Search results for: school dropout prediction
4334 Taiwanese Pre-Service Elementary School EFL Teachers’ Perception and Practice of Station Teaching in English Remedial Education
Authors: Chien Chin-Wen
Abstract:
Collaborative teaching has different teaching models and station teaching is one type of collaborative teaching. Station teaching is not commonly practiced in elementary school English education and introduced in language teacher education programs in Taiwan. In station teaching, each teacher takes a small part of instructional content, working with a small number of students. Students rotate between stations where they receive the assignments and instruction from different teachers. The teachers provide the same content to each group, but the instructional method can vary based upon the needs of each group of students. This study explores thirty-four Taiwanese pre-service elementary school English teachers’ knowledge about station teaching and their competence demonstrated in designing activities for and delivering of station teaching in an English remedial education to six sixth graders in a local elementary school in northern Taiwan. The participants simultaneously enrolled in this Elementary School English Teaching Materials and Methods class, a part of an elementary school teacher education program in a northern Taiwan city. The instructor (Jennifer, pseudonym) in this Elementary School English Teaching Materials and Methods class collaborated with an English teacher (Olivia, pseudonym) in Maureen Elementary School (pseudonym), an urban elementary school in a northwestern Taiwan city. Of Olivia’s students, four male and two female sixth graders needed to have remedial English education. Olivia chose these six elementary school students because they were in the lowest 5 % of their class in terms of their English proficiency. The thirty-four pre-service English teachers signed up for and took turns in teaching these six sixth graders every Thursday afternoon from four to five o’clock for twelve weeks. While three participants signed up as a team and taught these six sixth graders, the last team consisted of only two pre-service teachers. Each team designed a 40-minute lesson plan on the given language focus (words, sentence patterns, dialogue, phonics) of the assigned unit. Data in this study included the KWLA chart, activity designs, and semi-structured interviews. Data collection lasted for four months, from September to December 2014. Data were analyzed as follows. First, all the notes were read and marked with appropriate codes (e.g., I don’t know, co-teaching etc.). Second, tentative categories were labeled (e.g., before, after, process, future implication, etc.). Finally, the data were sorted into topics that reflected the research questions on the basis of their relevance. This study has the following major findings. First of all, the majority of participants knew nothing about station teaching at the beginning of the study. After taking the course Elementary School English Teaching Materials and Methods and after designing and delivering the station teaching in an English remedial education program to six sixth graders, they learned that station teaching is co-teaching, and that it includes activity designs for different stations and students’ rotating from station to station. They demonstrated knowledge and skills in activity designs for vocabulary, sentence patterns, dialogue, and phonics. Moreover, they learned to interact with individual learners and guided them step by step in learning vocabulary, sentence patterns, dialogue, and phonics. However, they were still incompetent in classroom management, time management, English, and designing diverse and meaningful activities for elementary school students at different English proficiency levels. Hence, language teacher education programs are recommended to integrate station teaching to help pre-service teachers be equipped with eight knowledge and competences, including linguistic knowledge, content knowledge, general pedagogical knowledge, curriculum knowledge, knowledge of learners and their characteristics, pedagogical content knowledge, knowledge of education content, and knowledge of education’s ends and purposes.Keywords: co-teaching, competence, knowledge, pre-service teachers, station teaching
Procedia PDF Downloads 4274333 Role of von Willebrand Factor Antigen as Non-Invasive Biomarker for the Prediction of Portal Hypertensive Gastropathy in Patients with Liver Cirrhosis
Authors: Mohamed El Horri, Amine Mouden, Reda Messaoudi, Mohamed Chekkal, Driss Benlaldj, Malika Baghdadi, Lahcene Benmahdi, Fatima Seghier
Abstract:
Background/aim: Recently, the Von Willebrand factor antigen (vWF-Ag)has been identified as a new marker of portal hypertension (PH) and its complications. Few studies talked about its role in the prediction of esophageal varices. VWF-Ag is considered a non-invasive approach, In order to avoid the endoscopic burden, cost, drawbacks, unpleasant and repeated examinations to the patients. In our study, we aimed to evaluate the ability of this marker in the prediction of another complication of portal hypertension, which is portal hypertensive gastropathy (PHG), the one that is diagnosed also by endoscopic tools. Patients and methods: It is about a prospective study, which include 124 cirrhotic patients with no history of bleeding who underwent screening endoscopy for PH-related complications like esophageal varices (EVs) and PHG. Routine biological tests were performed as well as the VWF-Ag testing by both ELFA and Immunoturbidimetric techniques. The diagnostic performance of our marker was assessed using sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and receiver operating characteristic curves. Results: 124 patients were enrolled in this study, with a mean age of 58 years [CI: 55 – 60 years] and a sex ratio of 1.17. Viral etiologies were found in 50% of patients. Screening endoscopy revealed the presence of PHG in 20.2% of cases, while for EVsthey were found in 83.1% of cases. VWF-Ag levels, were significantly increased in patients with PHG compared to those who have not: 441% [CI: 375 – 506], versus 279% [CI: 253 – 304], respectively (p <0.0001). Using the area under the receiver operating characteristic curve (AUC), vWF-Ag was a good predictor for the presence of PHG. With a value higher than 320% and an AUC of 0.824, VWF-Ag had an 84% sensitivity, 74% specificity, 44.7% positive predictive value, 94.8% negative predictive value, and 75.8% diagnostic accuracy. Conclusion: VWF-Ag is a good non-invasive low coast marker for excluding the presence of PHG in patients with liver cirrhosis. Using this marker as part of a selective screening strategy might reduce the need for endoscopic screening and the coast of the management of these kinds of patients.Keywords: von willebrand factor, portal hypertensive gastropathy, prediction, liver cirrhosis
Procedia PDF Downloads 2054332 Stock Price Prediction with 'Earnings' Conference Call Sentiment
Authors: Sungzoon Cho, Hye Jin Lee, Sungwhan Jeon, Dongyoung Min, Sungwon Lyu
Abstract:
Major public corporations worldwide use conference calls to report their quarterly earnings. These 'earnings' conference calls allow for questions from stock analysts. We investigated if it is possible to identify sentiment from the call script and use it to predict stock price movement. We analyzed call scripts from six companies, two each from Korea, China and Indonesia during six years 2011Q1 – 2017Q2. Random forest with Frequency-based sentiment scores using Loughran MacDonald Dictionary did better than control model with only financial indicators. When the stock prices went up 20 days from earnings release, our model predicted correctly 77% of time. When the model predicted 'up,' actual stock prices went up 65% of time. This preliminary result encourages us to investigate advanced sentiment scoring methodologies such as topic modeling, auto-encoder, and word2vec variants.Keywords: earnings call script, random forest, sentiment analysis, stock price prediction
Procedia PDF Downloads 2924331 Investigating the Role of Algerian Middle School Teachers in Enhancing Academic Self-Regulation: A Key towards Teaching How to Learn
Authors: Houda Zouar, Hanane Sarnou
Abstract:
In the 21st, century the concept of learners' autonomy is crucial. The concept of self-regulated learning has come forward as a result of enabling learners to direct their learning with autonomy towards academic goals achievement. Academic self-regulation is defined as the process by which learners systematically plan, monitor and asses their learning to achieve their academic established goals. In the field of English as a foreign language, teachers emphasise the role of learners’ autonomy to foster the process of English language learning. Consequently, academic self-regulation is considered as a vehicle to enhance autonomy among English language learners. However, not all learners can be equally self-regulators if not well assisted, mainly those novice pupils of basic education. For this matter, understanding the role of teachers in fostering academic self- regulation must be among the preliminary objectives in searching and developing this area. The present research work targets the role of the Algerian middle school teachers in enhancing academic self-regulation and teaching pupils how to learn, besides their role as models in the trajectory of teaching their pupils to become self-regulators. Despite the considerable endeavours in the field of educational setting on Self-Regulated Learning, the literature of the Algerian context indicates confined endeavours to undertake and divulge this notion. To go deeper into this study, a mixed method approach was employed to confirm our hypothesis. For data collection, teachers were observed and addressed by a questionnaire on their role in enhancing academic self- regulation among their pupils. The result of the research indicates that the attempts of middle school Algerian teachers are implicit and limited. This study emphasises the need to prepare English language teachers with the necessary skills to promote autonomous and self-regulator English learners.Keywords: Algeria, English as a foreign language, middle school, self-regulation, Teachers' role
Procedia PDF Downloads 1474330 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network
Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim
Abstract:
In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt
Procedia PDF Downloads 3544329 Applying the Regression Technique for Prediction of the Acute Heart Attack
Authors: Paria Soleimani, Arezoo Neshati
Abstract:
Myocardial infarction is one of the leading causes of death in the world. Some of these deaths occur even before the patient reaches the hospital. Myocardial infarction occurs as a result of impaired blood supply. Because the most of these deaths are due to coronary artery disease, hence the awareness of the warning signs of a heart attack is essential. Some heart attacks are sudden and intense, but most of them start slowly, with mild pain or discomfort, then early detection and successful treatment of these symptoms is vital to save them. Therefore, importance and usefulness of a system designing to assist physicians in the early diagnosis of the acute heart attacks is obvious. The purpose of this study is to determine how well a predictive model would perform based on the only patient-reportable clinical history factors, without using diagnostic tests or physical exams. This type of the prediction model might have application outside of the hospital setting to give accurate advice to patients to influence them to seek care in appropriate situations. For this purpose, the data were collected on 711 heart patients in Iran hospitals. 28 attributes of clinical factors can be reported by patients; were studied. Three logistic regression models were made on the basis of the 28 features to predict the risk of heart attacks. The best logistic regression model in terms of performance had a C-index of 0.955 and with an accuracy of 94.9%. The variables, severe chest pain, back pain, cold sweats, shortness of breath, nausea, and vomiting were selected as the main features.Keywords: Coronary heart disease, Acute heart attacks, Prediction, Logistic regression
Procedia PDF Downloads 4494328 The Role of Teacher-Student Relationship on Teachers’ Attitudes towards School Bullying
Authors: Ghada Shahrour, Nusiebeh Ananbh, Heyam Dalky, Mohammad Rababa, Fatmeh Alzoubi
Abstract:
Positive teacher-student relationship has been found to affect students’ attitudes towards bullying and, in turn, their engagement in bullying behavior. However, no investigation has been conducted to explore whether teacher-student relationship affects teachers’ attitudes towards bullying. The aim of this study was to examine the role of teacher-student relationship on teachers’ attitudes towards bullying in terms of bullying seriousness, empathic responding, and likelihood to intervene in bullying situation. A cross-sectional, descriptive design was employed among a convenience sample of 173 school teachers (50.9% female) of 12 to 17-year-old students. The teachers were recruited from secondary public schools of three governorates in the Northern district of Jordan. Each group of students has multiple teachers for different subjects. Results showed that teacher-student relationship is partially related to teachers’ attitudes towards bullying. More specifically, having a close teacher-student relationship significantly increased teachers’ perception of bullying seriousness and empathy but not the likelihood to intervene. Research is needed to examine teachers’ obstacles for not providing bullying interventions, as the barriers may be culturally contextualized. Meanwhile, interventions that promote quality teacher-student relationship are necessary to increase teachers’ perception of bullying seriousness and empathy. Students have been found to adopt the values of their teachers, and this may deter them from engaging in bullying behavior.Keywords: school bullying, teachers’ attitudes, teacher-student relationship, adolescent students
Procedia PDF Downloads 1004327 Graduate Tracer Study as Basis for Career Pathing Program & Placement Test in Las Piñas City Technical-Vocational High School
Authors: Mary Ann Cristine R. Olgado
Abstract:
This tracer study aimed to track down the TVL-ICT and EIM graduates of Las Piñas City Technical-Vocational High School as they pursue their career path and incorporated the evidence-based insights from this study as the basis for informed career pathing program and the implementation of placement exams for incoming senior high school students. The researcher utilized a graduate tracer study (GTS) using a descriptive research method employing a quanti-qualitative research design to gather data on the demographic and academic profiles of the respondents, chosen career paths, and the relevance and significance of their senior high school (SHS) track/strand to their chosen career paths. Findings revealed a diverse range of career paths pursued by SHS graduates, with a majority opting for higher education. However, there was a notable mismatch between SHS tracks/strands and higher education programs, highlighting the need for improved career paths and guidance. The study also assessed the relevance of SHS education to graduates' current jobs, with mixed results indicating areas for improvement. Despite challenges, graduates generally perceived their SHS education positively, particularly in providing hands-on experiences and relevant skills. The study concluded by emphasizing the importance of aligning SHS tracks/strands with future career paths by enhancing career pathing and guidance services to better support students in making informed decisions about their careers and incorporating assessments for personal interests and aptitudes could assist students in making more informed decisions about their career paths.Keywords: career pathing, EIM, graduate tracer study, ICT, placement exam, TVL
Procedia PDF Downloads 334326 Cluster Randomized Trial of 'Ready to Learn': An After-School Literacy Program for Children Starting School
Authors: Geraldine Macdonald, Oliver Perra, Nina O’Neill, Laura Neeson, Kathryn Higgins
Abstract:
Background: Despite improvements in recent years, almost one in six children in Northern Ireland (NI) leaves primary school without achieving the expected level in English and Maths. By early adolescence, this ratio is one in five. In 2010-11, around 9000 pupils in NI had failed to achieve the required standard in literacy and numeracy by the time they left full-time education. This paper reports the findings of an experimental evaluation of a programmed designed to improve educational outcomes of a cohort of children starting primary school in areas of high social disadvantage in Northern Ireland. The intervention: ‘Ready to Learn’ comprised two key components: a literacy-rich After School programme (one hour after school, three days per week), and a range of activities and support to promote the engagement of parents with their children’s learning, in school and at home. The intervention was delivered between September 2010 and August 2013. Study aims and objectives: The primary aim was to assess whether, and to what extent, ‘Ready to Learn’ improved the literacy of socially disadvantaged children entering primary schools compared with children in schools without access to the programme. Secondary aims included assessing the programme’s impact on children’s social, emotional and behavioural regulation, and parents’ engagement with their children’s learning. In total, 505 children (almost all) participated in the baseline assessment for the study, with good retention over seven sweeps of data collection. Study design: The intervention was evaluated by means of a cluster randomized trial, with schools as the unit of randomization and analysis. It included a qualitative component designed to examine process and implementation, and to explore the concept of parental engagement. Sixteen schools participated, with nine randomized to the experimental group. As well as outcome data relating to children, 134 semi-structured interviews were conducted with parents over the three years of the study, together with 88 interviews with school staff. Results: Given the children’s ages, not all measures used were direct measures of reading. Findings point to a positive impact of “Ready to Learn” on children’s reading achievement (comprehension and fluency), as assessed by the York Assessment of Reading Comprehension (YARC) and decoding, assessed using the Word Recognition and Phonic Skills (WRaPS3). Effects were not large, but evidence suggests that it is unusual for an after school programme to clearly to demonstrate effects on reading skills. No differences were found on three other measures of literacy-related skills: British Picture Vocabulary Scale (BPVS-II), Naming Speed and Non-word Reading Tests from the Phonological Assessment Battery (PhAB) or Concepts about Print (CAP) – the last due to an age-related ceiling effect). No differences were found between the two groups on measures of social, emotional and behavioural regulation, and due to low levels of participation, it was not possible directly to assess the contribution of the parent component to children’s outcomes. The qualitative data highlighted conflicting concepts of engagement between parents and school staff. Ready to Learn is a promising intervention that merits further support and evaluation.Keywords: after-school, education, literacy, parental engagement
Procedia PDF Downloads 3794325 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland
Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski
Abstract:
PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks
Procedia PDF Downloads 1494324 Use of the SWEAT Analysis Approach to Determine the Effectiveness of a School's Implementation of Its Curriculum
Authors: Prakash Singh
Abstract:
The focus of this study is on the use of the SWEAT analysis approach to determine how effectively a school, as an organization, has implemented its curriculum. To gauge the feelings of the teaching staff, unstructured interviews were employed in this study, asking the participants for their ideas and opinions on each of the three identified aspects of the school: instructional materials, media and technology; teachers’ professional competencies; and the curriculum. This investigation was based on the five key components of the SWEAT model: strengths, weaknesses, expectations, abilities, and tensions. The findings of this exploratory study evoke the significance of the SWEAT achievement model as a tool for strategic analysis to be undertaken in any organization. The findings further affirm the usefulness of this analytical tool for human resource development. Employees have expectations, but competency gaps in their professional abilities may hinder them from fulfilling their tasks in terms of their job description. Also, tensions in the working environment can contribute to their experiences of tobephobia (fear of failure). The SWEAT analysis approach detects such shortcomings in any organization and can therefore culminate in the development of programmes to address such concerns. The strategic SWEAT analysis process can provide a clear distinction between success and failure, and between mediocrity and excellence in organizations. However, more research needs to be done on the effectiveness of the SWEAT analysis approach as a strategic analytical tool.Keywords: SWEAT analysis, strategic analysis, tobephobia, competency gaps
Procedia PDF Downloads 5074323 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices
Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu
Abstract:
Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction
Procedia PDF Downloads 1054322 Pilot Study of Overweight and Obesity among 8-9 Year Old Schoolchildren in the Republic of Kazakhstan
Authors: Z. E. Battakova , G. Z. Tokmurziyeva, S. Z. Abdrakhmanova, A. A. Akimbaeva, A. A. Adaeva
Abstract:
Introduction: In the Republic of Kazakhstan few studies have quantified overweight rates among children. Assessment of overweight and obesity in school children based on measured inter country comparable data has not been implemented. In this regard, in a pilot region, Aktobe oblast, prevalence of obesity among school children was studied based on the protocol of the World Health Organization (WHO) European Childhood Obesity Surveillance Initiative. Methods: The study was conducted on sample of 800 children of 2-3 grades in September 2014. The anthropometric variables were measured by standardized equipment to calculate body mass index. Prevalence of overweight and obesity was determined for 8 and 9 year old children by gender using WHO growth reference 2007. Results: 21,4% of children aged 8 years old were overweight, and 8,7% were obese. Among 8 year old boys the prevalence of overweight and obesity was 23,7% and 10,6% respectively, among girls 18,9% and 6,7% respectively. The prevalence of overweight was 25,7% and obesity was 10,8% for 9 year old children. 29,6% boys of 9 years of age were overweight and 8,6% were obese respectively.20,9% of 9 year old girls were overweight and 13,4% were obese. Conclusion: Thus, 22,6% of children 8-9 years of age at the study population were overweight and 9,3% obese. The results of the survey demonstrate the need for further study of indicators at the national level for internationally comparable data and actions to tackle childhood obesity epidemic as well as the need for monitoring trends of overweight and obesity among children.Keywords: 8-9 year old school children, obesity, overweight, body mass index
Procedia PDF Downloads 3444321 Prediction of Dubai Financial Market Stocks Movement Using K-Nearest Neighbor and Support Vector Regression
Authors: Abdulla D. Alblooshi
Abstract:
The stock market is a representation of human behavior and psychology, such as fear, greed, and discipline. Those are manifested in the form of price movements during the trading sessions. Therefore, predicting the stock movement and prices is a challenging effort. However, those trading sessions produce a large amount of data that can be utilized to train an AI agent for the purpose of predicting the stock movement. Predicting the stock market price action will be advantageous. In this paper, the stock movement data of three DFM listed stocks are studied using historical price movements and technical indicators value and used to train an agent using KNN and SVM methods to predict the future price movement. MATLAB Toolbox and a simple script is written to process and classify the information and output the prediction. It will also compare the different learning methods and parameters s using metrics like RMSE, MAE, and R².Keywords: KNN, ANN, style, SVM, stocks, technical indicators, RSI, MACD, moving averages, RMSE, MAE
Procedia PDF Downloads 1704320 Gender Diversity in Early Years Education: An Exploratory Study Applied to Preschool Curriculum System in Romania
Authors: Emilia-Gheorghina Negru
Abstract:
As an EU goal, gender diversity in early year’s education aims and promotes equality of chances and respect for gender peculiarities of the pupils which are involved in formal educational activities. Early year’s education, as the first step to the Curriculum, prints to teachers the need to identify the role of the gender dimension on this stage, depending on the age level of preschool children through effective, complex, innovative and analytical awareness of gender diversity teaching and management strategies. Through gender educational work we, as teachers, will examine the effectiveness of the PATHS (Promoting Alternative Thinking Strategies) curriculum the gender development of school-aged children. PATHS and a school-based preventive intervention model are necessary to be designed to improve children's ability to discuss and understand equality and gender concepts. Our teachers must create an intervention model and provide PATHS lessons during the school year. Results of the intervention will be effective for both low- and high-risk children in improving their range of math’s skills for girls and vocabulary, fluency and emotional part for boys in discussing gender experiences, their efficacy beliefs regarding the management of equality in gender area, and their developmental understanding of some aspects of gender.Keywords: gender, gender differences, gender equality, gender role, gender stereotypes
Procedia PDF Downloads 3784319 Predictive Analytics of Student Performance Determinants
Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi
Abstract:
Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.Keywords: student performance, supervised machine learning, classification, cross-validation, prediction
Procedia PDF Downloads 1264318 Ibn Sina’s Necessary Existence versus Ibn ‘Arabi’s Necessary Mercy: An Exploration of Precedents and Influences
Authors: Reham Alwazzan
Abstract:
Ibn Sina (d. 1037) is perhaps the most important philosopher of the pre-modern era. Among his many contributions, the proof for the existence of the necessary existent stands out. Ibn Sina proceeds to extract each of God’s attributes (sifat) from His necessary existence. Although his ideas met with resistance in some quarters, they found a warm reception in the Akbarian school, particularly in the works of Sadr al-Din al-Qunawi (d. 1274) and ‘Abd al-Razzaq al-Qashani (d. 1335). This paper argues that the influence of Ibn Sina’s concept of necessity (wujub) had a great impact on the founder of the Akbarian school, Muhyi al-Din ibn ‘Arabi (d. 1240). Ibn ‘Arabi reformulates God’s necessary existence (wujud) as God’s necessary/metaphysical mercy (rahma) in order to extract all of the divine names from this primary attribute of God. Even as he denies all influences and insists his work is the product of spiritual unveiling (kashf), Ibn ‘Arabi seems to be following the same path delineated by his illustrious predecessor, if in his own way.Keywords: existence, Ibn ‘Arabi, Ibn Sina, mercy, necessity
Procedia PDF Downloads 1474317 Neuronal Networks for the Study of the Effects of Cosmic Rays on Climate Variations
Authors: Jossitt Williams Vargas Cruz, Aura Jazmín Pérez Ríos
Abstract:
The variations of solar dynamics have become a relevant topic of study due to the effects of climate changes generated on the earth. One of the most disconcerting aspects is the variability that the sun has on the climate is the role played by sunspots (extra-atmospheric variable) in the modulation of the Cosmic Rays CR (extra-atmospheric variable). CRs influence the earth's climate by affecting cloud formation (atmospheric variable), and solar cycle influence is associated with the presence of solar storms, and the magnetic activity is greater, resulting in less CR entering the earth's atmosphere. The different methods of climate prediction in Colombia do not take into account the extra-atmospheric variables. Therefore, correlations between atmospheric and extra-atmospheric variables were studied in order to implement a Python code based on neural networks to make the prediction of the extra-atmospheric variable with the highest correlation.Keywords: correlations, cosmic rays, sun, sunspots and variations.
Procedia PDF Downloads 734316 Modeling Discrimination against Gay People: Predictors of Homophobic Behavior against Gay Men among High School Students in Switzerland
Authors: Patrick Weber, Daniel Gredig
Abstract:
Background and Purpose: Research has well documented the impact of discrimination and micro-aggressions on the wellbeing of gay men and, especially, adolescents. For the prevention of homophobic behavior against gay adolescents, however, the focus has to shift on those who discriminate: For the design and tailoring of prevention and intervention, it is important to understand the factors responsible for homophobic behavior such as, for example, verbal abuse. Against this background, the present study aimed to assess homophobic – in terms of verbally abusive – behavior against gay people among high school students. Furthermore, it aimed to establish the predictors of the reported behavior by testing an explanatory model. This model posits that homophobic behavior is determined by negative attitudes and knowledge. These variables are supposed to be predicted by the acceptance of traditional gender roles, religiosity, orientation toward social dominance, contact with gay men, and by the perceived expectations of parents, friends and teachers. These social-cognitive variables in turn are assumed to be determined by students’ gender, age, immigration background, formal school level, and the discussion of gay issues in class. Method: From August to October 2016, we visited 58 high school classes in 22 public schools in a county in Switzerland, and asked the 8th and 9th year students on three formal school levels to participate in survey about gender and gay issues. For data collection, we used an anonymous self-administered questionnaire filled in during class. Data were analyzed using descriptive statistics and structural equation modelling (Generalized Least Square Estimates method). The sample included 897 students, 334 in the 8th and 563 in the 9th year, aged 12–17, 51.2% being female, 48.8% male, 50.3% with immigration background. Results: A proportion of 85.4% participants reported having made homophobic statements in the 12 month before survey, 4.7% often and very often. Analysis showed that respondents’ homophobic behavior was predicted directly by negative attitudes (β=0.20), as well as by the acceptance of traditional gender roles (β=0.06), religiosity (β=–0.07), contact with gay people (β=0.10), expectations of parents (β=–0.14) and friends (β=–0.19), gender (β=–0.22) and having a South-East-European or Western- and Middle-Asian immigration background (β=0.09). These variables were predicted, in turn, by gender, age, immigration background, formal school level, and discussion of gay issues in class (GFI=0.995, AGFI=0.979, SRMR=0.0169, CMIN/df=1.199, p>0.213, adj. R2 =0.384). Conclusion: Findings evidence a high prevalence of homophobic behavior in the responding high school students. The tested explanatory model explained 38.4% of the assessed homophobic behavior. However, data did not found full support of the model. Knowledge did not turn out to be a predictor of behavior. Except for the perceived expectation of teachers and orientation toward social dominance, the social-cognitive variables were not fully mediated by attitudes. Equally, gender and immigration background predicted homophobic behavior directly. These findings demonstrate the importance of prevention and provide also leverage points for interventions against anti-gay bias in adolescents – also in social work settings as, for example, in school social work, open youth work or foster care.Keywords: discrimination, high school students, gay men, predictors, Switzerland
Procedia PDF Downloads 3294315 A Wall Law for Two-Phase Turbulent Boundary Layers
Authors: Dhahri Maher, Aouinet Hana
Abstract:
The presence of bubbles in the boundary layer introduces corrections into the log law, which must be taken into account. In this work, a logarithmic wall law was presented for bubbly two phase flows. The wall law presented in this work was based on the postulation of additional turbulent viscosity associated with bubble wakes in the boundary layer. The presented wall law contained empirical constant accounting both for shear induced turbulence interaction and for non-linearity of bubble. This constant was deduced from experimental data. The wall friction prediction achieved with the wall law was compared to the experimental data, in the case of a turbulent boundary layer developing on a vertical flat plate in the presence of millimetric bubbles. A very good agreement between experimental and numerical wall friction prediction was verified. The agreement was especially noticeable for the low void fraction when bubble induced turbulence plays a significant role.Keywords: bubbly flows, log law, boundary layer, CFD
Procedia PDF Downloads 2784314 Learning Dynamic Representations of Nodes in Temporally Variant Graphs
Authors: Sandra Mitrovic, Gaurav Singh
Abstract:
In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.Keywords: churn prediction, dynamic networks, node2vec, auto-encoders
Procedia PDF Downloads 3144313 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding
Authors: Emad A. Mohammed
Abstract:
Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.Keywords: MMP, gas flooding, artificial intelligence, correlation
Procedia PDF Downloads 1444312 Determinants of Pupils' Performance in the National Achievement Test in Public Elementary Schools of Cavite City
Authors: Florenda B. Cardinoza
Abstract:
This study was conducted to determine the determinants of Grade III and grade VI pupils’ performance in the National Achievement Test in the Division of Cavite City, School Year 2011-2012. Specifically, the research aimed to: (1) describe the demographic profile of the respondents in terms of age, sex, birth order, family size, family income, and occupation of parents; (2) determine the level of attitude towards NAT; and (3) describe the degree of relationship between the following variables: school support, teachers’ support, and lastly family support for the pupils’ performance in 2012 NAT. The study used the descriptive-correlation research method to investigate the determinants of pupils’ performance in the National Achievement Test of Public Elementary Schools in the Division of Cavite City. The instrument used in data gathering was a self-structured survey. The NAT result for SY 2011-2012 provided by NETRC and DepEd Cavite City was also utilized. The statistical tools used to process and analyze the data were frequency distribution, percentage, mean, standard deviation, Kruskall Wallis, Mann-Whitney, t-test for independent samples, One-way ANOVA, and Spearman Rank Correlational Coefficient. Results revealed that there were more female students than males in the Division of Cavite City; out of 659 respondents, 345 were 11 years old and above; 390 were females; 283 were categorized as first child in the family; 371 of the respondents were from small family; 327 had Php5000 and below family income; 450 of the fathers’ respondents were non professionals; and 431 of the mothers respondents had no occupation. The attitude towards NAT, with a mean of 1.65 and SD of .485, shows that respondents considered NAT important. The school support towards NAT, with a mean of 1.89 and SD of .520, shows that respondents received school support. The pupils had a very high attitude towards teachers’ support in NAT with a mean of 1.60 and SD of .572. Family support, with t-test of 16.201 with a p-value of 0.006, shows significant at 5 percent level. Thus, the determinants of pupils’ performance in NAT in terms of family support for NAT preparation is not significant according to their family income. The grade level, with the t-test is 4.420 and a p-value of 0.000, is significant at 5 percent level. Therefore, the determinants of pupils’ performance in NAT in terms of grade level for NAT preparation vary according to their grade level. For the determinants of pupils’ performance of NAT sample test for attitude towards NAT, school support, teachers’ support, and family support were noted highly significant with a p value of 0.000.Keywords: achievement, determinants, national, performance, public, pupils', test
Procedia PDF Downloads 3504311 Rights, Differences and Inclusion: The Role of Transdisciplinary Approach in the Education for Diversity
Authors: Ana Campina, Maria Manuela Magalhaes, Eusebio André Machado, Cristina Costa-Lobo
Abstract:
Inclusive school advocates respect for differences, for equal opportunities and for a quality education for all, including for students with special educational needs. In the pursuit of educational equity, guaranteeing equality in access and results, it becomes the responsibility of the school to recognize students' needs, adapting to the various styles and rhythms of learning, ensuring the adequacy of curricula, strategies and resources, materials and humans. This paper presents a set of theoretical reflections in the disciplinary interface between legal and education sciences, school administration and management, with the aim of understand the real inclusion characteristics in a balance with the inclusion policies and the need(s) of an education for Human Rights, especially for diversity. Considering the actual social complexity but the important education instruments and strategies, mostly patented in the policies, this paper aims expose the existing contexts opposed to the laws, policies and inclusion educational needs. More than a single study, this research aims to develop a map of the reality and the guidelines to implement the action. The results point to the usefulness and pertinence of a school in which educational managers, teachers, parents, and students, are involved in the creation, implementation and monitoring of flexible curricula and adapted to the educational needs of students, promoting a collaborative work among teachers. We are then faced with a scenario that points to the need to reflect on the legislation and curricular management of inclusive classes and to operationalize the processes of elaboration of curricular adaptations and differentiation in the classroom. The transdisciplinary is a pedagogic and social education perfect approach using the Human Rights binomio – teaching and learning – supported by the inclusion laws according to the realistic needs for an effective successful society construction.Keywords: rights, transdisciplinary, inclusion policies, education for diversity
Procedia PDF Downloads 3884310 Potentiality of a Community of Practice between Public Schools and the Private Sector for Integrating Sustainable Development into the School Curriculum
Authors: Aiydh Aljeddani, Fran Martin
Abstract:
The critical time in which we live requires rethinking of many potential ways in order to make the concept of sustainability and its principles an integral part of our daily life. One of these potential approaches is how to attract community institutions, such as the private sector, to participate effectively in the sustainability industry by supporting public schools to fulfill their duties. A collaborative community of practice can support this purpose and can provide a flexible framework, which allows the members of the community to participate effectively. This study, conducted in Saudi Arabia, aimed to understand the process of a collaborative community of practice of involving the private sector as a member of this community to integrate the sustainability concept in school activities and projects. This study employed a qualitative methodology to understand this authentic and complex phenomenon. A case study approach, ethnography and some elements of action research were followed in this study. The methods of unstructured interviews, artifacts, observation, and teachers’ field notes were used to collect the data. The participants were three secondary teachers, twelve chief executive officers, and one school administrative officer. Certain contextual conditions, as shown by the data, should be taken into consideration when policy makers and school administrations in Saudi Arabia desire to integrate sustainability into school activities. The first of these was the acknowledgement of the valuable role of the members’ personality, efforts, abilities, and experiences, which played vital roles in integrating sustainability. Second, institutional culture, which was not expected to emerge as an important factor in this study, has a significant role in the integration of sustainability. Credibility among the members of the community towards the integration of the sustainability concept and its principles through school activities is another important condition. Fourth, some chief executive officers’ understanding of Corporate Social Responsibility (CSR) towards contribution to sustainability agenda was shallow and limited and this could impede the successful integration of sustainability. Fifth, a shared understanding between the members of the community about integrating sustainability was a vital condition in the integration process. The study also revealed that the integration of sustainability could not be an ongoing process if implemented in isolation of the other community institutions such as the private sector. The study finally offers a number of recommendations to improve on the current practices and suggests areas for further studies.Keywords: community of practice, public schools, private sector, sustainable development
Procedia PDF Downloads 2084309 A Learning Process for Aesthetics of Language in Thai Poetry for High School Teachers
Authors: Jiraporn Adchariyaprasit
Abstract:
The aesthetics of language in Thai poetry are emerged from the combination of sounds and meanings. The appreciation of such beauty can be achieved by means of education, acquisition of knowledge, and training. This research aims to study the learning process of aesthetics of language in Thai poetry for high school teachers in Bangkok and nearby provinces. There are 10 samples selected by purposive sampling for in-depth interviews. According to the research, there are four patterns in the learning process of aesthetics of language in Thai poetry which are 1) the study of characteristics and patterns of poetry, 2) the training of poetic reading, 3) the study of social and cultural contexts of poetry’s creation, and 4) the study of other sciences related to poetry such as linguistics, traditional dance, and so on.Keywords: aesthetics, poetry, Thai poetry, poetry learning
Procedia PDF Downloads 4354308 Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran
Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh
Abstract:
Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R2) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran.Keywords: time series modelling, ARIMA model, river runoff, Karkheh River, CLS method
Procedia PDF Downloads 3414307 Ensemble-Based SVM Classification Approach for miRNA Prediction
Authors: Sondos M. Hammad, Sherin M. ElGokhy, Mahmoud M. Fahmy, Elsayed A. Sallam
Abstract:
In this paper, an ensemble-based Support Vector Machine (SVM) classification approach is proposed. It is used for miRNA prediction. Three problems, commonly associated with previous approaches, are alleviated. These problems arise due to impose assumptions on the secondary structural of premiRNA, imbalance between the numbers of the laboratory checked miRNAs and the pseudo-hairpins, and finally using a training data set that does not consider all the varieties of samples in different species. We aggregate the predicted outputs of three well-known SVM classifiers; namely, Triplet-SVM, Virgo and Mirident, weighted by their variant features without any structural assumptions. An additional SVM layer is used in aggregating the final output. The proposed approach is trained and then tested with balanced data sets. The results of the proposed approach outperform the three base classifiers. Improved values for the metrics of 88.88% f-score, 92.73% accuracy, 90.64% precision, 96.64% specificity, 87.2% sensitivity, and the area under the ROC curve is 0.91 are achieved.Keywords: MiRNAs, SVM classification, ensemble algorithm, assumption problem, imbalance data
Procedia PDF Downloads 3494306 Study of the Use of Artificial Neural Networks in Islamic Finance
Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi
Abstract:
The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning
Procedia PDF Downloads 2374305 CD133 and CD44 - Stem Cell Markers for Prediction of Clinically Aggressive Form of Colorectal Cancer
Authors: Ognen Kostovski, Svetozar Antovic, Rubens Jovanovic, Irena Kostovska, Nikola Jankulovski
Abstract:
Introduction:Colorectal carcinoma (CRC) is one of the most common malignancies in the world. The cancer stem cell (CSC) markers are associated with aggressive cancer types and poor prognosis. The aim of study was to determine whether the expression of colorectal cancer stem cell markers CD133 and CD44 could be significant in prediction of clinically aggressive form of CRC. Materials and methods: Our study included ninety patients (n=90) with CRC. Patients were divided into two subgroups: with metatstatic CRC and non-metastatic CRC. Tumor samples were analyzed with standard histopathological methods, than was performed immunohistochemical analysis with monoclonal antibodies against CD133 and CD44 stem cell markers. Results: High coexpression of CD133 and CD44 was observed in 71.4% of patients with metastatic disease, compared to 37.9% in patients without metastases. Discordant expression of both markers was found in 8% of the subgroup with metastatic CRC, and in 13.4% of the subgroup without metastatic CRC. Statistical analyses showed a significant association of increased expression of CD133 and CD44 with the disease stage, T - category and N - nodal status. With multiple regression analysis the stage of disease was designate as a factor with the greatest statistically significant influence on expression of CD133 (p <0.0001) and CD44 (p <0.0001). Conclusion: Our results suggest that the coexpression of CD133 and CD44 have an important role in prediction of clinically aggressive form of CRC. Both stem cell markers can be routinely implemented in standard pathohistological diagnostics and can be useful markers for pre-therapeutic oncology screening.Keywords: colorectal carcinoma, stem cells, CD133+, CD44+
Procedia PDF Downloads 150