Search results for: deep learning models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14041

Search results for: deep learning models

2341 Metrology in Egyptian Architecture, Interrelation with Archaeology

Authors: Monica M. Marcos

Abstract:

In the framework of Archaeological Research, Heritage Conservation and Restoration, the object of study is metrology applied in composition of religious architecture in ancient Egypt, and usefulness in Archaology. The objective is the determination of the geometric and metrological relations in architectural models and the module used in the initial project of the buildings. The study and data collection of religious buildings, tombs and temples of the ancient Egypt, is completed with plans. The measurements systematization and buildings modulation makes possible to establish common compositional parameters, with a module determined by the measurement unit used. The measurement system corresponding to the main period of egyptian history, was the Egyptian royal cubit. The analysis of units measurements, used in architectural design, provides exact numbers on buildable spaces dimensions. It allows establishing proportional relationships between them, and finding a geometric composition module, on which the original project was based. This responds to a philosophical and functional concept of projected spaces. In the heritage rehabilitation and restoration field, knowledge of metrology helps in excavation, reconstruction and restoration of construction elements. The correct use of metrology contributes to the identification of possible work areas, helping to locate where the damaged or missing areas are. Also in restoration projects, metrology is useful for reordering and locating decontextualized parts of buildings. The conversion of measurements taken in the current International System to the ancient egyptian measurements, allows understand its conceptual purpose and its functionality, which makes easier to carry out archaeological intervention. In the work carried out in archaeological excavations, metrology is an essential tool for locating sites and establishing work zones.

Keywords: egyptology, metrology, archaeology, measurements, Egyptian cubit

Procedia PDF Downloads 25
2340 Bayesian System and Copula for Event Detection and Summarization of Soccer Videos

Authors: Dhanuja S. Patil, Sanjay B. Waykar

Abstract:

Event detection is a standout amongst the most key parts for distinctive sorts of area applications of video data framework. Recently, it has picked up an extensive interest of experts and in scholastics from different zones. While detecting video event has been the subject of broad study efforts recently, impressively less existing methodology has considered multi-model data and issues related efficiency. Start of soccer matches different doubtful circumstances rise that can't be effectively judged by the referee committee. A framework that checks objectively image arrangements would prevent not right interpretations because of some errors, or high velocity of the events. Bayesian networks give a structure for dealing with this vulnerability using an essential graphical structure likewise the probability analytics. We propose an efficient structure for analysing and summarization of soccer videos utilizing object-based features. The proposed work utilizes the t-cherry junction tree, an exceptionally recent advancement in probabilistic graphical models, to create a compact representation and great approximation intractable model for client’s relationships in an interpersonal organization. There are various advantages in this approach firstly; the t-cherry gives best approximation by means of junction trees class. Secondly, to construct a t-cherry junction tree can be to a great extent parallelized; and at last inference can be performed utilizing distributed computation. Examination results demonstrates the effectiveness, adequacy, and the strength of the proposed work which is shown over a far reaching information set, comprising more soccer feature, caught at better places.

Keywords: summarization, detection, Bayesian network, t-cherry tree

Procedia PDF Downloads 326
2339 A Methodology for Automatic Diversification of Document Categories

Authors: Dasom Kim, Chen Liu, Myungsu Lim, Su-Hyeon Jeon, ByeoungKug Jeon, Kee-Young Kwahk, Namgyu Kim

Abstract:

Recently, numerous documents including unstructured data and text have been created due to the rapid increase in the usage of social media and the Internet. Each document is usually provided with a specific category for the convenience of the users. In the past, the categorization was performed manually. However, in the case of manual categorization, not only can the accuracy of the categorization be not guaranteed but the categorization also requires a large amount of time and huge costs. Many studies have been conducted towards the automatic creation of categories to solve the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorizing complex documents with multiple topics because the methods work by assuming that one document can be categorized into one category only. In order to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, they are also limited in that their learning process involves training using a multi-categorized document set. These methods therefore cannot be applied to multi-categorization of most documents unless multi-categorized training sets are provided. To overcome the limitation of the requirement of a multi-categorized training set by traditional multi-categorization algorithms, we previously proposed a new methodology that can extend a category of a single-categorized document to multiple categorizes by analyzing relationships among categories, topics, and documents. In this paper, we design a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.

Keywords: big data analysis, document classification, multi-category, text mining, topic analysis

Procedia PDF Downloads 272
2338 Design of Hybrid Auxetic Metamaterials for Enhanced Energy Absorption under Compression

Authors: Ercan Karadogan, Fatih Usta

Abstract:

Auxetic materials have a negative Poisson’s ratio (NPR), which is not often found in nature. They are metamaterials that have potential applications in many engineering fields. Mechanical metamaterials are synthetically designed structures with unusual mechanical properties. These mechanical properties are dependent on the properties of the matrix structure. They have the following special characteristics, i.e., improved shear modulus, increased energy absorption, and intensive fracture toughness. Non-auxetic materials compress transversely when they are stretched. The system naturally is inclined to keep its density constant. The transversal compression increases the density to balance the loss in the longitudinal direction. This study proposes to improve the crushing performance of hybrid auxetic materials. The re-entrant honeycomb structure has been combined with a star honeycomb, an S-shaped unit cell, a double arrowhead, and a structurally hexagonal re-entrant honeycomb by 9 X 9 cells, i.e., the number of cells is 9 in the lateral direction and 9 in the vertical direction. The Finite Element (FE) and experimental methods have been used to determine the compression behavior of the developed hybrid auxetic structures. The FE models have been developed by using Abaqus software. The specimens made of polymer plastic materials have been 3D printed and subjected to compression loading. The results are compared in terms of specific energy absorption and strength. This paper describes the quasi-static crushing behavior of two types of hybrid lattice structures (auxetic + auxetic and auxetic + non-auxetic). The results show that the developed hybrid structures can be useful to control collapse mechanisms and present larger energy absorption compared to conventional re-entrant auxetic structures.

Keywords: auxetic materials, compressive behavior, metamaterials, negative Poisson’s ratio

Procedia PDF Downloads 97
2337 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem

Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães

Abstract:

This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.

Keywords: path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart

Procedia PDF Downloads 167
2336 Fundamental Natural Frequency of Chromite Composite Floor System

Authors: Farhad Abbas Gandomkar, Mona Danesh

Abstract:

This paper aims to determine Fundamental Natural Frequency (FNF) of a structural composite floor system known as Chromite. To achieve this purpose, FNFs of studied panels are determined by development of Finite Element Models (FEMs) in ABAQUS program. American Institute of Steel Construction (AISC) code in Steel Design Guide Series 11, presents a fundamental formula to calculate FNF of a steel framed floor system. This formula has been used to verify results of the FEMs. The variability in the FNF of the studied system under various parameters such as dimensions of floor, boundary conditions, rigidity of main and secondary beams around the floor, thickness of concrete slab, height of composite joists, distance between composite joists, thickness of top and bottom flanges of the open web steel joists, and adding tie beam perpendicular on the composite joists, is determined. The results show that changing in dimensions of the system, its boundary conditions, rigidity of main beam, and also adding tie beam, significant changes the FNF of the system up to 452.9%, 50.8%, -52.2%, %52.6%, respectively. In addition, increasing thickness of concrete slab increases the FNF of the system up to 10.8%. Furthermore, the results demonstrate that variation in rigidity of secondary beam, height of composite joist, and distance between composite joists, and thickness of top and bottom flanges of open web steel joists insignificant changes the FNF of the studied system up to -0.02%, -3%, -6.1%, and 0.96%, respectively. Finally, the results of this study help designer predict occurrence of resonance, comfortableness, and design criteria of the studied system.

Keywords: Fundamental Natural Frequency, Chromite Composite Floor System, Finite Element Method, low and high frequency floors, Comfortableness, resonance.

Procedia PDF Downloads 457
2335 Digital System Design for Strategic Improvement Planning in Education: A Socio-Technical and Iterative Design Approach

Authors: Neeley Current, Fatih Demir, Kenneth Haggerty, Blake Naughton, Isa Jahnke

Abstract:

Educational systems seek reform using data-intensive continuous improvement processes known as strategic improvement plans (SIPs). Schools turn to digital systems to monitor, analyze and report SIPs. One technical challenge of these digital systems focuses on integrating a highly diverse set of data sources. Another challenge is to create a learnable sociotechnical system to help administrators, principals and teachers add, manipulate and interpret data. This study explores to what extent one particular system is usable and useful for strategic planning activities and whether intended users see the benefit of the system achieve the goal of improving workflow related to strategic planning in schools. In a three-phase study, researchers used sociotechnical design methods to understand the current workflow, technology use, and processes of teachers and principals surrounding their strategic improvement planning. Additionally, design review and task analysis usability methods were used to evaluate task completion, usability, and user satisfaction of the system. The resulting socio-technical models illustrate the existing work processes and indicate how and at which places in the workflow the newly developed system could have an impact. The results point to the potential of the system but also indicate that it was initially too complicated for use. However, the diverse users see the potential benefits, especially to overcome the diverse set of data sources, and that the system could fill a gap for schools in planning and conducting strategic improvement plans.

Keywords: continuous improvement process, education reform, strategic improvement planning, sociotechnical design, software development, usability

Procedia PDF Downloads 297
2334 Genomic Sequence Representation Learning: An Analysis of K-Mer Vector Embedding Dimensionality

Authors: James Jr. Mashiyane, Risuna Nkolele, Stephanie J. Müller, Gciniwe S. Dlamini, Rebone L. Meraba, Darlington S. Mapiye

Abstract:

When performing language tasks in natural language processing (NLP), the dimensionality of word embeddings is chosen either ad-hoc or is calculated by optimizing the Pairwise Inner Product (PIP) loss. The PIP loss is a metric that measures the dissimilarity between word embeddings, and it is obtained through matrix perturbation theory by utilizing the unitary invariance of word embeddings. Unlike in natural language, in genomics, especially in genome sequence processing, unlike in natural language processing, there is no notion of a “word,” but rather, there are sequence substrings of length k called k-mers. K-mers sizes matter, and they vary depending on the goal of the task at hand. The dimensionality of word embeddings in NLP has been studied using the matrix perturbation theory and the PIP loss. In this paper, the sufficiency and reliability of applying word-embedding algorithms to various genomic sequence datasets are investigated to understand the relationship between the k-mer size and their embedding dimension. This is completed by studying the scaling capability of three embedding algorithms, namely Latent Semantic analysis (LSA), Word2Vec, and Global Vectors (GloVe), with respect to the k-mer size. Utilising the PIP loss as a metric to train embeddings on different datasets, we also show that Word2Vec outperforms LSA and GloVe in accurate computing embeddings as both the k-mer size and vocabulary increase. Finally, the shortcomings of natural language processing embedding algorithms in performing genomic tasks are discussed.

Keywords: word embeddings, k-mer embedding, dimensionality reduction

Procedia PDF Downloads 138
2333 Disadvantaged Adolescents and Educational Delay in South Africa: Impacts of Personal, Family, and School Characteristics

Authors: Rocio Herrero Romero, Lucie Cluver, James Hall, Janina Steinert

Abstract:

Educational delay and non-completion are major policy concerns in South Africa. However, little research has focused on predictors for educational delay amongst adolescents in disadvantaged areas. This study has two aims: first, to use data integration approaches to compare the educational delay of 599 adolescents aged 16 to 18 from disadvantaged communities to national and provincial representative estimates in South Africa. Second, the paper also explores predictors for educational delay by comparing adolescents out of school (n=64) and at least one year behind (n=380), with adolescents in the age-appropriate grade or higher (n=155). Multinomial logistic regression models using self-report and administrative data were applied to look for significant associations of risk and protective factors. Significant risk factors for being behind (rather than in age-appropriate grade) were: male gender, past grade repetition, rural location and larger school size. Risk factors for being out of school (rather than in the age-appropriate grade) were: past grade repetition, having experienced problems concentrating at school, household poverty, and food insecurity. Significant protective factors for being in the age-appropriate grade (rather than out of school) were: living with biological parents or grandparents and access to school counselling. Attending school in wealthier communities was a significant protective factor for being in the age-appropriate grade (rather than behind). Our results suggest that both personal and contextual factors –family and school- predicted educational delay. This study provides new evidence to the significant effects of personal, family, and school characteristics on the educational outcomes of adolescents from disadvantaged communities in South Africa. This is the first longitudinal and quantitative study to systematically investigate risk and protective factors for post-compulsory educational outcomes amongst South African adolescents living in disadvantaged communities.

Keywords: disadvantaged communities, quantitative analysis, school delay, South Africa

Procedia PDF Downloads 348
2332 The Changing Role of the Chief Academic Officer in American Higher Education: Causes and Consequences

Authors: Michael W. Markowitz, Jeffrey Gingerich

Abstract:

The landscape of higher education in the United States has undergone significant changes in the last 25 years. What was once a domain of competition among prospective students for a limited number of college and university seats has become a marketplace in which institutions vie for the enrollment of educational consumers. A central figure in this paradigm shift has been the Chief Academic Officer (CAO), whose institutional role has also evolved beyond academics to include such disparate responsibilities as strategic planning, fiscal oversight, student recruitment, fundraising and personnel management. This paper explores the scope and impact of this transition by, first, explaining its context: the intersection of key social, economic and political factors in neo-conservative, late 20th Century America that redefined the value and accountability of institutions of higher learning. This context, in turn, is shown to have redefined the role and function of the CAO from a traditional academic leader to one centered on the successful application of corporate principles of organizational and fiscal management. Information gathered from a number of sitting Provosts, Vice-Presidents of Academic Affairs and Deans of Faculty is presented to illustrate the parameters of this change, as well as the extent to which today’s academic officers feel prepared and equipped to fulfill this broader institutional role. The paper concludes with a discussion of the impact of this transition on the American academy and whether it serves as a portend of change to come in higher education systems around the globe.

Keywords: academic administration, higher education, leadership, organizational management

Procedia PDF Downloads 220
2331 Prediction of Distillation Curve and Reid Vapor Pressure of Dual-Alcohol Gasoline Blends Using Artificial Neural Network for the Determination of Fuel Performance

Authors: Leonard D. Agana, Wendell Ace Dela Cruz, Arjan C. Lingaya, Bonifacio T. Doma Jr.

Abstract:

The purpose of this paper is to study the predict the fuel performance parameters, which include drivability index (DI), vapor lock index (VLI), and vapor lock potential using distillation curve and Reid vapor pressure (RVP) of dual alcohol-gasoline fuel blends. Distillation curve and Reid vapor pressure were predicted using artificial neural networks (ANN) with macroscopic properties such as boiling points, RVP, and molecular weights as the input layers. The ANN consists of 5 hidden layers and was trained using Bayesian regularization. The training mean square error (MSE) and R-value for the ANN of RVP are 91.4113 and 0.9151, respectively, while the training MSE and R-value for the distillation curve are 33.4867 and 0.9927. Fuel performance analysis of the dual alcohol–gasoline blends indicated that highly volatile gasoline blended with dual alcohols results in non-compliant fuel blends with D4814 standard. Mixtures of low-volatile gasoline and 10% methanol or 10% ethanol can still be blended with up to 10% C3 and C4 alcohols. Intermediate volatile gasoline containing 10% methanol or 10% ethanol can still be blended with C3 and C4 alcohols that have low RVPs, such as 1-propanol, 1-butanol, 2-butanol, and i-butanol. Biography: Graduate School of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Muralla St., Intramuros, Manila, 1002, Philippines

Keywords: dual alcohol-gasoline blends, distillation curve, machine learning, reid vapor pressure

Procedia PDF Downloads 102
2330 An In-Depth Experimental Study of Wax Deposition in Pipelines

Authors: Arias M. L., D’Adamo J., Novosad M. N., Raffo P. A., Burbridge H. P., Artana G.

Abstract:

Shale oils are highly paraffinic and, consequently, can create wax deposits that foul pipelines during transportation. Several factors must be considered when designing pipelines or treatment programs that prevents wax deposition: including chemical species in crude oils, flowrates, pipes diameters and temperature. This paper describes the wax deposition study carried out within the framework of Y-TEC's flow assurance projects, as part of the process to achieve a better understanding on wax deposition issues. Laboratory experiments were performed on a medium size, 1 inch diameter, wax deposition loop of 15 mts long equipped with a solid detector system, online microscope to visualize crystals, temperature and pressure sensors along the loop pipe. A baseline test was performed with diesel with no paraffin or additive content. Tests were undertaken with different temperatures of circulating and cooling fluid at different flow conditions. Then, a solution formed with a paraffin added to the diesel was considered. Tests varying flowrate and cooling rate were again run. Viscosity, density, WAT (Wax Appearance Temperature) with DSC (Differential Scanning Calorimetry), pour point and cold finger measurements were carried out to determine physical properties of the working fluids. The results obtained in the loop were analyzed through momentum balance and heat transfer models. To determine possible paraffin deposition scenarios temperature and pressure loop output signals were studied. They were compared with WAT static laboratory methods. Finally, we scrutinized the effect of adding a chemical inhibitor to the working fluid on the dynamics of the process of wax deposition in the loop.

Keywords: paraffin desposition, flow assurance, chemical inhibitors, flow loop

Procedia PDF Downloads 105
2329 Animation: A Footpath for Enhanced Awareness Creation on Malaria Prevention in Rural Communities

Authors: Stephen Osei Akyiaw, Divine Kwabena Atta Kyere-Owusu

Abstract:

Malaria has been a worldwide menace of a health condition to human beings for several decades with majority of people on the African continent with most causalities where Ghana is no exception. Therefore, this study employed the use of animation to enhance awareness creation on the spread and prevention of Malaria in Effutu Communities in the Central Region of Ghana. Working with the interpretivist paradigm, this study adopted Art-Based Research, where the AIDA Model and Cognitive Theory of Multimedia Learning (CTML) served as the theories underpinning the study. Purposive and convenience sampling techniques were employed in selecting sample for the study. The data collection instruments included document review and interviews. Besides, the study developed an animation using the local language of the people as the voice over to foster proper understanding by the rural community folks. Also, indigenous characters were used for the animation for the purpose of familiarization with the local folks. The animation was publicized at Health Town Halls within the communities. The outcomes of the study demonstrated that the use of animation was effective in enhancing the awareness creation for preventing and controlling malaria disease in rural communities in Effutu Communities in the Central Region of Ghana. Health officers and community folks expressed interest and desire to practice the preventive measures outlined in the animation to help reduce the spread of Malaria in their communities. The study, therefore, recommended that animation could be used to curtail the spread and enhanced the prevention of Malaria.

Keywords: malaria, animation, prevention, communities

Procedia PDF Downloads 87
2328 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 128
2327 Modeling of Age Hardening Process Using Adaptive Neuro-Fuzzy Inference System: Results from Aluminum Alloy A356/Cow Horn Particulate Composite

Authors: Chidozie C. Nwobi-Okoye, Basil Q. Ochieze, Stanley Okiy

Abstract:

This research reports on the modeling of age hardening process using adaptive neuro-fuzzy inference system (ANFIS). The age hardening output (Hardness) was predicted using ANFIS. The input parameters were ageing time, temperature and percentage composition of cow horn particles (CHp%). The results show the correlation coefficient (R) of the predicted hardness values versus the measured values was of 0.9985. Subsequently, values outside the experimental data points were predicted. When the temperature was kept constant, and other input parameters were varied, the average relative error of the predicted values was 0.0931%. When the temperature was varied, and other input parameters kept constant, the average relative error of the hardness values predictions was 80%. The results show that ANFIS with coarse experimental data points for learning is not very effective in predicting process outputs in the age hardening operation of A356 alloy/CHp particulate composite. The fine experimental data requirements by ANFIS make it more expensive in modeling and optimization of age hardening operations of A356 alloy/CHp particulate composite.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), age hardening, aluminum alloy, metal matrix composite

Procedia PDF Downloads 154
2326 Acceptance of Health Information Application in Smart National Identity Card (SNIC) Using a New I-P Framework

Authors: Ismail Bile Hassan, Masrah Azrifah Azmi Murad

Abstract:

This study discovers a novel framework of individual level technology adoption known as I-P (Individual- Privacy) towards Smart National Identity Card health information application. Many countries introduced smart national identity card (SNIC) with various applications such as health information application embedded inside it. However, the degree to which citizens accept and use some of the embedded applications in smart national identity remains unknown to many governments and application providers as well. Moreover, the previous studies revealed that the factors of trust, perceived risk, privacy concern and perceived credibility need to be incorporated into more comprehensive models such as extended Unified Theory of Acceptance and Use of Technology known as UTAUT2. UTAUT2 is a mainly widespread and leading theory existing in the information system literature up to now. This research identifies factors affecting the citizens’ behavioural intention to use health information application embedded in SNIC and extends better understanding on the relevant factors that the government and the application providers would need to consider in predicting citizens’ new technology acceptance in the future. We propose a conceptual framework by combining the UTAUT2 and Privacy Calculus Model constructs and also adding perceived credibility as a new variable. The proposed framework may provide assistance to any government planning, decision, and policy makers involving e-government projects. The empirical study may be conducted in the future to provide proof and empirically validate this I-P framework.

Keywords: unified theory of acceptance and use of technology (UTAUT) model, UTAUT2 model, smart national identity card (SNIC), health information application, privacy calculus model (PCM)

Procedia PDF Downloads 468
2325 Student Teachers' Experiences and Perceptions of a Curriculum Designed to Promote Social Justice

Authors: Emma Groenewald

Abstract:

In 1994, numerous policies of a democratic dispensation envisage social justice and the transformation of the South Africa society. The drive for transformation and social justice resulted in an increasing number of university students from diverse backgrounds, which in turn, lead to the establishment of Sol Plaatje University (SPU) in 2014. A re-curriculated B. Ed. programme at SPU aims to equip students with knowledge and skills to realise the aim of social justice and to enhance the transformation of the South African society. The aim of this study is to explore the experiences and perceptions of students at a diverse university campus on a curriculum that aims to promote social justice. Four education modules, with the assumption that it reflects social justice content, were selected. Four students, representative of different ethnic and language groupings found at the SPU, were chosen as participants. Data were generated by the participants through four reflective exercises on each of the modules, spread over a period of four years. The module aims, linked with the narratives of the participants' perceptions and experiences of each module, provided an overview of the enacted curriculum. A qualitative research design with an interpretivist approach informed by Vygotsky's theory of learning was used. The participants' experiences of the four modules were analysed, and their views were interpreted. The students' narratives shed light on the strengths and weaknesses of how the B.Ed. Curriculum works towards social justice and revealed student's perceptions of otherness. From the narratives it became apparent that module did promote a social justice orientation in prospective teachers trained at a university.

Keywords: student diversity, social justice, transformation, teacher education

Procedia PDF Downloads 138
2324 Living by the Maramataka: Mahi Maramataka, Indigenous Environmental Knowledge Systems and Wellbeing

Authors: Ayla Hoeta

Abstract:

The focus of this research is mahi Maramataka, ‘the practices of Maramataka’ as a traditional and evolving knowledge system and its connection to whaanau oranga (wellbeing) and healing. Centering kaupapa Maaori methods and knowledge this research will explore how Maramataka can be used as a tool for oranga and healing for whaanau to engage with different environments aligned with Maramataka flow and optimal time based on the environment. Maramataka is an ancestral lunar environmental knowledge system rooted within korero tuku iho, Maaori creation stories, dating back to the beginning of time. The significance of Maramataka is the ancient environmental knowledge and the connecting energy flow of mauri (life force) between whenua (land), moana (ocean) and rangi (sky). The lunar component of the Maramataka is widely understood and highlights the different phases of the moon. Each moon phase is named with references to puurakau stories and environmental and ecological information. Marama, meaning moon and taka, meaning cycle, is used as a lunar and environmental calendar. There are lunar phases that are optimal for specific activities, such as the Tangaroa phase, a time of abundance and productivity and ocean-based activities like fishing. Other periods in the Maramataka, such as Rakaunui (full moon), connect the highest tides and highest energy of the lunar cycle, ideal for social, physical activity and particularly planting. Other phases like Tamatea are unpredictable whereas Whiro (new moon/s) is reflective, deep and cautious during the darkest nights. Whaanau, particularly in urban settings have become increasingly disconnected from the natural environment, the Maramataka has become a tool that they can connect to which offers an alternative to dominant perspectives of health and is an approach that is uniquely Maaori. In doing so, this research will raise awareness of oranga or lack of oranga, and lived experience of whaanau in Tamaki Makaurau - Aotearoa, on a journey to revival of Maramataka and healing. The research engages Hautu Waka as a methodology using the methods of ancient kaupapa Māori practises based on wayfinding and attunement with the natural environment. Using ancient ways of being, knowing, seeing and doing the Hautu Waka will centre kaupapa Maaori perspectives to process design, reflection and evaluation. The methods of Hautu Waka consists of five interweaving phases, 1) Te Rapunga (the search) in infinite potential, 2) Te Kitenga (the seeing), observations of and attunement to tohu 3) te whainga (the pursuit) and deeply exploring key tohu 4) te whiwhinga (the acquiring), of knowledge and clearer ideas, 5) Te Rawenga (the celebration), reflection and acknowledgement of the journey and achievements. This research is an expansion from my creative practices across whaanau-centred inquiry, to understand the benefits of Maramataka and how it can be embodied and practised in a modern-day context to support oranga and healing. Thus, the goal is to work with kaupapa Maaori methodologies to authenticate as a Maaori practitioner and researcher and allow an authentic indigenous approach to the exploration of Maramataka and through a kaupapa Maaori lens.

Keywords: maramataka (Maaori calendar), tangata (people), taiao (environment), whenua (land), whaanau (family), hautu waka (navigation framework)

Procedia PDF Downloads 72
2323 Bionaut™: A Microrobotic Drug-Device Platform for the Local Treatment of Brainstem Gliomas

Authors: Alex Kiselyov, Suehyun Cho, Darrell Harrington; Florent Cros, Olin Palmer, John Caputo, Michael Kardosh, Eran Oren, William Loudon, Michael Shpigelmacher

Abstract:

Despite the most aggressive surgical and adjuvant therapeutic strategies, treatment of both pediatric and adult brainstem tumors remains problematic. Novel strategies, including targeted biologics, immunotherapy, and specialized delivery systems such as convection-enhanced delivery (CED), have been proposed. While some of these novel treatments are entering phase I trials, the field is still in need of treatment(s) that exhibits dramatically enhanced potency with optimal therapeutic ratio. Bionaut Labs has developed a modular microrobotic platform for performing localized delivery of diverse therapeutics in vivo. Our biocompatible particles (Bionauts™) are externally propelled and visualized in real-time. Bionauts™ are specifically designed to enhance the effect of radiation therapy via anatomically precise delivery of a radiosensitizing agent, as exemplified by temozolomide (TMZ) and Avastin™ to the brainstem gliomas of diverse origin. The treatment protocol is designed to furnish a better therapeutic outcome due to the localized (vs systemic) delivery of the drug to the neoplastic lesion(s) for use as a synergistic combination of radiation and radiosensitizing agent. In addition, the procedure is minimally invasive and is expected to be appropriate for both adult and pediatric patients. Current progress, including platform optimization, selection of the lead radiosensitizer as well as in vivo safety studies of the Bionauts™ in large animals, specifically the spine and the brain of porcine and ovine models, will be discussed.

Keywords: Bionaut, brainstem, glioma, local delivery, micro-robot, radiosensitizer

Procedia PDF Downloads 195
2322 Cement Bond Characteristics of Artificially Fabricated Sandstones

Authors: Ashirgul Kozhagulova, Ainash Shabdirova, Galym Tokazhanov, Minh Nguyen

Abstract:

The synthetic rocks have been advantageous over the natural rocks in terms of availability and the consistent studying the impact of a particular parameter. The artificial rocks can be fabricated using variety of techniques such as mixing sand and Portland cement or gypsum, firing the mixture of sand and fine powder of borosilicate glass or by in-situ precipitation of calcite solution. In this study, sodium silicate solution has been used as the cementing agent for the quartz sand. The molded soft cylindrical sandstone samples are placed in the gas-tight pressure vessel, where the hardening of the material takes place as the chemical reaction between carbon dioxide and the silicate solution progresses. The vessel allows uniform disperse of carbon dioxide and control over the ambient gas pressure. Current paper shows how the bonding material is initially distributed in the intergranular space and the surface of the sand particles by the usage of Electron Microscopy and the Energy Dispersive Spectroscopy. During the study, the strength of the cement bond as a function of temperature is observed. The impact of cementing agent dosage on the micro and macro characteristics of the sandstone is investigated. The analysis of the cement bond at micro level helps to trace the changes to particles bonding damage after a potential yielding. Shearing behavior and compressional response have been examined resulting in the estimation of the shearing resistance and cohesion force of the sandstone. These are considered to be main input values to the mathematical prediction models of sand production from weak clastic oil reservoir formations.

Keywords: artificial sanstone, cement bond, microstructure, SEM, triaxial shearing

Procedia PDF Downloads 168
2321 Re-Imagining Physical Education Teacher Education in a South African Higher Education Institution

Authors: C. F. Jones Couto, L. C. Motlhaolwa, K. Williams

Abstract:

This article explores the re-imagining of physical education teacher education in South African higher education. Utilising student reflections from a physical education practical module, valuable insights into student experiences were obtained about the current physical education pedagogical approaches and potential areas for improvement. The traditional teaching model of physical education is based on the idea of teaching students a variety of sports and physical activities. However, this model has been shown to be ineffective in promoting lifelong physical activity. The modern world demands a more holistic approach to health and wellness. Data was collected using the arts-based collage method in combination with written group reflections from 139 second-year undergraduate physical education students. This study employed thematic analysis methods to gain a comprehensive understanding of the data and extract a broader perspective on the students' experiences. The study aimed to empower student teachers to learn, think, and act creatively within the many educational models that impact their experience, contributing to the ongoing efforts of re-imagining physical education teacher education in South African higher education. This research is significant as the students' valuable insights reflected that they can think and work across disciplines. Sustainable development goals and graduate attributes are important concepts that can contribute to student preparation. Using a multi-model educational approach based on the cultural-historical theory, higher education institutions can help develop graduate attributes that will prepare students for success in the workplace and life.

Keywords: holistic education, graduate attributes, physical education, teacher education, student experiences, sustainable development goals

Procedia PDF Downloads 74
2320 A Questionnaire-Based Survey: Therapists Response towards Upper Limb Disorder Learning Tool

Authors: Noor Ayuni Che Zakaria, Takashi Komeda, Cheng Yee Low, Kaoru Inoue, Fazah Akhtar Hanapiah

Abstract:

Previous studies have shown that there are arguments regarding the reliability and validity of the Ashworth and Modified Ashworth Scale towards evaluating patients diagnosed with upper limb disorders. These evaluations depended on the raters’ experiences. This initiated us to develop an upper limb disorder part-task trainer that is able to simulate consistent upper limb disorders, such as spasticity and rigidity signs, based on the Modified Ashworth Scale to improve the variability occurring between raters and intra-raters themselves. By providing consistent signs, novice therapists would be able to increase training frequency and exposure towards various levels of signs. A total of 22 physiotherapists and occupational therapists participated in the study. The majority of the therapists agreed that with current therapy education, they still face problems with inter-raters and intra-raters variability (strongly agree 54%; n = 12/22, agree 27%; n = 6/22) in evaluating patients’ conditions. The therapists strongly agreed (72%; n = 16/22) that therapy trainees needed to increase their frequency of training; therefore believe that our initiative to develop an upper limb disorder training tool will help in improving the clinical education field (strongly agree and agree 63%; n = 14/22).

Keywords: upper limb disorder, clinical education tool, inter/intra-raters variability, spasticity, modified Ashworth scale

Procedia PDF Downloads 310
2319 Production of Oral Vowels by Chinese Learners of Portuguese: Problems and Didactic Implications

Authors: Adelina Castelo

Abstract:

The increasing number of learners of Portuguese as Foreign Language in China justifies the need to define the phonetic profile of these learners and to design didactic materials that are adjusted to their specific problems in pronunciation. Different aspects of this topic have been studied, but the production of oral vowels still needs to be investigated. This study aims: (i) to identify the problems the Chinese learners of Portuguese experience in the pronunciation of oral vowels; (ii) to discuss the didactic implications drawn from those problems. The participants were eight native speakers of Mandarin Chinese that had been learning Portuguese in College for almost a year. They named pictured objects and their oral productions were recorded and phonetically transcribed. The selection of the objects to name took into account some linguistic variables (e.g. stress pattern, syllable structure, presence of the Portuguese oral vowels in different word positions according to stress location). The results are analysed in two ways: the impact of linguistic variables on the success rate in the vowels' production; the replacement strategies used in the non-target productions. Both analyses show that the Chinese learners of Portuguese (i) have significantly more difficulties with the mid vowels as well as the high central vowel and (ii) do not master the vowel height feature. These findings contribute to define the phonetic profile of these learners in terms of oral vowel production. Besides, they have important didactic implications for the pronunciation teaching to these specific learners. Those implications are discussed and exemplified.

Keywords: Chinese learners, learners’ phonetic profile, linguistic variables, Portuguese as foreign language, production data, pronunciation teaching, oral vowels

Procedia PDF Downloads 223
2318 A Comparative Analysis of (De)legitimation Strategies in Selected African Inaugural Speeches

Authors: Lily Chimuanya, Ehioghae Esther

Abstract:

Language, a versatile and sophisticated tool, is fundamentally sacrosanct to mankind especially within the realm of politics. In this dynamic world, political leaders adroitly use language to engage in a strategic show aimed at manipulating or mechanising the opinion of discerning people. This nuanced synergy is marked by different rhetorical strategies, meticulously synced with contextual factors ranging from cultural, ideological, and political to achieve multifaceted persuasive objectives. This study investigates the (de)legitimation strategies inherent in African presidential inaugural speeches, as African leaders not only state their policy agenda through inaugural speeches but also subtly indulge in a dance of legitimation and delegitimation, performing a twofold objective of strengthening the credibility of their administration and, at times, undermining the performance of the past administration. Drawing insights from two different legitimation models and a dataset of 4 African presidential inaugural speeches obtained from authentic websites, the study describes the roles of authorisation, rationalisation, moral evaluation, altruism, and mythopoesis in unmasking the structure of political discourse. The analysis takes a mixed-method approach to unpack the (de)legitimation strategy embedded in the carefully chosen speeches. The focus extends beyond a superficial exploration and delves into the linguistic elements that form the basis of presidential discourse. In conclusion, this examination goes beyond the nuanced landscape of language as a potent tool in politics, with each strategy contributing to the overall rhetorical impact and shaping the narrative. From this perspective, the study argues that presidential inaugural speeches are not only linguistic exercises but also viable weapons that influence perceptions and legitimise authority.

Keywords: CDA, legitimation, inaugural speeches, delegitmation

Procedia PDF Downloads 69
2317 Redefining “Minor”: An Empirical Research on Two Biennials in Contemporary China

Authors: Mengwei Li

Abstract:

Since the 1990s, biennials, and large-scale transnational art exhibitions, have proliferated exponentially across the globe, particularly in Asia, Africa, and Latin America. It has spurred debates regarding the inclusion of "new art cultures" and the deconstruction of the mechanism of exclusion embedded in the Western monopoly on art. Hans Belting introduced the concept of "global art" in 2013 to denounce the West's privileged canons in art by emphasising the inclusion of art practices from alleged non-Western regions. Arguably, the rise of new biennial networks developed by these locations has contributed to the asserted "inclusion of new art worlds." However, phrases such as "non-Western" and "beyond Euro-American" attached to these discussions raise the question of non- or beyond- in relation to whom. In this narrative, to become "integrated" and "equal" implies entry into the "core," a universal system in which preexisting authoritative voices define "newcomers" by what they are not. Possibly, if there is a global biennial system that symbolises a "universal language" of the contemporary art world, it is centered on the inherently dynamic yet asymmetrical interaction and negotiation between the "core" and the rest of the world's "periphery." Engaging with theories of "minor literature" developed by Deleuze and Guattari, this research proposes an epistemological framework to comprehend the global biennial discourse since the 1990s. Using this framework, this research looks at two biennial models in China: the 13th Shanghai Biennale, which was organised in the country's metropolitan art centre, and the 2nd Yinchuan Biennale, which was inaugurated in a geographically and economically marginalised city compared to domestic centres. By analysing how these two biennials from different locations in China positioned themselves and conveyed their local profiles through the universal language of the biennial, this research identifies a potential "minor" positionality within the global biennial discourse from China's perspective.

Keywords: biennials, China, contemporary, global art, minor literature

Procedia PDF Downloads 87
2316 Off-Shore Wind Turbines: The Issue of Soil Plugging during Pile Installation

Authors: Mauro Iannazzone, Carmine D'Agostino

Abstract:

Off-shore wind turbines are currently considered as a reliable source of renewable energy Worldwide and especially in the UK. Most of the operational off-shore wind turbines located in shallow waters (i.e. < 30 m) are supported on monopiles. Monopiles are open-ended steel tubes with diameter ranging between 4 to 6 m. It is expected that future off-shore wind farms will be located in water depths as high as 70 m. Therefore, alternative foundation arrangements are needed. Foundations for off-shore structures normally consist of open-ended piles driven into the soil by means of impact hammers. During pile installation, the soil inside the pile may be mobilized by the increasing shear strength such as to prevent more soil from entering the pile. This phenomenon is known as soil plugging, and represents an important issue as it may change significantly the driving resistance of open-ended piles. In fact, if the plugging formation is unexpected, the installation may require more powerful and more expensive hammers. Engineers need to estimate whether the driven pile will be installed in a plugged or unplugged mode. As a consequence, a prediction of the degree of soil plugging is required in order to correctly predict the drivability of the pile. This work presents a brief review of the state-of-the-art of pile driving and approaches used to predict formation of soil plugs. In addition, a novel analytical approach is proposed, which is based on the vertical equilibrium of a plugged pile. Differently from previous studies, this research takes into account the enhancement of the stress within the soil plug. Finally, the work presents and discusses a series of experimental tests, which are carried out on small-scale models piles to validate the analytical solution.

Keywords: off-shore wind turbines, pile installation, soil plugging, wind energy

Procedia PDF Downloads 312
2315 Graph-Based Semantical Extractive Text Analysis

Authors: Mina Samizadeh

Abstract:

In the past few decades, there has been an explosion in the amount of available data produced from various sources with different topics. The availability of this enormous data necessitates us to adopt effective computational tools to explore the data. This leads to an intense growing interest in the research community to develop computational methods focused on processing this text data. A line of study focused on condensing the text so that we are able to get a higher level of understanding in a shorter time. The two important tasks to do this are keyword extraction and text summarization. In keyword extraction, we are interested in finding the key important words from a text. This makes us familiar with the general topic of a text. In text summarization, we are interested in producing a short-length text which includes important information about the document. The TextRank algorithm, an unsupervised learning method that is an extension of the PageRank (algorithm which is the base algorithm of Google search engine for searching pages and ranking them), has shown its efficacy in large-scale text mining, especially for text summarization and keyword extraction. This algorithm can automatically extract the important parts of a text (keywords or sentences) and declare them as a result. However, this algorithm neglects the semantic similarity between the different parts. In this work, we improved the results of the TextRank algorithm by incorporating the semantic similarity between parts of the text. Aside from keyword extraction and text summarization, we develop a topic clustering algorithm based on our framework, which can be used individually or as a part of generating the summary to overcome coverage problems.

Keywords: keyword extraction, n-gram extraction, text summarization, topic clustering, semantic analysis

Procedia PDF Downloads 71
2314 Modeling and Characterization of Organic LED

Authors: Bouanati Sidi Mohammed, N. E. Chabane Sari, Mostefa Kara Selma

Abstract:

It is well-known that Organic light emitting diodes (OLEDs) are attracting great interest in the display technology industry due to their many advantages, such as low price of manufacturing, large-area of electroluminescent display, various colors of emission included white light. Recently, there has been much progress in understanding the device physics of OLEDs and their basic operating principles. In OLEDs, Light emitting is the result of the recombination of electron and hole in light emitting layer, which are injected from cathode and anode. For improve luminescence efficiency, it is needed that hole and electron pairs exist affluently and equally and recombine swiftly in the emitting layer. The aim of this paper is to modeling polymer LED and OLED made with small molecules for studying the electrical and optical characteristics. The first simulation structures used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2’-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode usually an indium tin oxide (ITO) substrate, and a cathode, such as Al. In the second structure we replace MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). We choose MEH-PPV because of it's solubility in common organic solvents, in conjunction with a low operating voltage for light emission and relatively high conversion efficiency and Alq3 because it is one of the most important host materials used in OLEDs. In this simulation, the Poole-Frenkel- like mobility model and the Langevin bimolecular recombination model have been used as the transport and recombination mechanism. These models are enabled in ATLAS -SILVACO software. The influence of doping and thickness on I(V) characteristics and luminescence, are reported.

Keywords: organic light emitting diode, polymer lignt emitting diode, organic materials, hexoxy-phenylenevinylene

Procedia PDF Downloads 554
2313 The Impact of Data Science on Geography: A Review

Authors: Roberto Machado

Abstract:

We conducted a systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology, analyzing 2,996 studies and synthesizing 41 of them to explore the evolution of data science and its integration into geography. By employing optimization algorithms, we accelerated the review process, significantly enhancing the efficiency and precision of literature selection. Our findings indicate that data science has developed over five decades, facing challenges such as the diversified integration of data and the need for advanced statistical and computational skills. In geography, the integration of data science underscores the importance of interdisciplinary collaboration and methodological innovation. Techniques like large-scale spatial data analysis and predictive algorithms show promise in natural disaster management and transportation route optimization, enabling faster and more effective responses. These advancements highlight the transformative potential of data science in geography, providing tools and methodologies to address complex spatial problems. The relevance of this study lies in the use of optimization algorithms in systematic reviews and the demonstrated need for deeper integration of data science into geography. Key contributions include identifying specific challenges in combining diverse spatial data and the necessity for advanced computational skills. Examples of connections between these two fields encompass significant improvements in natural disaster management and transportation efficiency, promoting more effective and sustainable environmental solutions with a positive societal impact.

Keywords: data science, geography, systematic review, optimization algorithms, supervised learning

Procedia PDF Downloads 31
2312 Investor Sentiment and Satisfaction in Automated Investment: A Sentimental Analysis of Robo-Advisor Platforms

Authors: Vertika Goswami, Gargi Sharma

Abstract:

The rapid evolution of fintech has led to the rise of robo-advisor platforms that utilize artificial intelligence (AI) and machine learning to offer personalized investment solutions efficiently and cost-effectively. This research paper conducts a comprehensive sentiment analysis of investor experiences with these platforms, employing natural language processing (NLP) and sentiment classification techniques. The study investigates investor perceptions, engagement, and satisfaction, identifying key drivers of positive sentiment such as clear communication, low fees, consistent returns, and robust security. Conversely, negative sentiment is linked to issues like inconsistent performance, hidden fees, poor customer support, and a lack of transparency. The analysis reveals that addressing these pain points—through improved transparency, enhanced customer service, and ongoing technological advancements—can significantly boost investor trust and satisfaction. This paper contributes valuable insights into the fields of behavioral finance and fintech innovation, offering actionable recommendations for stakeholders, practitioners, and policymakers. Future research should explore the long-term impact of these factors on investor loyalty, the role of emerging technologies, and the effects of ethical investment choices and regulatory compliance on investor sentiment.

Keywords: artificial intelligence in finance, automated investment, financial technology, investor satisfaction, investor sentiment, robo-advisors, sentimental analysis

Procedia PDF Downloads 18