Search results for: land cover classification
3962 Adapted Intersection over Union: A Generalized Metric for Evaluating Unsupervised Classification Models
Authors: Prajwal Prakash Vasisht, Sharath Rajamurthy, Nishanth Dara
Abstract:
In a supervised machine learning approach, metrics such as precision, accuracy, and coverage can be calculated using ground truth labels to help in model tuning, evaluation, and selection. In an unsupervised setting, however, where the data has no ground truth, there are few interpretable metrics that can guide us to do the same. Our approach creates a framework to adapt the Intersection over Union metric, referred to as Adapted IoU, usually used to evaluate supervised learning models, into the unsupervised domain, which solves the problem by factoring in subject matter expertise and intuition about the ideal output from the model. This metric essentially provides a scale that allows us to compare the performance across numerous unsupervised models or tune hyper-parameters and compare different versions of the same model.Keywords: general metric, unsupervised learning, classification, intersection over union
Procedia PDF Downloads 493961 Soil Degradation Processes in Marginal Uplands of Samar Island, Philippines
Authors: Dernie Taganna Olguera
Abstract:
Marginal uplands are fragile ecosystems in the tropics that need to be evaluated for sustainable utilization and land degradation mitigation. Thus, this study evaluated the dominant soil degradation processes in selected marginal uplands of Samar Island, Philippines; evaluated the important factors influencing soil degradation in the selected sites and identified the indicators of soil degradation in marginal uplands of the tropical landscape of Samar Island, Philippines. Two (2) sites were selected (Sta. Rita, Samar and Salcedo, Eastern, Samar) representing the western and eastern sides of Samar Island respectively. These marginal uplands represent different agro-climatic zones suitable for the study. Soil erosion is the major soil degradation process in the marginal uplands studied. It resulted in not only considerable soil losses but nutrient losses as well. Soil erosion varied with vegetation cover and site. It was much higher in the sweetpotato, cassava, and gabi crops than under natural vegetation. In addition, soil erosion was higher in Salcedo than in Sta. Rita, which is related to climatic and soil characteristics. Bulk density, porosity, aggregate stability, soil pH, organic matter, and carbon dioxide evolution are good indicators of soil degradation. The dominance of Saccharum spontaneum Linn., Imperata cylindrica Linn, Melastoma malabathricum Linn. and Psidium guajava Linn indicated degraded soil condition. Farmer’s practices particularly clean culture and organic fertilizer application influenced the degree of soil degradation in the marginal uplands of Samar Island, Philippines.Keywords: soil degradation, soil erosion, marginal uplands, Samar island, Philippines
Procedia PDF Downloads 4193960 Range Suitability Model for Livestock Grazing in Taleghan Rangelands
Authors: Hossein Arzani, Masoud Jafari Shalamzari, Z. Arzani
Abstract:
This paper follows FAO model of suitability analysis. Influential factors affecting extensive grazing were determined and converted into a model. Taleghan rangelands were examined for common types of grazing animals as an example. Advantages and limitations were elicited. All range ecosystems’ components affect range suitability but due to the time and money restrictions, the most important and feasible elements were investigated. From which three sub-models including water accessibility, forage production and erosion sensitivity were considered. Suitable areas in four levels of suitability were calculated using GIS. This suitability modeling approach was adopted due to its simplicity and the minimal time that is required for transforming and analyzing the data sets. Managers could be benefited from the model to devise the measures more wisely to cope with the limitations and enhance the rangelands health and condition.Keywords: range suitability, land-use, extensive grazing, modeling, land evaluation
Procedia PDF Downloads 3413959 Evaluation of Kabul BRT Route Network with Application of Integrated Land-use and Transportation Model
Authors: Mustafa Mutahari, Nao Sugiki, Kojiro Matsuo
Abstract:
The four decades of war, lack of job opportunities, poverty, lack of services, and natural disasters in different provinces of Afghanistan have contributed to a rapid increase in the population of Kabul, the capital city of Afghanistan. Population census has not been conducted since 1979, the first and last population census in Afghanistan. However, according to population estimations by Afghan authorities, the population of Kabul has been estimated at more than 4 million people, whereas the city was designed for two million people. Although the major transport mode of Kabul residents is public transport, responsible authorities within the country failed to supply the required means of transportation systems for the city. Besides, informal resettlement, lack of intersection control devices, presence of illegal vendors on streets, presence of illegal and unstandardized on-street parking and bus stops, driver`s unprofessional behavior, weak traffic law enforcement, and blocked roads and sidewalks have contributed to the extreme traffic congestion of Kabul. In 2018, the government of Afghanistan approved the Kabul city Urban Design Framework (KUDF), a vision towards the future of Kabul, which provides strategies and design guidance at different scales to direct urban development. Considering traffic congestion of the city and its budget limitations, the KUDF proposes a BRT route network with seven lines to reduce the traffic congestion, and it is said to facilitate more than 50% of Kabul population to benefit from this service. Based on the KUDF, it is planned to increase the BRT mode share from 0% to 17% and later to 30% in medium and long-term planning scenarios, respectively. Therefore, a detailed research study is needed to evaluate the proposed system before the implementation stage starts. The integrated land-use transport model is an effective tool to evaluate the Kabul BRT because of its future assessment capabilities that take into account the interaction between land use and transportation. This research aims to analyze and evaluate the proposed BRT route network with the application of an integrated land-use and transportation model. The research estimates the population distribution and travel behavior of Kabul within small boundary scales. The actual road network and land-use detailed data of the city are used to perform the analysis. The BRT corridors are evaluated not only considering its impacts on the spatial interactions in the city`s transportation system but also on the spatial developments. Therefore, the BRT are evaluated with the scenarios of improving the Kabul transportation system based on the distribution of land-use or spatial developments, planned development typology and population distribution of the city. The impacts of the new improved transport system on the BRT network are analyzed and the BRT network is evaluated accordingly. In addition, the research also focuses on the spatial accessibility of BRT stops, corridors, and BRT line beneficiaries, and each BRT stop and corridor are evaluated in terms of both access and geographic coverage, as well.Keywords: accessibility, BRT, integrated land-use and transport model, travel behavior, spatial development
Procedia PDF Downloads 2223958 Supervised Learning for Cyber Threat Intelligence
Authors: Jihen Bennaceur, Wissem Zouaghi, Ali Mabrouk
Abstract:
The major aim of cyber threat intelligence (CTI) is to provide sophisticated knowledge about cybersecurity threats to ensure internal and external safeguards against modern cyberattacks. Inaccurate, incomplete, outdated, and invaluable threat intelligence is the main problem. Therefore, data analysis based on AI algorithms is one of the emergent solutions to overcome the threat of information-sharing issues. In this paper, we propose a supervised machine learning-based algorithm to improve threat information sharing by providing a sophisticated classification of cyber threats and data. Extensive simulations investigate the accuracy, precision, recall, f1-score, and support overall to validate the designed algorithm and to compare it with several supervised machine learning algorithms.Keywords: threat information sharing, supervised learning, data classification, performance evaluation
Procedia PDF Downloads 1503957 Using Scale Invariant Feature Transform Features to Recognize Characters in Natural Scene Images
Authors: Belaynesh Chekol, Numan Çelebi
Abstract:
The main purpose of this work is to recognize individual characters extracted from natural scene images using scale invariant feature transform (SIFT) features as an input to K-nearest neighbor (KNN); a classification learner algorithm. For this task, 1,068 and 78 images of English alphabet characters taken from Chars74k data set is used to train and test the classifier respectively. For each character image, We have generated describing features by using SIFT algorithm. This set of features is fed to the learner so that it can recognize and label new images of English characters. Two types of KNN (fine KNN and weighted KNN) were trained and the resulted classification accuracy is 56.9% and 56.5% respectively. The training time taken was the same for both fine and weighted KNN.Keywords: character recognition, KNN, natural scene image, SIFT
Procedia PDF Downloads 2813956 Determination of the Botanical Origin of Honey by the Artificial Neural Network Processing of PARAFAC Scores of Fluorescence Data
Authors: Lea Lenhardt, Ivana Zeković, Tatjana Dramićanin, Miroslav D. Dramićanin
Abstract:
Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) and artificial neural networks (ANN) were used for characterization and classification of honey. Excitation emission spectra were obtained for 95 honey samples of different botanical origin (acacia, sunflower, linden, meadow, and fake honey) by recording emission from 270 to 640 nm with excitation in the range of 240-500 nm. Fluorescence spectra were described with a six-component PARAFAC model, and PARAFAC scores were further processed with two types of ANN’s (feed-forward network and self-organizing maps) to obtain algorithms for classification of honey on the basis of their botanical origin. Both ANN’s detected fake honey samples with 100% sensitivity and specificity.Keywords: honey, fluorescence, PARAFAC, artificial neural networks
Procedia PDF Downloads 9543955 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient
Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart
Abstract:
Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.Keywords: data mining, information retrieval system, multi-label, problem transformation, histogram of gradients
Procedia PDF Downloads 3743954 Theoretical Approach for Estimating Transfer Length of Prestressing Strand in Pretensioned Concrete Members
Authors: Sun-Jin Han, Deuck Hang Lee, Hyo-Eun Joo, Hyun Kang, Kang Su Kim
Abstract:
In pretensioned concrete members, the transfer length region is existed, in which the stress in prestressing strand is developed due to the bond mechanism with surrounding concrete. The stress of strands in the transfer length zone is smaller than that in the strain plateau zone, so-called effective prestress, therefore the web-shear strength in transfer length region is smaller than that in the strain plateau zone. Although the transfer length is main key factor in the shear design, a few analytical researches have been conducted to investigate the transfer length. Therefore, in this study, a theoretical approach was used to estimate the transfer length. The bond stress developed between the strands and the surrounding concrete was quantitatively calculated by using the Thick-Walled Cylinder Model (TWCM), based on this, the transfer length of strands was calculated. To verify the proposed model, a total of 209 test results were collected from the previous studies. Consequently, the analysis results showed that the main influencing factors on the transfer length are the compressive strength of concrete, the cover thickness of concrete, the diameter of prestressing strand, and the magnitude of initial prestress. In addition, the proposed model predicted the transfer length of collected test specimens with high accuracy. Acknowledgement: This research was supported by a grant(17TBIP-C125047-01) from Technology Business Innovation Program funded by Ministry of Land, Infrastructure and Transport of Korean government.Keywords: bond, Hoyer effect, prestressed concrete, prestressing strand, transfer length
Procedia PDF Downloads 2953953 Classification of Barley Varieties by Artificial Neural Networks
Authors: Alper Taner, Yesim Benal Oztekin, Huseyin Duran
Abstract:
In this study, an Artificial Neural Network (ANN) was developed in order to classify barley varieties. For this purpose, physical properties of barley varieties were determined and ANN techniques were used. The physical properties of 8 barley varieties grown in Turkey, namely thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain, were determined and it was found that these properties were statistically significant with respect to varieties. As ANN model, three models, N-l, N-2 and N-3 were constructed. The performances of these models were compared. It was determined that the best-fit model was N-1. In the N-1 model, the structure of the model was designed to be 11 input layers, 2 hidden layers and 1 output layer. Thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain were used as input parameter; and varieties as output parameter. R2, Root Mean Square Error and Mean Error for the N-l model were found as 99.99%, 0.00074 and 0.009%, respectively. All results obtained by the N-l model were observed to have been quite consistent with real data. By this model, it would be possible to construct automation systems for classification and cleaning in flourmills.Keywords: physical properties, artificial neural networks, barley, classification
Procedia PDF Downloads 1783952 Speech Emotion Recognition: A DNN and LSTM Comparison in Single and Multiple Feature Application
Authors: Thiago Spilborghs Bueno Meyer, Plinio Thomaz Aquino Junior
Abstract:
Through speech, which privileges the functional and interactive nature of the text, it is possible to ascertain the spatiotemporal circumstances, the conditions of production and reception of the discourse, the explicit purposes such as informing, explaining, convincing, etc. These conditions allow bringing the interaction between humans closer to the human-robot interaction, making it natural and sensitive to information. However, it is not enough to understand what is said; it is necessary to recognize emotions for the desired interaction. The validity of the use of neural networks for feature selection and emotion recognition was verified. For this purpose, it is proposed the use of neural networks and comparison of models, such as recurrent neural networks and deep neural networks, in order to carry out the classification of emotions through speech signals to verify the quality of recognition. It is expected to enable the implementation of robots in a domestic environment, such as the HERA robot from the RoboFEI@Home team, which focuses on autonomous service robots for the domestic environment. Tests were performed using only the Mel-Frequency Cepstral Coefficients, as well as tests with several characteristics of Delta-MFCC, spectral contrast, and the Mel spectrogram. To carry out the training, validation and testing of the neural networks, the eNTERFACE’05 database was used, which has 42 speakers from 14 different nationalities speaking the English language. The data from the chosen database are videos that, for use in neural networks, were converted into audios. It was found as a result, a classification of 51,969% of correct answers when using the deep neural network, when the use of the recurrent neural network was verified, with the classification with accuracy equal to 44.09%. The results are more accurate when only the Mel-Frequency Cepstral Coefficients are used for the classification, using the classifier with the deep neural network, and in only one case, it is possible to observe a greater accuracy by the recurrent neural network, which occurs in the use of various features and setting 73 for batch size and 100 training epochs.Keywords: emotion recognition, speech, deep learning, human-robot interaction, neural networks
Procedia PDF Downloads 1703951 Safeguarding Product Quality through Pre-Qualification of Material Manufacturers: A Ship and Offshore Classification Society's Perspective
Authors: Sastry Y. Kandukuri, Isak Andersen
Abstract:
Despite recent advances in the manufacturing sector, quality issues remain a frequent occurrence, and can result in fatal accidents, equipment downtime, and loss of life. Adequate quality is of high importance in high-risk industries such as sea-going vessels and offshore installations in which third party quality assurance and product control play an important essential role in ensuring manufacturing quality of critical components. Classification societies play a vital role in mitigating risk in these industries by making sure that all the stakeholders i.e. manufacturers, builders, and end users are provided with adequate rules and standards that effectively ensures components produced at a high level of quality based on the area of application and risk of its failure. Quality issues have also been linked to the lack of competence or negligence of stakeholders in supply value chain. However, continued actions and regulatory reforms through modernization of rules and requirements has provided additional tools for purchasers and manufacturers to confront these issues. Included among these tools are updated ‘approval of manufacturer class programs’ aimed at developing and implementing a set of standardized manufacturing quality metrics for use by the manufacturer and verified by the classification society. The establishment and collection of manufacturing and testing requirements described in these programs could provide various stakeholders – from industry to vessel owners – with greater insight into the state of quality at a given manufacturing facility, and allow stakeholders to anticipate better and address quality issues while simultaneously reducing unnecessary failures that are costly to the industry. The publication introduces, explains and discusses critical manufacturing and testing requirements set in a leading class society’s approval of manufacturer regime and its rationale and some case studies.Keywords: classification society, manufacturing, materials processing, materials testing, quality control
Procedia PDF Downloads 3553950 Preliminary Study of Material Composition of Wreathed Hornbill (Rhycticeros undulatus) Nest Cover Entrance in Mount Ungaran
Authors: Margareta Rahayuningsih, Siti Alimah, Novita Hermayani, Misbahul Munir
Abstract:
Wreathed Hornbill (Rhycticeros undulatus) was a protected bird that we can found in Mount Ungaran. It is known that the bird have been breeding and nesting on the mountain. The objective of the research was to analysis the materials composition of the Wreathed Hornbill nest wall plaster. The study was carried out in Curug Lawe and Gunung Gentong, Mount Ungaran Central Java. Nest wall plaster samples were collected from nest cavities were used by hornbill but after they left from the nest. The nest tree species on Gunung Gentong was Syzygium antisepticum and Syzigium glabratum on Curug Lawe. Materials analysis used proximate analysis and have been done on Chemistry Laboratory of Semarang State University. The result of proximate analysis showed that the material composition of nest wall plaster such as water, proteins. lipid, carbohydrate, and ash between Curug Lawe and Gunung Gentong was different. Except Carbohidrate, the highest componen showed in the nest wall plaster on Gunung Gentong.Keywords: Mount Ungaran, nest cover entrance, Rhyticeros undulatus, proximate analysis
Procedia PDF Downloads 2473949 Green Revolution and Reckless Use of Water and Its Implication on Climate Change Leading to Desertification: Situation of Karnataka, India
Authors: Arun Das
Abstract:
One of the basic objectives of Independent India five decades ago was to meet the increasing demand for food to its growing population. Self-sufficiency was accomplished towards food production and it was attained through launching green revolution program. The green revolution repercussions were not realized at that moment. Many projects were undertaken. Especially, major and minor irrigation projects were executed to harness the river water in the dry land regions of Karnataka. In the elevated topographical lands, extraction of underground water was a solace given by the government to protect the interest of the dry land farmers whose land did not come under the command area. Free borewell digging, pump sets, and electricity were provided. Thus, the self-sufficiency was achieved. Contrary to this, the Continuous long-term extraction of water for agriculture from bore well and in the irrigated tracks has lead to two-way effect such as soil leeching (Alkalinity and Salinity), secondly, depleted underground water to incredible deeps has pushed the natural process to an un-reparable damage which in turn the nature lost to support even a tiny plants like grass to grow, discouraging human and animal habitation, Both the process is silently turning southwestern, central, northeastern and north western regions of Karnataka into desert. The grave situation of Karnataka green revolution is addressed in this paper to alert reckless use of water and also some of the suggestions are recommended based on the ground information.Keywords: alkalinity, desertification, green revolution, salinity, water
Procedia PDF Downloads 2833948 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique
Authors: C. Manjula, Lilly Florence
Abstract:
Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.Keywords: decision tree, genetic algorithm, machine learning, software defect prediction
Procedia PDF Downloads 3293947 Black-Box-Base Generic Perturbation Generation Method under Salient Graphs
Authors: Dingyang Hu, Dan Liu
Abstract:
DNN (Deep Neural Network) deep learning models are widely used in classification, prediction, and other task scenarios. To address the difficulties of generic adversarial perturbation generation for deep learning models under black-box conditions, a generic adversarial ingestion generation method based on a saliency map (CJsp) is proposed to obtain salient image regions by counting the factors that influence the input features of an image on the output results. This method can be understood as a saliency map attack algorithm to obtain false classification results by reducing the weights of salient feature points. Experiments also demonstrate that this method can obtain a high success rate of migration attacks and is a batch adversarial sample generation method.Keywords: adversarial sample, gradient, probability, black box
Procedia PDF Downloads 1043946 Modelization of Land Degradation by Desertification Using Medalus Method, Case Study of the Wilaya of Saida, Algeria
Authors: Fekir Youcef, Mederbal Khalladi, M. A. Hamadouche, D. Anteur
Abstract:
Algeria is one of the countries that are highly affected by desertification which is the consequence of several factors. For this purpose, there is a need to study this problem by quantitative approaches. In this study, we apply the MEDALUS method (Mediterranean Desertification and Land Use) to a watershed located in Saida town in semi-arid environment in the south west of Algeria. The method is based on sensitive areas identification by making use of the different parameters that may affect the desertification process such as vegetation, soil, climate and management. Spatial analyses are strong tools that allow modelization of each indicator. Results show that according to European standards, a large scale of the watershed falls into critical classes. And therefore, the modelization approach can be an effective way to study and understand the desertification showing an example of the project of the green dam that limits the desertification process to affect the north areas off Algeria.Keywords: Algeria, desertification, MEDALUS, modelization
Procedia PDF Downloads 3893945 Identity Verification Using k-NN Classifiers and Autistic Genetic Data
Authors: Fuad M. Alkoot
Abstract:
DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN).Keywords: biometrics, genetic data, identity verification, k nearest neighbor
Procedia PDF Downloads 2583944 The Impact of Cryptocurrency Classification on Money Laundering: Analyzing the Preferences of Criminals for Stable Coins, Utility Coins, and Privacy Tokens
Authors: Mohamed Saad, Huda Ismail
Abstract:
The purpose of this research is to examine the impact of cryptocurrency classification on money laundering crimes and to analyze how the preferences of criminals differ according to the type of digital currency used. Specifically, we aim to explore the roles of stablecoins, utility coins, and privacy tokens in facilitating or hindering money laundering activities and to identify the key factors that influence the choices of criminals in using these cryptocurrencies. To achieve our research objectives, we used a dataset for the most highly traded cryptocurrencies (32 currencies) that were published on the coin market cap for 2022. In addition to conducting a comprehensive review of the existing literature on cryptocurrency and money laundering, with a focus on stablecoins, utility coins, and privacy tokens, Furthermore, we conducted several Multivariate analyses. Our study reveals that the classification of cryptocurrency plays a significant role in money laundering activities, as criminals tend to prefer certain types of digital currencies over others, depending on their specific needs and goals. Specifically, we found that stablecoins are more commonly used in money laundering due to their relatively stable value and low volatility, which makes them less risky to hold and transfer. Utility coins, on the other hand, are less frequently used in money laundering due to their lack of anonymity and limited liquidity. Finally, privacy tokens, such as Monero and Zcash, are increasingly becoming a preferred choice among criminals due to their high degree of privacy and untraceability. In summary, our study highlights the importance of understanding the nuances of cryptocurrency classification in the context of money laundering and provides insights into the preferences of criminals in using digital currencies for illegal activities. Based on our findings, our recommendation to the policymakers is to address the potential misuse of cryptocurrencies for money laundering. By implementing measures to regulate stable coins, strengthening cross-border cooperation, fostering public-private partnerships, and increasing cooperation, policymakers can help prevent and detect money laundering activities involving digital currencies.Keywords: crime, cryptocurrency, money laundering, tokens.
Procedia PDF Downloads 873943 Importance of Different Spatial Parameters in Water Quality Analysis within Intensive Agricultural Area
Authors: Marina Bubalo, Davor Romić, Stjepan Husnjak, Helena Bakić
Abstract:
Even though European Council Directive 91/676/EEC known as Nitrates Directive was adopted in 1991, the issue of water quality preservation in areas of intensive agricultural production still persist all over Europe. High nitrate nitrogen concentrations in surface and groundwater originating from diffuse sources are one of the most important environmental problems in modern intensive agriculture. The fate of nitrogen in soil, surface and groundwater in agricultural area is mostly affected by anthropogenic activity (i.e. agricultural practice) and hydrological and climatological conditions. The aim of this study was to identify impact of land use, soil type, soil vulnerability to pollutant percolation, and natural aquifer vulnerability to nitrate occurrence in surface and groundwater within an intensive agricultural area. The study was set in Varaždin County (northern Croatia), which is under significant influence of the large rivers Drava and Mura and due to that entire area is dominated by alluvial soil with shallow active profile mainly on gravel base. Negative agricultural impact on water quality in this area is evident therefore the half of selected county is a part of delineated nitrate vulnerable zones (NVZ). Data on water quality were collected from 7 surface and 8 groundwater monitoring stations in the County. Also, recent study of the area implied detailed inventory of agricultural production and fertilizers use with the aim to produce new agricultural land use database as one of dominant parameters. The analysis of this database done using ArcGIS 10.1 showed that 52,7% of total County area is agricultural land and 59,2% of agricultural land is used for intensive agricultural production. On the other hand, 56% of soil within the county is classified as soil vulnerable to pollutant percolation. The situation is similar with natural aquifer vulnerability; northern part of the county ranges from high to very high aquifer vulnerability. Statistical analysis of water quality data is done using SPSS 13.0. Cluster analysis group both surface and groundwater stations in two groups according to nitrate nitrogen concentrations. Mean nitrate nitrogen concentration in surface water – group 1 ranges from 4,2 to 5,5 mg/l and in surface water – group 2 from 24 to 42 mg/l. The results are similar, but evidently higher, in groundwater samples; mean nitrate nitrogen concentration in group 1 ranges from 3,9 to 17 mg/l and in group 2 from 36 to 96 mg/l. ANOVA analysis confirmed statistical significance between stations that are classified in the same group. The previously listed parameters (land use, soil type, etc.) were used in factorial correspondence analysis (FCA) to detect importance of each stated parameter in local water quality. Since stated parameters mostly cannot be altered, there is obvious necessity for more precise and more adapted land management in such conditions.Keywords: agricultural area, nitrate, factorial correspondence analysis, water quality
Procedia PDF Downloads 2593942 Post-Earthquake Road Damage Detection by SVM Classification from Quickbird Satellite Images
Authors: Moein Izadi, Ali Mohammadzadeh
Abstract:
Detection of damaged parts of roads after earthquake is essential for coordinating rescuers. In this study, an approach is presented for the semi-automatic detection of damaged roads in a city using pre-event vector maps and both pre- and post-earthquake QuickBird satellite images. Damage is defined in this study as the debris of damaged buildings adjacent to the roads. Some spectral and texture features are considered for SVM classification step to detect damages. Finally, the proposed method is tested on QuickBird pan-sharpened images from the Bam City earthquake and the results show that an overall accuracy of 81% and a kappa coefficient of 0.71 are achieved for the damage detection. The obtained results indicate the efficiency and accuracy of the proposed approach.Keywords: SVM classifier, disaster management, road damage detection, quickBird images
Procedia PDF Downloads 6233941 Identification of Watershed Landscape Character Types in Middle Yangtze River within Wuhan Metropolitan Area
Authors: Huijie Wang, Bin Zhang
Abstract:
In China, the middle reaches of the Yangtze River are well-developed, boasting a wealth of different types of watershed landscape. In this regard, landscape character assessment (LCA) can serve as a basis for protection, management and planning of trans-regional watershed landscape types. For this study, we chose the middle reaches of the Yangtze River in Wuhan metropolitan area as our study site, wherein the water system consists of rich variety in landscape types. We analyzed trans-regional data to cluster and identify types of landscape characteristics at two levels. 55 basins were analyzed as variables with topography, land cover and river system features in order to identify the watershed landscape character types. For watershed landscape, drainage density and degree of curvature were specified as special variables to directly reflect the regional differences of river system features. Then, we used the principal component analysis (PCA) method and hierarchical clustering algorithm based on the geographic information system (GIS) and statistical products and services solution (SPSS) to obtain results for clusters of watershed landscape which were divided into 8 characteristic groups. These groups highlighted watershed landscape characteristics of different river systems as well as key landscape characteristics that can serve as a basis for targeted protection of watershed landscape characteristics, thus helping to rationally develop multi-value landscape resources and promote coordinated development of trans-regions.Keywords: GIS, hierarchical clustering, landscape character, landscape typology, principal component analysis, watershed
Procedia PDF Downloads 2303940 A Study on Unplanned Settlement in Kabul City
Authors: Samir Ranjbar, Nasrullah Istanekzai
Abstract:
According to a report published in The Guardian, Kabul, the capital city of Afghanistan is the fifth fastest growing city in the world, whose population has increased fourfold since 2001 from 1.2 million to 4.8 million people. The main reason for this increment is identified as the return of Afghans migrated during the civil war. In addition to the return of immigrants, a steep economic growth due to foreign assistance in last decade creating lots of job opportunities in Kabul resulted in the attraction of individuals from the neighboring provinces as well. However, the development of urban facilities such as water supply system, housing transportation and waste management systems has yet to catch up with this rapid increase in population. Since Kabul city has developed traditionally and municipal governance had very limited capacity to implement municipal bylaws. As an unwanted consequence of this growth 70% of Kabul citizens contributed to developing informal settlement for which we can say that around three million people living in informally settled areas, lacking the very vital social and physical infrastructures of livelihood. This research focuses on a region with 30 ha area and 2100 people residents in the center of Kabul city. A comprehensive land readjustment concept plan has been formulated for this area. Through this concept plan, physical and social infrastructure has been demonstrated and analyzed. Findings of this paper propose a solution for the problems of this unplanned area in Kabul which is readjusting of unplanned area by a self-supporting process. This process does not need governmental budget and can be applied by government, private sectors and landowner associations. Furthermore, by implementing the Land Readjustment process, conceptual plans can be built for unplanned areas, maximum facilities can be brought to the residents’ urban life, improve the environment for the users’ benefit, promote the culture and sense of cooperation, participation and coexistence in the mind of people, improving the transport system, improvement in economic status (the value of land increases due to infrastructure availability and land legalization). In addition to all these benefits for the public, we can raise the revenue of government by collecting the taxes from landowners. This process is implemented in most of countries of the world, it was implemented for the first time in Germany and after that in most cities of Japan as well, and is known as one of the effective processes for infrastructural development. To sum up, the notable characteristic of the Land readjustment process is that it works on the concept of mutual interest in which both landowners and the government take advantage. However, in this process, the engagement of community is very important and without public cooperation, this process can face the failure.Keywords: land readjustment, informal settlement, Kabul, Afghanistan
Procedia PDF Downloads 2523939 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection
Authors: Yaojun Wang, Yaoqing Wang
Abstract:
Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.Keywords: case-based reasoning, decision tree, stock selection, machine learning
Procedia PDF Downloads 4203938 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning
Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih
Abstract:
Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network
Procedia PDF Downloads 1873937 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification
Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran
Abstract:
The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM
Procedia PDF Downloads 2503936 Classification of Business Models of Italian Bancassurance by Balance Sheet Indicators
Authors: Andrea Bellucci, Martina Tofi
Abstract:
The aim of paper is to analyze business models of bancassurance in Italy for life business. The life insurance business is very developed in the Italian market and banks branches have 80% of the market share. Given its maturity, the life insurance market needs to consolidate its organizational form to allow for the development of non-life business, which nowadays collects few premiums but represents a great opportunity to enlarge the market share of bancassurance using its strength in the distribution channel while the market share of independent agents is decreasing. Starting with the main business model of bancassurance for life business, this paper will analyze the performances of life companies in the Italian market by balance sheet indicators and by main discriminant variables of business models. The study will observe trends from 2013 to 2015 for the Italian market by exploiting a database managed by Associazione Nazionale delle Imprese di Assicurazione (ANIA). The applied approach is based on a bottom-up analysis starting with variables and indicators to define business models’ classification. The statistical classification algorithm proposed by Ward is employed to design business models’ profiles. Results from the analysis will be a representation of the main business models built by their profile related to indicators. In that way, an unsupervised analysis is developed that has the limit of its judgmental dimension based on research opinion, but it is possible to obtain a design of effective business models.Keywords: bancassurance, business model, non life bancassurance, insurance business value drivers
Procedia PDF Downloads 2993935 Prediction of Time to Crack Reinforced Concrete by Chloride Induced Corrosion
Authors: Anuruddha Jayasuriya, Thanakorn Pheeraphan
Abstract:
In this paper, a review of different mathematical models which can be used as prediction tools to assess the time to crack reinforced concrete (RC) due to corrosion is investigated. This investigation leads to an experimental study to validate a selected prediction model. Most of these mathematical models depend upon the mechanical behaviors, chemical behaviors, electrochemical behaviors or geometric aspects of the RC members during a corrosion process. The experimental program is designed to verify the accuracy of a well-selected mathematical model from a rigorous literature study. Fundamentally, the experimental program exemplifies both one-dimensional chloride diffusion using RC squared slab elements of 500 mm by 500 mm and two-dimensional chloride diffusion using RC squared column elements of 225 mm by 225 mm by 500 mm. Each set consists of three water-to-cement ratios (w/c); 0.4, 0.5, 0.6 and two cover depths; 25 mm and 50 mm. 12 mm bars are used for column elements and 16 mm bars are used for slab elements. All the samples are subjected to accelerated chloride corrosion in a chloride bath of 5% (w/w) sodium chloride (NaCl) solution. Based on a pre-screening of different models, it is clear that the well-selected mathematical model had included mechanical properties, chemical and electrochemical properties, nature of corrosion whether it is accelerated or natural, and the amount of porous area that rust products can accommodate before exerting expansive pressure on the surrounding concrete. The experimental results have shown that the selected model for both one-dimensional and two-dimensional chloride diffusion had ±20% and ±10% respective accuracies compared to the experimental output. The half-cell potential readings are also used to see the corrosion probability, and experimental results have shown that the mass loss is proportional to the negative half-cell potential readings that are obtained. Additionally, a statistical analysis is carried out in order to determine the most influential factor that affects the time to corrode the reinforcement in the concrete due to chloride diffusion. The factors considered for this analysis are w/c, bar diameter, and cover depth. The analysis is accomplished by using Minitab statistical software, and it showed that cover depth is the significant effect on the time to crack the concrete from chloride induced corrosion than other factors considered. Thus, the time predictions can be illustrated through the selected mathematical model as it covers a wide range of factors affecting the corrosion process, and it can be used to predetermine the durability concern of RC structures that are vulnerable to chloride exposure. And eventually, it is further concluded that cover thickness plays a vital role in durability in terms of chloride diffusion.Keywords: accelerated corrosion, chloride diffusion, corrosion cracks, passivation layer, reinforcement corrosion
Procedia PDF Downloads 2183934 Ergonomics Sallow Recharge Well for Sustainable Ground Water Resources
Authors: Lilik Sudiajeng, Wiraga Wayan, Lanang Parwita I Gusti
Abstract:
This is the ongoing research started in 2013 with the final aim is to design the recharge wells both for housing and industry for ground water conservation in Bali - Indonesia. The research started in Denpasar Regency, one of the strategic areas in Bali. The research showed that there is some critical area of ground water resources, especially in north and west part of Denpasar Regency. It driven by the rapid increase of the tourism industry which is followed by the high rate of population, change of land use that leads to the decreasing of rain water catchment areas, and less awareness on preserve natural resources, including ground water. Focus Group Discussion concluded that in order to solve the problem of groundwater crisis, requires the contribution of all parties, started from making simple recharge well for housing. Because of the availability of land is limited and expensive, it is necessary to present an ergonomic shallow recharge well in accordance with the ability of the family or community. The ergonomics shallow recharge well is designed based on the data of hydrology and the characteristics of soil. The design is very flexible depending on the availability of land, environmentally friendly, energy efficient, culture-based, and affordable. To meet the recommended standard of ground water quality, then it equipped with a filtration and sedimentation ponds. Before design recharge wells is disseminated to the public, it is necessary to analyze the effectiveness of the wells to harvest and absorb rainwater into the ground.Keywords: ergonomics, ground water resources, recharge well, sustainable
Procedia PDF Downloads 2523933 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species
Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie
Abstract:
Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. That is why the need for automation of this task is urgent. A lot of studies have investigated the subject using different standard image processing descriptors and sometimes hand-crafted ones.In this work, we make a comparative study between classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN, Autoencoders, Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approachesKeywords: pollens identification, features extraction, pollens classification, automated palynology
Procedia PDF Downloads 136