Search results for: terrain classification
1269 University Arabic/Foreign Language Teacher's Competences, Professionalism and the Challenges and Opportunities
Authors: Abeer Heider
Abstract:
The article considers the definitions of teacher’s competences and professionalism from different perspectives of Arab and foreign scientists. A special attention is paid to the definition, classification of the stages and components of University Arabic /foreign language teacher’s professionalism. The results of the survey are offered and recommendations are given. In this paper, only some of the problems of defining professional competence and professionalism of the university Arabic/ foreign language teacher have been mentioned. It needs much more analysis and discussion, because the quality of training today’s competitive and mobile students with a good knowledge of foreign languages depends directly on the teachers’ professional level.Keywords: teacher’s professional competences, Arabic/ foreign language teacher’s professionalism, teacher evaluation, teacher quality
Procedia PDF Downloads 4541268 Classification of Crisp Petri Nets
Authors: Riddhi Jangid, Gajendra Pratap Singh
Abstract:
Petri nets, a formalized modeling language that was introduced back around 50-60 years, have been widely used for modeling discrete event dynamic systems and simulating their behavior. Reachability analysis of Petri nets gives many insights into a modeled system. This idea leads us to study the reachability technique and use it in the reachability problem in the state space of reachable markings. With the same concept, Crisp Boolean Petri nets were defined in which the marking vectors that are boolean are distinct in the reachability analysis of the nets. We generalize the concept and define ‘Crisp’ Petri nets that generate the marking vectors exactly once in their reachability-based analysis, not necessarily Boolean.Keywords: marking vector, n-vector, Petri nets, reachability
Procedia PDF Downloads 821267 Natural Language Processing for the Classification of Social Media Posts in Post-Disaster Management
Authors: Ezgi Şendil
Abstract:
Information extracted from social media has received great attention since it has become an effective alternative for collecting people’s opinions and emotions based on specific experiences in a faster and easier way. The paper aims to put data in a meaningful way to analyze users’ posts and get a result in terms of the experiences and opinions of the users during and after natural disasters. The posts collected from Reddit are classified into nine different categories, including injured/dead people, infrastructure and utility damage, missing/found people, donation needs/offers, caution/advice, and emotional support, identified by using labelled Twitter data and four different machine learning (ML) classifiers.Keywords: disaster, NLP, postdisaster management, sentiment analysis
Procedia PDF Downloads 751266 Game Structure and Spatio-Temporal Action Detection in Soccer Using Graphs and 3D Convolutional Networks
Authors: Jérémie Ochin
Abstract:
Soccer analytics are built on two data sources: the frame-by-frame position of each player on the terrain and the sequences of events, such as ball drive, pass, cross, shot, throw-in... With more than 2000 ball-events per soccer game, their precise and exhaustive annotation, based on a monocular video stream such as a TV broadcast, remains a tedious and costly manual task. State-of-the-art methods for spatio-temporal action detection from a monocular video stream, often based on 3D convolutional neural networks, are close to reach levels of performances in mean Average Precision (mAP) compatibles with the automation of such task. Nevertheless, to meet their expectation of exhaustiveness in the context of data analytics, such methods must be applied in a regime of high recall – low precision, using low confidence score thresholds. This setting unavoidably leads to the detection of false positives that are the product of the well documented overconfidence behaviour of neural networks and, in this case, their limited access to contextual information and understanding of the game: their predictions are highly unstructured. Based on the assumption that professional soccer players’ behaviour, pose, positions and velocity are highly interrelated and locally driven by the player performing a ball-action, it is hypothesized that the addition of information regarding surrounding player’s appearance, positions and velocity in the prediction methods can improve their metrics. Several methods are compared to build a proper representation of the game surrounding a player, from handcrafted features of the local graph, based on domain knowledge, to the use of Graph Neural Networks trained in an end-to-end fashion with existing state-of-the-art 3D convolutional neural networks. It is shown that the inclusion of information regarding surrounding players helps reaching higher metrics.Keywords: fine-grained action recognition, human action recognition, convolutional neural networks, graph neural networks, spatio-temporal action recognition
Procedia PDF Downloads 231265 On-Road Text Detection Platform for Driver Assistance Systems
Authors: Guezouli Larbi, Belkacem Soundes
Abstract:
The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.Keywords: text detection, CNN, PZM, deep learning
Procedia PDF Downloads 831264 Assessment of Spectral Indices for Soil Salinity Estimation in Irrigated Land
Authors: R. Lhissou , A. El Harti , K. Chokmani, E. Bachaoui, A. El Ghmari
Abstract:
Soil salinity is a serious environmental hazard in many countries around the world especially the arid and semi-arid countries like Morocco. Salinization causes negative effects on the ground; it affects agricultural production, infrastructure, water resources and biodiversity. Remote sensing can provide soil salinity information for large areas, and in a relatively short time. In addition, remote sensing is not limited by extremes in terrain or hazardous condition. Contrariwise, experimental methods for monitoring soil salinity by direct measurements in situ are very demanding of time and resources, and also very limited in spatial coverage. In the irrigated perimeter of Tadla plain in central Morocco, the increased use of saline groundwater and surface water, coupled with agricultural intensification leads to the deterioration of soil quality especially by salinization. In this study, we assessed several spectral indices of soil salinity cited in the literature using Landsat TM satellite images and field measurements of electrical conductivity (EC). Three Landsat TM satellite images were taken during 3 months in the dry season (September, October and November 2011). Based on field measurement data of EC collected in three field campaigns over the three dates simultaneously with acquisition dates of Landsat TM satellite images, a two assessment techniques are used to validate a soil salinity spectral indices. Firstly, the spectral indices are validated locally by pixel. The second validation technique is made using a window of size 3x3 pixels. The results of the study indicated that the second technique provides getting a more accurate validation and the assessment has shown its limits when it comes to assess across the pixel. In addition, the EC values measured from field have a good correlation with some spectral indices derived from Landsat TM data and the best results show an r² of 0.88, 0.79 and 0.65 for Salinity Index (SI) in the three dates respectively. The results have shown the usefulness of spectral indices as an auxiliary variable in the spatial estimation and mapping salinity in irrigated land.Keywords: remote sensing, spectral indices, soil salinity, irrigated land
Procedia PDF Downloads 3911263 Application of Granular Computing Paradigm in Knowledge Induction
Authors: Iftikhar U. Sikder
Abstract:
This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.Keywords: concept approximation, granular computing, reducts, rough set theory, rule induction
Procedia PDF Downloads 5311262 EEG Diagnosis Based on Phase Space with Wavelet Transforms for Epilepsy Detection
Authors: Mohmmad A. Obeidat, Amjed Al Fahoum, Ayman M. Mansour
Abstract:
The recognition of an abnormal activity of the brain functionality is a vital issue. To determine the type of the abnormal activity either a brain image or brain signal are usually considered. Imaging localizes the defect within the brain area and relates this area with somebody functionalities. However, some functions may be disturbed without affecting the brain as in epilepsy. In this case, imaging may not provide the symptoms of the problem. A cheaper yet efficient approach that can be utilized to detect abnormal activity is the measurement and analysis of the electroencephalogram (EEG) signals. The main goal of this work is to come up with a new method to facilitate the classification of the abnormal and disorder activities within the brain directly using EEG signal processing, which makes it possible to be applied in an on-line monitoring system.Keywords: EEG, wavelet, epilepsy, detection
Procedia PDF Downloads 5381261 Uses and Gratification with the Website Secret-thai.com
Authors: Siriporn Meenanan
Abstract:
The objective of this study is to study about the uses and gratification of the sample who use the website that named secret-thai.com which provides moral contents, inspires, and builds up the spirit. The study found that the samples mainly use this website to follow up on the dharma activities. They also use the space as the web board to discuss about dharma issues. Moreover, the contents help readers to relax and also provides the guidelines to deal with stress and uncomfortable situations properly. The samples found to be most satisfied. In other words, the samples found the contents of the website are complete, and can cover their needs. Moreover, they found that contents useful in their ways of living. In addition, they are satisfied with the beautiful and interesting design of the website and well classification of the contents that readers can easily find the information that they want.Keywords: uses and gratification, website, Secret-Thai.com, moral contents
Procedia PDF Downloads 2321260 Internalized HIV Stigma, Mental Health, Coping, and Perceived Social Support among People Living with HIV/AIDS in Aizawl District, Mizoram
Authors: Mary Ann L. Halliday, Zoengpari Gohain
Abstract:
The stigma associated with HIV-AIDS negatively affect mental health and ability to effectively manage the disease. While the number of People living with HIV/AIDS (PLHIV) has been increasing day by day in Mizoram (a small north-eastern state in India), research on HIV/AIDS stigma has so far been limited. Despite the potential significance of Internalized HIV Stigma (IHS) in the lives of PLHIV, there has been very limited research in this area. It was therefore, felt necessary to explore the internalized HIV stigma, mental health, coping and perceived social support of PLHIV in Aizawl District, Mizoram. The present study was designed with the objectives to determine the degree of IHS, to study the relationship between the socio-demographic characteristics and level of IHS, to highlight the mental health status, coping strategies and perceived social support of PLHIV and to elucidate the relationship between these psychosocial variables. In order to achieve the objectives of the study, six hypotheses were formulated and statistical analyses conducted accordingly. The sample consisted of 300 PLWHA from Aizawl District, 150 males and 150 females, of the age group 20 to 70 years. Two- way classification of “Gender” (male and female) and three-way classification of “Level of IHS” (High IHS, Moderate IHS, Low IHS) on the dependent variables was employed, to elucidate the relationship between Internalized HIV Stigma, mental health, coping and perceived social support of PLHIV. The overall analysis revealed moderate level of IHS (67.3%) among PLHIV in Aizawl District, with a small proportion of subjects reporting high level of IHS. IHS was found to be significantly different on the basis of disclosure status, with the disclosure status of PLHIV accounting for 9% variability in IHS. Results also revealed more or less good mental health among the participants, which was assessed by minimal depression (50.3%) and minimal anxiety (45%), with females with high IHS scoring significantly higher in both depression and anxiety (p<.01). Examination of the coping strategies of PLHIV found that the most frequently used coping styles were Acceptance (91%), Religion (84.3%), Planning (74.7%), Active Coping (66%) and Emotional Support (52.7%). High perception of perceived social support (48%) was found in the present study. Correlation analysis revealed significant positive relationships between IHS and depression as well as anxiety (p<.01), thus revealing that IHS negatively affects the mental health of PLHIV. Results however revealed that this effect may be lessened by the use of various coping strategies by PLHIV as well as their perception of social support.Keywords: Aizawl, anxiety, depression, internalized HIV stigma, HIV/AIDS, mental health, mizoram, perceived social support
Procedia PDF Downloads 2611259 Performance Analysis of Ad-Hoc Network Routing Protocols
Authors: I. Baddari, A. Riahla, M. Mezghich
Abstract:
Today in the literature, we discover a lot of routing algorithms which some have been the subject of normalization. Two great classes Routing algorithms are defined, the first is the class reactive algorithms and the second that of algorithms proactive. The aim of this work is to make a comparative study between some routing algorithms. Two comparisons are considered. The first will focus on the protocols of the same class and second class on algorithms of different classes (one reactive and the other proactive). Since they are not based on analytical models, the exact evaluation of some aspects of these protocols is challenging. Simulations have to be done in order to study their performances. Our simulation is performed in NS2 (Network Simulator 2). It identified a classification of the different routing algorithms studied in a metrics such as loss of message, the time transmission, mobility, etc.Keywords: ad-hoc network routing protocol, simulation, NS2, delay, packet loss, wideband, mobility
Procedia PDF Downloads 4001258 Tumor Size and Lymph Node Metastasis Detection in Colon Cancer Patients Using MR Images
Authors: Mohammadreza Hedyehzadeh, Mahdi Yousefi
Abstract:
Colon cancer is one of the most common cancer, which predicted to increase its prevalence due to the bad eating habits of peoples. Nowadays, due to the busyness of people, the use of fast foods is increasing, and therefore, diagnosis of this disease and its treatment are of particular importance. To determine the best treatment approach for each specific colon cancer patients, the oncologist should be known the stage of the tumor. The most common method to determine the tumor stage is TNM staging system. In this system, M indicates the presence of metastasis, N indicates the extent of spread to the lymph nodes, and T indicates the size of the tumor. It is clear that in order to determine all three of these parameters, an imaging method must be used, and the gold standard imaging protocols for this purpose are CT and PET/CT. In CT imaging, due to the use of X-rays, the risk of cancer and the absorbed dose of the patient is high, while in the PET/CT method, there is a lack of access to the device due to its high cost. Therefore, in this study, we aimed to estimate the tumor size and the extent of its spread to the lymph nodes using MR images. More than 1300 MR images collected from the TCIA portal, and in the first step (pre-processing), histogram equalization to improve image qualities and resizing to get the same image size was done. Two expert radiologists, which work more than 21 years on colon cancer cases, segmented the images and extracted the tumor region from the images. The next step is feature extraction from segmented images and then classify the data into three classes: T0N0، T3N1 و T3N2. In this article, the VGG-16 convolutional neural network has been used to perform both of the above-mentioned tasks, i.e., feature extraction and classification. This network has 13 convolution layers for feature extraction and three fully connected layers with the softmax activation function for classification. In order to validate the proposed method, the 10-fold cross validation method used in such a way that the data was randomly divided into three parts: training (70% of data), validation (10% of data) and the rest for testing. It is repeated 10 times, each time, the accuracy, sensitivity and specificity of the model are calculated and the average of ten repetitions is reported as the result. The accuracy, specificity and sensitivity of the proposed method for testing dataset was 89/09%, 95/8% and 96/4%. Compared to previous studies, using a safe imaging technique (MRI) and non-use of predefined hand-crafted imaging features to determine the stage of colon cancer patients are some of the study advantages.Keywords: colon cancer, VGG-16, magnetic resonance imaging, tumor size, lymph node metastasis
Procedia PDF Downloads 591257 EDM for Prediction of Academic Trends and Patterns
Authors: Trupti Diwan
Abstract:
Predicting student failure at school has changed into a difficult challenge due to both the large number of factors that can affect the reduced performance of students and the imbalanced nature of these kinds of data sets. This paper surveys the two elements needed to make prediction on Students’ Academic Performances which are parameters and methods. This paper also proposes a framework for predicting the performance of engineering students. Genetic programming can be used to predict student failure/success. Ranking algorithm is used to rank students according to their credit points. The framework can be used as a basis for the system implementation & prediction of students’ Academic Performance in Higher Learning Institute.Keywords: classification, educational data mining, student failure, grammar-based genetic programming
Procedia PDF Downloads 4221256 Low Cost Webcam Camera and GNSS Integration for Updating Home Data Using AI Principles
Authors: Mohkammad Nur Cahyadi, Hepi Hapsari Handayani, Agus Budi Raharjo, Ronny Mardianto, Daud Wahyu Imani, Arizal Bawazir, Luki Adi Triawan
Abstract:
PDAM (local water company) determines customer charges by considering the customer's building or house. Charges determination significantly affects PDAM income and customer costs because the PDAM applies a subsidy policy for customers classified as small households. Periodic updates are needed so that pricing is in line with the target. A thorough customer survey in Surabaya is needed to update customer building data. However, the survey that has been carried out so far has been by deploying officers to conduct one-by-one surveys for each PDAM customer. Surveys with this method require a lot of effort and cost. For this reason, this research offers a technology called moblie mapping, a mapping method that is more efficient in terms of time and cost. The use of this tool is also quite simple, where the device will be installed in the car so that it can record the surrounding buildings while the car is running. Mobile mapping technology generally uses lidar sensors equipped with GNSS, but this technology requires high costs. In overcoming this problem, this research develops low-cost mobile mapping technology using a webcam camera sensor added to the GNSS and IMU sensors. The camera used has specifications of 3MP with a resolution of 720 and a diagonal field of view of 78⁰. The principle of this invention is to integrate four camera sensors, a GNSS webcam, and GPS to acquire photo data, which is equipped with location data (latitude, longitude) and IMU (roll, pitch, yaw). This device is also equipped with a tripod and a vacuum cleaner to attach to the car's roof so it doesn't fall off while running. The output data from this technology will be analyzed with artificial intelligence to reduce similar data (Cosine Similarity) and then classify building types. Data reduction is used to eliminate similar data and maintain the image that displays the complete house so that it can be processed for later classification of buildings. The AI method used is transfer learning by utilizing a trained model named VGG-16. From the analysis of similarity data, it was found that the data reduction reached 50%. Then georeferencing is done using the Google Maps API to get address information according to the coordinates in the data. After that, geographic join is done to link survey data with customer data already owned by PDAM Surya Sembada Surabaya.Keywords: mobile mapping, GNSS, IMU, similarity, classification
Procedia PDF Downloads 841255 Hate Speech Detection Using Deep Learning and Machine Learning Models
Authors: Nabil Shawkat, Jamil Saquer
Abstract:
Social media has accelerated our ability to engage with others and eliminated many communication barriers. On the other hand, the widespread use of social media resulted in an increase in online hate speech. This has drastic impacts on vulnerable individuals and societies. Therefore, it is critical to detect hate speech to prevent innocent users and vulnerable communities from becoming victims of hate speech. We investigate the performance of different deep learning and machine learning algorithms on three different datasets. Our results show that the BERT model gives the best performance among all the models by achieving an F1-score of 90.6% on one of the datasets and F1-scores of 89.7% and 88.2% on the other two datasets.Keywords: hate speech, machine learning, deep learning, abusive words, social media, text classification
Procedia PDF Downloads 1361254 Clinical Features, Diagnosis and Treatment Outcomes in Necrotising Autoimmune Myopathy: A Rare Entity in the Spectrum of Inflammatory Myopathies
Authors: Tamphasana Wairokpam
Abstract:
Inflammatory myopathies (IMs) have long been recognised as a heterogenous family of myopathies with acute, subacute, and sometimes chronic presentation and are potentially treatable. Necrotizing autoimmune myopathies (NAM) are a relatively new subset of myopathies. Patients generally present with subacute onset of proximal myopathy and significantly elevated creatinine kinase (CK) levels. It is being increasingly recognised that there are limitations to the independent diagnostic utility of muscle biopsy. Immunohistochemistry tests may reveal important information in these cases. The traditional classification of IMs failed to recognise NAM as a separate entity and did not adequately emphasize the diversity of IMs. This review and case report on NAM aims to highlight the heterogeneity of this entity and focus on the distinct clinical presentation, biopsy findings, specific auto-antibodies implicated, and available treatment options with prognosis. This article is a meta-analysis of literatures on NAM and a case report illustrating the clinical course, investigation and biopsy findings, antibodies implicated, and management of a patient with NAM. The main databases used for the search were Pubmed, Google Scholar, and Cochrane Library. Altogether, 67 publications have been taken as references. Two biomarkers, anti-signal recognition protein (SRP) and anti- hydroxyl methylglutaryl-coenzyme A reductase (HMGCR) Abs, have been found to have an association with NAM in about 2/3rd of cases. Interestingly, anti-SRP associated NAM appears to be more aggressive in its clinical course when compared to its anti-HMGCR associated counterpart. Biopsy shows muscle fibre necrosis without inflammation. There are reports of statin-induced NAM where progression of myopathy has been seen even after discontinuation of statins, pointing towards an underlying immune mechanism. Diagnosisng NAM is essential as it requires more aggressive immunotherapy than other types of IMs. Most cases are refractory to corticosteroid monotherapy. Immunosuppressive therapy with other immunotherapeutic agents such as IVIg, rituximab, mycophenolate mofetil, azathioprine has been explored and found to have a role in the treatment of NAM. In conclusion,given the heterogeneity of NAM, it appears that NAM is not just a single entity but consists of many different forms, despite the similarities in presentation and its classification remains an evolving field. A thorough understanding of underlying mechanism and the clinical correlation with antibodies associated with NAM is essential for efficacious management and disease prognostication.Keywords: inflammatory myopathies, necrotising autoimmune myopathies, anti-SRP antibody, anti-HMGCR antibody, statin induced myopathy
Procedia PDF Downloads 1031253 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning
Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz
Abstract:
Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics
Procedia PDF Downloads 1181252 The Nubian Ibex’s Distribution, Population, Habitat, and Conservation Status in Sudan’s Red Sea State Over the Past Decade
Authors: Lubna M. A. Hassan, Nasir Brema, Abdallah Mamy, Insaf Yahya, Tanzil A. G., Ahmed M. M. Hasoba, Omer A. Suliman
Abstract:
The Nubian ibex species has been categorized as vulnerable by the International Union for Conservation of Nature (IUCN) due to a lack of population data in specific regions within their habitat. This species faces numerous challenges, including habitat loss caused by agricultural practices, livestock rearing, mining activity, and infrastructure development. Additionally, competition with non-native species and hunting pose significant threats to their survival. Unfortunately, studies on the distribution, conservation status, ecology, and health of the ibex are limited and primarily descriptive in nature. In order to bridge this knowledge gap, recent surveys were conducted in the Red Sea State of Sudan during specific periods in 2015, 2016, 2019, and 2021. These surveys have provided valuable insights into the distribution, habitats, and conservation status of the Nubian ibex in the Red Sea State. The findings indicate that the Capra nubiana ibex can be found across more than 17 mountains in the Red Sea State. However, the total population estimate from recent years suggests that there are fewer than 250 individuals remaining. The study has also identified the highest altitude at which the Nubian ibex habitats existed in Sudan's Red Sea State, measuring 1675 m. This area harbors a diverse array of Nubian ibex habitats, encompassing a total of 21 wild plant species from 10 distinct families. The region experiences an average annual temperature ranging from 20.64°C in January to 33.30°C in August. Precipitation occurs in November and December, although it is characterized by unreliability and erratic patterns. It is important to note that these population estimates were obtained through surveys conducted in collaboration with rangers and local communities, and adjustments to survey methods are necessary to accommodate the challenging mountainous terrain, such as utilizing aerial surveys. To effectively address these threats, it is imperative to establish comprehensive long-term monitoring programs.Keywords: Nubian ibex, distribution, population, habitats
Procedia PDF Downloads 861251 Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects
Authors: Sami Mestiri, Abdeljelil Farhat
Abstract:
The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result.Keywords: forecasting, credit risk, Penalized Quasi Likelihood, Gibbs Sampler, logistic regression with random effects, curve ROC
Procedia PDF Downloads 5421250 On Early Verb Acquisition in Chinese-Speaking Children
Authors: Yating Mu
Abstract:
Young children acquire native language with amazing rapidity. After noticing this interesting phenomenon, lots of linguistics, as well as psychologists, devote themselves to exploring the best explanations. Thus researches on first language acquisition emerged. Early lexical development is an important branch of children’s FLA (first language acquisition). Verb, the most significant class of lexicon, the most grammatically complex syntactic category or word type, is not only the core of exploring syntactic structures of language but also plays a key role in analyzing semantic features. Obviously, early verb development must have great impacts on children’s early lexical acquisition. Most scholars conclude that verbs, in general, are very difficult to learn because the problem in verb learning might be more about mapping a specific verb onto an action or event than about learning the underlying relational concepts that the verb or relational term encodes. However, the previous researches on early verb development mainly focus on the argument about whether there is a noun-bias or verb-bias in children’s early productive vocabulary. There are few researches on general characteristics of children’s early verbs concerning both semantic and syntactic aspects, not mentioning a general survey on Chinese-speaking children’s verb acquisition. Therefore, the author attempts to examine the general conditions and characteristics of Chinese-speaking children’s early productive verbs, based on data from a longitudinal study on three Chinese-speaking children. In order to present an overall picture of Chinese verb development, both semantic and syntactic aspects will be focused in the present study. As for semantic analysis, a classification method is adopted first. Verb category is a sophisticated class in Mandarin, so it is quite necessary to divide it into small sub-types, thus making the research much easier. By making a reasonable classification of eight verb classes on basis of semantic features, the research aims at finding out whether there exist any universal rules in Chinese-speaking children’s verb development. With regard to the syntactic aspect of verb category, a debate between nativist account and usage-based approach has lasted for quite a long time. By analyzing the longitudinal Mandarin data, the author attempts to find out whether the usage-based theory can fully explain characteristics in Chinese verb development. To sum up, this thesis attempts to apply the descriptive research method to investigate the acquisition and the usage of Chinese-speaking children’s early verbs, on purpose of providing a new perspective in investigating semantic and syntactic features of early verb acquisition.Keywords: Chinese-speaking children, early verb acquisition, verb classes, verb grammatical structures
Procedia PDF Downloads 3661249 Stock Movement Prediction Using Price Factor and Deep Learning
Abstract:
The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.Keywords: classification, machine learning, time representation, stock prediction
Procedia PDF Downloads 1471248 Mineralogical Characterization and Petrographic Classification of the Soil of Casablanca City
Authors: I. Fahi, T. Remmal, F. El Kamel, B. Ayoub
Abstract:
The treatment of the geotechnical database of the region of Casablanca was difficult to achieve due to the heterogeneity of the nomenclature of the lithological formations composing its soil. It appears necessary to harmonize the nomenclature of the facies and to produce cartographic documents useful for construction projects and studies before any investment program. To achieve this, more than 600 surveys made by the Public Laboratory for Testing and Studies (LPEE) in the agglomeration of Casablanca, were studied. Moreover, some local observations were made in different places of the metropolis. Each survey was the subject of a sheet containing lithological succession, macro and microscopic description of petrographic facies with photographic illustration, as well as measurements of geomechanical tests. In addition, an X-ray diffraction analysis was made in order to characterize the surficial formations of the region.Keywords: Casablanca, guidebook, petrography, soil
Procedia PDF Downloads 3001247 Evaluating the Process of Biofuel Generation from Grass
Authors: Karan Bhandari
Abstract:
Almost quarter region of Indian terrain is covered by grasslands. Grass being a low maintenance perennial crop is in abundance. Farmers are well acquainted with its nature, yield and storage. The aim of this paper is to study and identify the applicability of grass as a source of bio fuel. Anaerobic break down is a well-recognized technology. This process is vital for harnessing bio fuel from grass. Grass is a lignocellulosic material which is fibrous and can readily cause problems with parts in motion. Further, it also has a tendency to float. This paper also deals with the ideal digester configuration for biogas generation from grass. Intensive analysis of the literature is studied on the optimum production of grass storage in accordance with bio digester specifications. Subsequent to this two different digester systems were designed, fabricated, analyzed. The first setup was a double stage wet continuous arrangement usually known as a Continuously Stirred Tank Reactor (CSTR). The next was a double stage, double phase system implementing Sequentially Fed Leach Beds using an Upflow Anaerobic Sludge Blanket (SLBR-UASB). The above methodologies were carried for the same feedstock acquired from the same field. Examination of grass silage was undertaken using Biomethane Potential values. The outcomes portrayed that the Continuously Stirred Tank Reactor system produced about 450 liters of methane per Kg of volatile solids, at a detention period of 48 days. The second method involving Leach Beds produced about 340 liters of methane per Kg of volatile solids with a detention period of 28 days. The results showcased that CSTR when designed exclusively for grass proved to be extremely efficient in methane production. The SLBR-UASB has significant potential to allow for lower detention times with significant levels of methane production. This technology has immense future for research and development in India in terms utilizing of grass crop as a non-conventional source of fuel.Keywords: biomethane potential values, bio digester specifications, continuously stirred tank reactor, upflow anaerobic sludge blanket
Procedia PDF Downloads 2461246 Land-Use Transitions and Its Implications on Food Production Systems in Rural Landscape of Southwestern Ghana
Authors: Evelyn Asante Yeboah, Kwabena O. Asubonteng, Justice Camillus Mensah, Christine Furst
Abstract:
Smallholder-dominated mosaic landscapes in rural Africa are relevant for food production, biodiversity conservation, and climate regulation. Land-use transitions threaten the multifunctionality of such landscapes, especially the production capacity of arable lands resulting in food security challenges. Using land-cover maps derived from maximum likelihood classification of Landsat satellite images for the years 2002, 2015, and 2020, post-classification change detection, landscape metrics, and key informant interviews, the study assessed the implications of rubber plantation expansion and oil business development on the food production capacity of Ahanta West District, Ghana. The analysis reveals that settlement and rubber areas expanded by 5.82% and 10.33% of the landscape area, respectively, between 2002 and 2020. This increase translates into over twice their initial sizes (144% in settlement change and 101% in rubber change). Rubber plantation spread dominates the north and southwestern areas, whereas settlement is widespread in the eastern parts of the landscape. Rubber and settlement expanded at the expense of cropland, palm, and shrublands. Land-use transitions between cropland, palm, and shrubland were targeting each other, but the net loss in shrubland was higher (-17.27%). Isolation, subdivision, connectedness, and patch adjacency indices showed patch consolidation in the landscape configuration from 2002 to 2015 and patch fragmentation from 2015 to 2020. The study also found patches with consistent increasing connectivity in settlement areas indicating the influence of oil discovery developments and fragmentation tendencies in rubber, shrubland, cropland, and palm, indicating springing up of smaller rubber farms, the disappearance of shrubland, and splitting up of cropland and palm areas respectively. The results revealed a trend in land-use transitions in favor of smallholder rubber plantation expansion and oil discovery developments, which suggest serious implications on food production systems and poses a risk for food security and landscape multifunctional characteristics. To ensure sustainability in land uses, this paper recommends the enforcement of legislative instruments governing spatial planning and land use in Ghana as embedded in the 2016 land-use and spatial planning act.Keywords: food production systems, food security, Ghana’s west coast, land-use transitions, multifunctional rural landscapes
Procedia PDF Downloads 1441245 A Literature Review of Emotional Labor and Emotional Labor Strategies
Authors: Yeong-Gyeong Choi, Kyoung-Seok Kim
Abstract:
This study, literature review research, intends to deal with the problem of conceptual ambiguity among research on emotional labor, and to look into the evolutionary trends and changing aspects of defining the concept of emotional labor. For this, it gropes for methods for reducing conceptual ambiguity. Further, it arranges the concept of emotional labor; and examines and reviews comparatively the currents of the existing studies and looks for the characteristics and correlations of their classification criteria. That is, this study intends to arrange systematically and examine theories on emotional labor suggested hitherto, and suggest a future direction of research on emotional labor on the basis thereof. In addition, it attempts to look for positive aspects of the results of emotional labor.Keywords: emotion labor, dimensions of emotional labor, surface acting, deep acting
Procedia PDF Downloads 3571244 Kohonen Self-Organizing Maps as a New Method for Determination of Salt Composition of Multi-Component Solutions
Authors: Sergey A. Burikov, Tatiana A. Dolenko, Kirill A. Gushchin, Sergey A. Dolenko
Abstract:
The paper presents the results of clusterization by Kohonen self-organizing maps (SOM) applied for analysis of array of Raman spectra of multi-component solutions of inorganic salts, for determination of types of salts present in the solution. It is demonstrated that use of SOM is a promising method for solution of clusterization and classification problems in spectroscopy of multi-component objects, as attributing a pattern to some cluster may be used for recognition of component composition of the object.Keywords: Kohonen self-organizing maps, clusterization, multi-component solutions, Raman spectroscopy
Procedia PDF Downloads 4431243 Remote Sensing Reversion of Water Depths and Water Management for Waterbird Habitats: A Case Study on the Stopover Site of Siberian Cranes at Momoge, China
Authors: Chunyue Liu, Hongxing Jiang
Abstract:
Traditional water depth survey of wetland habitats used by waterbirds needs intensive labor, time and money. The optical remote sensing image relies on passive multispectral scanner data has been widely employed to study estimate water depth. This paper presents an innovative method for developing the water depth model based on the characteristics of visible and thermal infrared spectra of Landsat ETM+ image, combing with 441 field water depth data at Etoupao shallow wetland. The wetland is located at Momoge National Nature Reserve of Northeast China, where the largest stopover habitat along the eastern flyway of globally, critically-endangered Siberian Cranes are. The cranes mainly feed on the tubers of emergent aquatic plants such as Scirpus planiculmis and S. nipponicus. The effective water control is a critical step for maintaining the production of tubers and food availability for this crane. The model employing multi-band approach can effectively simulate water depth for this shallow wetland. The model parameters of NDVI and GREEN indicated the vegetation growth and coverage affecting the reflectance from water column change are uneven. Combining with the field-observed water level at the same date of image acquisition, the digital elevation model (DEM) for the underwater terrain was generated. The wetland area and water volume of different water levels were then calculated from the DEM using the function of Area and Volume Statistics under the 3D Analyst of ArcGIS 10.0. The findings provide good references to effectively monitor changes in water level and water demand, develop practical plan for water level regulation and water management, and to create best foraging habitats for the cranes. The methods here can be adopted for the bottom topography simulation and water management in waterbirds’ habitats, especially in the shallow wetlands.Keywords: remote sensing, water depth reversion, shallow wetland habitat management, siberian crane
Procedia PDF Downloads 2521242 Hydro-Meteorological Vulnerability and Planning in Urban Area: The Case of Yaoundé City in Cameroon
Authors: Ouabo Emmanuel Romaric, Amougou Armathe
Abstract:
Background and aim: The study of impacts of floods and landslides at a small scale, specifically in the urban areas of developing countries is done to provide tools and actors for a better management of risks in such areas, which are now being affected by climate change. The main objective of this study is to assess the hydrometeorological vulnerabilities associated with flooding and urban landslides to propose adaptation measures. Methods: Climatic data analyses were done by calculation of indices of climate change within 50 years (1960-2012). Analyses of field data to determine causes, the level of risk and its consequences on the area of study was carried out using SPSS 18 software. The cartographic analysis and GIS were used to refine the work in space. Then, spatial and terrain analyses were carried out to determine the morphology of field in relation with floods and landslide, and the diffusion on the field. Results: The interannual changes in precipitation has highlighted the surplus years (21), the deficit years (24) and normal years (7). Barakat method bring out evolution of precipitation by jerks and jumps. Floods and landslides are correlated to high precipitation during surplus and normal years. Data field analyses show that populations are conscious (78%) of the risks with 74% of them exposed, but their capacities of adaptation is very low (51%). Floods are the main risk. The soils are classed as feralitic (80%), hydromorphic (15%) and raw mineral (5%). Slope variation (5% to 15%) of small hills and deep valley with anarchic construction favor flood and landslide during heavy precipitation. Mismanagement of waste produce blocks free circulation of river and accentuate floods. Conclusion: Vulnerability of population to hydrometeorological risks in Yaoundé VI is the combination of variation of parameters like precipitation, temperature due to climate change, and the bad planning of construction in urban areas. Because of lack of channels for water to circulate due to saturation of soils, the increase of heavy precipitation and mismanagement of waste, the result are floods and landslides which causes many damages on goods and people.Keywords: climate change, floods, hydrometeorological, vulnerability
Procedia PDF Downloads 4661241 Role of Geohydrology in Groundwater Management-Case Study of Pachod Village, Maharashtra, India
Authors: Ashok Tejankar, Rohan K. Pathrikar
Abstract:
Maharashtra is covered by heterogeneous flows of Deccan basaltic terrains of upper cretaceous to lower Eocene age. It consist mainly different types of basalt flow, having heterogeneous Geohydrological characters. The study area Aurangabad dist. lies in the central part of Maharashtra. The study area is typically covered by Deccan traps formation mainly basalt type of igneous volcanic rock. The area is located in the survey of India toposheet No. 47M and laying between 19° to 20° north latitudes and 74° to 76° east longitudes. Groundwater is the primary source for fresh water in the study area. There has been a growing demand for fresh water in domestic & agriculture sectors. Due to over exploitation and rainfall failure has been created an irrecoverable stress on groundwater in study area. In an effort to maintain the water table condition in balance, artificial recharge is being implemented. The selection of site for artificial recharge is a very important task in recharge basalt. The present study aims at sitting artificial recharge structure at village Pachod in basaltic terrain of the Godavari-Purna river basin in Aurangabad district of Maharashtra, India. where the average annual rainfall is 650mm. In this investigation, integrated remote sensing and GIS techniques were used and various parameters like lithology, structure, etc. aspect of drainage basins, landforms and other parameters were extracted from visual interpretation of IRS P6 Satellite data and Survey of India (SIO) topographical sheets, aided by field checks by carrying well inventory survey. The depth of weathered material, water table conditions, and rainfall data were been considered. All the thematic information layers were digitized and analyzed in Arc-GIS environment and the composite maps produced show suitable site, depth of bed rock flows for successful artificial recharge in village Pachod to increase groundwater potential of low laying area.Keywords: hard rock, artificial recharge, remote sensing, GIS
Procedia PDF Downloads 2921240 Optimizing Communications Overhead in Heterogeneous Distributed Data Streams
Authors: Rashi Bhalla, Russel Pears, M. Asif Naeem
Abstract:
In this 'Information Explosion Era' analyzing data 'a critical commodity' and mining knowledge from vertically distributed data stream incurs huge communication cost. However, an effort to decrease the communication in the distributed environment has an adverse influence on the classification accuracy; therefore, a research challenge lies in maintaining a balance between transmission cost and accuracy. This paper proposes a method based on Bayesian inference to reduce the communication volume in a heterogeneous distributed environment while retaining prediction accuracy. Our experimental evaluation reveals that a significant reduction in communication can be achieved across a diverse range of dataset types.Keywords: big data, bayesian inference, distributed data stream mining, heterogeneous-distributed data
Procedia PDF Downloads 161