstract:
In this paper, we first introduce the concept of Q-efficient solutions in a real linear space not necessarily endowed with a topology, where Q is some nonempty (not necessarily convex) set. We also used the scalarization technique including the Gerstewitz function generated by a nonconvex set to characterize these Q-efficient solutions. The algebraic concepts of interior and closure are useful to study optimization problems without topology. Studying nonconvex vector optimization is valuable since topological interior is equal to algebraic interior for a convex cone. So, we use the algebraic concepts of interior and closure to define Q-weak efficient solutions and Q-Henig proper efficient solutions of set-valued optimization problems, where Q is not a convex cone. Optimization problems with set-valued maps have a wide range of applications, so it is expected that there will be a useful analytical tool in optimization theory for set-valued maps. These kind of optimization problems are closely related to stochastic programming, control theory, and economic theory. The paper focus on nonconvex problems, the results are obtained by assuming generalized non-convexity assumptions on the data of the problem. In convex problems, main mathematical tools are convex separation theorems, alternative theorems, and algebraic counterparts of some usual topological concepts, while in nonconvex problems, we need a nonconvex separation function. Thus, we consider the Gerstewitz function generated by a general set in a real linear space and re-examine its properties in the more general setting. A useful approach for solving a vector problem is to reduce it to a scalar problem. In general, scalarization means the replacement of a vector optimization problem by a suitable scalar problem which tends to be an optimization problem with a real valued objective function. The Gerstewitz function is well known and widely used in optimization as the basis of the scalarization. The essential properties of the Gerstewitz function, which are well known in the topological framework, are studied by using algebraic counterparts rather than the topological concepts of interior and closure. Therefore, properties of the Gerstewitz function, when it takes values just in a real linear space are studied, and we use it to characterize Q-efficient solutions of vector problems whose image space is not endowed with any particular topology. Therefore, we deal with a constrained vector optimization problem in a real linear space without assuming any topology, and also Q-weak efficient and Q-proper efficient solutions in the senses of Henig are defined. Moreover, by means of the Gerstewitz function, we provide some necessary and sufficient optimality conditions for set-valued vector optimization problems.Keywords: algebraic interior, Gerstewitz function, vector closure, vector optimization
Procedia PDF Downloads 2162321 Layers of Identities in Nahdliyyin Mosque Architecture and Some Related Socio-Political Context Within
Authors: Yulia Eka Putrie, Widjaja Martokusumo
Abstract:
The development of architecture today indicates that an architectural object often does not represent one single identity only. One architectural object could represents layers of multiple identities of an increasingly complex society. Mosque architecture for example, is mainly associated with one religious identity; that mosque architecture serves as the representation of Islamic identity. However, on many occasions, mosque architecture also serves as the representation of other motives, such as political, social, even individual identity. In normal circumstances, these layers of identities are not always seen or realized by common people outside the community. They are only represented implicitly in some symbolic forms, activities, and events. On the other hand, in specific circumstances, these kinds of identities were represented explicitly in mosque architecture. This paper is a part of an initial research on the representation of socio-political identities in Nahdliyyin mosques in East Java, Indonesia. Nahdliyyin mosques were chosen as the object of research because of its significance in Indonesian socio-political context, because majority of Indonesian muslims are culturally associated with Nahdlatul Ulama (NU) with its aswaja doctrine. Some frictions in mosque ownership and management between Nahdliyyin and other islamic school of thoughts, has resulted in preventive efforts, where some of the efforts are related to the representation of their identity in their mosque architecture. The research is a field research that took place in Malang, East Java. Malang is one of main cities in East Java; a cultural and regional basis of NU and Nahdliyyin people. Formal analysis were conducted in ten large Nahdliyyin mosques in Malang. Some structured and in-depth interviews were also held to explore the motives of identity representation in some architectural aspects of the mosques. The result of this initial study indicates that there are layers of identities which were manifested in the studied mosques. These layers of identities in Nahdliyyin mosques were based on the same main values, but represented through various formal expressions. Furthermore, the study also brings the deeper understanding on socio-political context of mosques in Nahdliyyin culture.Keywords: Nahdliyyin mosque architecture, layers of identities, representation, Nahdlatul Ulama
Procedia PDF Downloads 5192320 Insights Into Serotonin-Receptor Binding and Stability via Molecular Dynamics Simulations: Key Residues for Electrostatic Interactions and Signal Transduction
Authors: Arunima Verma, Padmabati Mondal
Abstract:
Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT₁ᴮ receptor (5-HT₁ᴮ R) via electrostatic interactions. An end-point free energy calculation method (MM-PBSA) determines the stability of the 5-HT1B R due to serotonin binding. The single-point mutation of the polar or charged amino acid residues (Asp129, Thr134) on the binding sites and the calculation of binding free energy validate the importance of these residues in the stability of the serotonin-receptor complex. Principal component analysis indicates the serotonin-bound 5-HT1BR is more stabilized than the apo-receptor in terms of dynamical changes. The difference dynamic cross-correlations map shows the correlation between the transmembrane and mini-Go, which indicates signal transduction happening between mini-Go and the receptor. Allosteric communication reveals the key nodes for signal transduction in 5-HT1BR. These results provide useful insights into the signal transduction pathways and mutagenesis study to regulate the functionality of the complex. The developed protocols can be applied to study local non-covalent interactions and long-range allosteric communications in any protein-ligand system for computer-aided drug design.Keywords: allostery, CADD, MD simulations, MM-PBSA
Procedia PDF Downloads 872319 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm
Procedia PDF Downloads 3042318 Effect of Ausubel's Advance Organizer Model to Enhancing Meta-Cognition of Students at Secondary Level
Authors: Qaisara Parveen, M. Imran Yousuf
Abstract:
The purpose of this study was to find the effectiveness of the use of advance organizer model for enhancing meta-cognition of students in the subject of science. It was hypothesized that the students of experimental group taught through advance organizer model would show the better cognition than the students of control group taught through traditional teaching. The population of the study consisted of all secondary school students studying in government high school located in Rawalpindi. The sample of the study consisted of 50 students of 9th class of humanities group. The sample was selected on the basis of their pretest scores through matching, and the groups were randomly assigned for the treatment. The experimental group was taught through advance organizer model while the control group was taught through traditional teaching. The self-developed achievement test was used for the purpose of pretest and posttest. After collecting the pre-test score and post-test score, the data was analyzed and interpreted by use of descriptive statistics as mean and standard deviation and inferential statistics t-test. The findings indicate that students taught using advance organizers had a higher level of meta-cognition as compared to control group. Further, meta cognition level of boys was found higher than that of girls students. This study also revealed the fact that though the students at different meta-cognition level approached learning situations in a different manner, Advance organizer model is far superior to Traditional method of teaching.Keywords: descriptive, experimental, humanities, meta-cognition, statistics, science
Procedia PDF Downloads 3162317 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics
Authors: Ewa M. Laskowska, Jorn Vatn
Abstract:
Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL
Procedia PDF Downloads 91