Search results for: geo mechanic properties
7862 Elastomer Composites Containing Ionic Liquids
Authors: M. Maciejewska, F. Walkiewicz
Abstract:
The aim of this work was to study the activity of several novel benzalkonium and alkylammonium and alkylimidazolium ionic liquids with 2-mercaptobenzothiazolate for use as accelerators in the sulphur vulcanisation of butadiene-styrene elastomer (SBR). The application of novel ionic liquids allowed for the elimination of N-cyclohexyl-2-benzothiazolesulfenamide from SBR compounds and for the considerable reduction of the amount of 2-mercaptobenzothiazole present in rubber products, which is favourable because, it is an allergenic agent. Synthesised salts could be used alternatively to standard accelerators in the vulcanisation of SBR, without any detrimental effects on the vulcanisation process, the physical properties or the thermal stability of the obtained vulcanisates. Ionic liquids increased the crosslink density of the vulcanisates and improved their thermal stability.Keywords: ionic liquids, mechanical properties, styrene-butadiene rubber, vulcanisation
Procedia PDF Downloads 3127861 Nitrite Sensor Platform Functionalized Reduced Graphene Oxide with Thionine Dye Based
Authors: Nurulasma Zainudin, Mashitah Mohd Yusoff, Kwok Feng Chong
Abstract:
Functionalized reduced graphene oxide is essential importance for their end applications. Chemical functionalization of reduced graphene oxide with strange atoms is a leading strategy to modify the properties of the materials moreover maintains the inherent properties of reduced graphene oxide. A thionine functionalized reduce graphene oxide electrode was fabricated and was used to electrochemically determine nitrite. The electrochemical behaviour of thionine functionalized reduced graphene oxide towards oxidation of nitrite via cyclic voltammetry was studied and the proposed method exhibited enhanced electrocatalytic behaviour.Keywords: nitrite, sensor, thionine, reduced graphene oxide
Procedia PDF Downloads 4447860 Thermal Property of Multi-Walled-Carbon-Nanotube Reinforced Epoxy Composites
Authors: Min Ye Koo, Gyo Woo Lee
Abstract:
In this study, epoxy composite specimens reinforced with multi-walled carbon nanotube filler were fabricated using shear mixer and ultra-sonication processor. The mechanical and thermal properties of the fabricated specimens were measured and evaluated. From the electron microscope images and the results from the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content show better dispersion and higher strength than those of the other specimens. The Young’s moduli of the specimens increased as the contents of the nanotube filler in the matrix were increased. The specimen having a 0.6 wt% nanotube filler content showed higher thermal conductivity than that of the other specimens. While, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value of thermal expansion than that of the other specimens. On the basis of the measured and evaluated properties of the composites, we believe that the simple and time-saving fabrication process used in this study was sufficient to obtain improved properties of the specimens.Keywords: carbon nanotube filler, epoxy composite, ultra-sonication, shear mixer, mechanical property, thermal property
Procedia PDF Downloads 3707859 Synthesis of Star Compounds Bearing a Porphyrin Core and Cholic Acid Units by Using Click Chemistry: Study of the Optical Properties and Aggregation
Authors: Edgar Aguilar-Ortíz, Nicolas Lévaray, Mireille Vonlanthen, Eric G. Morales-Espinoza, Ernesto Rivera, Xiao Xia Zhu
Abstract:
Four new star compounds bearing a porphyrin core and cholic acid units, (TPPh(Zn) tetra-CA, TPPh(2H) tetra-CA, TPPh(Zn) octa-CA and TPPh(2H) octa-CA), have been synthesized using the Click Chemistry approach, which consist on azide-alkyne couplings. These novel functionalized porphyrins were characterized by 1H and 13C NMR spectroscopy and their structure was confirmed by MALDI-TOF. The optical properties of these compounds were studied by absorption and fluorescence spectroscopy. On the other hand, order to evaluate the amphiphilic properties of the cholic acid units combined with the optical response of the porphyrin core, we performed absorption and fluorescence studies in function of the polarity of the environment. It was found that as soon as we increase the polarity of the solvent, the Zn-metallated porphyrins, (TPPh(Zn) tetra-CA and TPPh(Zn) octa-CA), are able to form J aggregates, whereas the free-base porphyrins, TPPh(2H) tetra-CA and TPPh(2H) octa-CA, behaved differently.Keywords: aggregates, amphiphilic, cholic acid, click-chemistry, porphyrin
Procedia PDF Downloads 3057858 Exploring the Application of Additive Manufacturing in the Production of Aerogels for the Purpose of Creating Environmentally Friendly Agricultural Formulations with Controlled Release Properties
Authors: Pram Abhayawardhana, Ali Reza Nazmi, Hossein Najaf Zadeh
Abstract:
This study examines the use of additive manufacturing (AM) to develop sustainable and intelligent agricultural formulations that can gradually release fertilisers. AM offers the ability to design customised formulations with precise geometries and controlled release properties while taking into account their mechanical, chemical, and environmental properties. The study specifically investigates the use of an aerogel matrix mixed with a potential fertiliser in agriculture. Highly porous 3D printed aerogel structures were designed to enable the slow release of fertilisers. The performance of the formulated mixture is evaluated against other commonly used materials for slow-release applications. The findings suggest that the 3D printed gel made has great potential for slow-release fertilisers, providing an environmentally friendly solution for agricultural practices. The combination of AM technology and sustainable materials can play a vital role in mitigating the negative environmental impact of traditional fertilisers, as well as improving the efficiency and sustainability of agricultural production.Keywords: 3D printing, hydrogel, aerogel, fertiliser, agriculture
Procedia PDF Downloads 947857 Synthesis and Characterization of Graphene Composites with Application for Sustainable Energy
Authors: Daniel F. Sava, Anton Ficai, Bogdan S. Vasile, Georgeta Voicu, Ecaterina Andronescu
Abstract:
The energy crisis and environmental contamination are very serious problems, therefore searching for better and sustainable renewable energy is a must. It is predicted that the global energy demand will double until 2050. Solar water splitting and photocatalysis are considered as one of the solutions to these issues. The use of oxide semiconductors for solar water splitting and photocatalysis started in 1972 with the experiments of Fujishima and Honda on TiO2 electrodes. Since then, the evolution of nanoscience and characterization methods leads to a better control of size, shape and properties of materials. Although the past decade advancements are astonishing, for these applications the properties have to be controlled at a much finer level, allowing the control of charge-carrier lives, energy level positions, charge trapping centers, etc. Graphene has attracted a lot of attention, since its discovery in 2004, due to the excellent electrical, optical, mechanical and thermal properties that it possesses. These properties make it an ideal support for photocatalysts, thus graphene composites with oxide semiconductors are of great interest. We present in this work the synthesis and characterization of graphene-related materials and oxide semiconductors and their different composites. These materials can be used in constructing devices for different applications (batteries, water splitting devices, solar cells, etc), thus showing their application flexibility. The synthesized materials are different morphologies and sizes of TiO2, ZnO and Fe2O3 that are obtained through hydrothermal, sol-gel methods and graphene oxide which is synthesized through a modified Hummer method and reduced with different agents. Graphene oxide and the reduced form could also be used as a single material for transparent conductive films. The obtained single materials and composites were characterized through several methods: XRD, SEM, TEM, IR spectroscopy, RAMAN, XPS and BET adsorption/desorption isotherms. From the results, we see the variation of the properties with the variation of synthesis parameters, size and morphology of the particles.Keywords: composites, graphene, hydrothermal, renewable energy
Procedia PDF Downloads 4987856 Effect of Carbon Black Nanoparticles Additive on the Qualities of Fly Ash Based Geopolymer
Authors: Maryam Kiani
Abstract:
The aim of this study was to investigate the influence of carbon black additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of carbon black on the geopolymer binder were evaluated by analyzing the compressive strength, flexural strength, water absorption, and microstructural properties of the cured samples. The results revealed that the inclusion of carbon black additive significantly enhanced the mechanical properties of the geopolymer binder. The compressive and flexural strengths were found to increase with the addition of carbon black, showing improvements of up to 25% and 15%, respectively. Moreover, the water absorption of the geopolymer samples reduced due to the presence of carbon black, indicating improved resistance against water permeability. Microstructural analysis using scanning electron microscopy (SEM) revealed a more compact and homogenous structure in the geopolymer samples with carbon black. The dispersion of carbon black particles within the geopolymer matrix was observed, suggesting improved interparticle bonding and increased densification. Overall, this study demonstrates the positive impact of carbon black additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications.Keywords: fly-ash, carbon black, nanotechnology, geopolymer
Procedia PDF Downloads 1137855 The Next Generation of Mucoadhesive Polymer
Authors: Flavia Laffleur, Andreas Bernkop-Schnürch
Abstract:
Purpose: This study was aimed to investigate preactivated thiomers for their mucoadhesive potential. Methods: Accordingly, chitosan-thioglycolic-mercaptonicotinamide conjugates (chitosan-TGA-MNA) were synthesized by the oxidative S-S coupling of chitosan-thioglycolic acid (chitosan-TGA) with 6-mercaptonicotin amide (MNA). Unmodified chitosan, chitosan-TGA (thiomers) and chitosan-TGA-MNA conjugates were compressed into test discs to investigate cohesive properties, cytotoxicity assays and mucoadhesion studies. Results: Due to the immobilization of MNA, the chitosan-TGA-MNA conjugates exhibit comparatively higher swelling properties and cohesive properties corresponding unmodified chitosan. On the rotating cylinder, discs based on chitosan-TGA-MNA conjugates displayed 3.1-fold improved mucoadhesion time compared to thiolated polymers. Tensile study results were found in good agreement with rotating cylinder results. Moreover, preactivated thiomers showed higher stability. All polymers were found non-toxic over Caco-2 cells. Conclusion: On the basis of achieved results the pre activated thiomeric therapeutic agent seems to represent a promising generation of mucoadhesive polymers which are safe to use for a prolonged residence time to target the mucosa.Keywords: biomedical application, drug delivery, polymer, thiomer
Procedia PDF Downloads 4347854 Properties of Modified Dry Masonry Mixtures for Effective Masonry Units
Authors: Vyacheslav S. Semenov, Tamara A. Rozovskaya
Abstract:
The paper is devoted to the problem of the development of dry light-weight mixtures with hollow ceramics microspheres (CMS) for masonry works. For the one-layer fencing structures including effective masonry units, the use of “warm” masonry mortars is necessary. The used light-weight masonry mortars do not provide the brand strength and thermal uniformity of the fencing structures because of high average density. The CMS are effective light-weight aggregate for such mortars. The influence of the dosage of CMS on the physics-and-mechanics parameters and the technological properties of the masonry mortars were studied. The optimal mixture compositions have been obtained and their main properties have been determined. The influence of an air-entraining admixture and redispersible polymer powders on the average density and physics-and-mechanics parameters of the masonry mortars were studied. The optimal compositions of light-weight dry masonry mixtures with CMS have been suggested.Keywords: dry mortar mixtures, light-weight dry mixtures, hollow ceramics microspheres, masonry mortars, “warm” mortars, air-entraining admixture, redispersible polymer powders
Procedia PDF Downloads 5057853 Crystal Nucleation in 3D Printed Polymer Scaffolds in Tissue Engineering
Authors: Amani Alotaibi
Abstract:
3D printing has emerged as a pivotal technique for scaffold development, particularly in the field of bone tissue regeneration, due to its ability to customize scaffolds to fit complex geometries of bone defects. Among the various methods available, fused deposition modeling (FDM) is particularly promising as it avoids the use of solvents or toxic chemicals during fabrication. This study investigates the effects of three key parameters, extrusion temperature, screw rotational speed, and deposition speed, on the crystallization and mechanical properties of polycaprolactone (PCL) scaffolds. Three extrusion temperatures (70°C, 80°C, and 90°C), three screw speeds (10 RPM, 15 RPM, and 20 RPM), and three deposition speeds (8 mm/s, 10 mm/s, and 12 mm/s) were evaluated. The scaffolds were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and tensile testing to assess changes in crystallinity and mechanical properties. Additionally, the scaffolds were analyzed for crystal size and biocompatibility. The results demonstrated that increasing the extrusion temperature to 80°C, combined with a screw speed of 15 RPM and a deposition speed of 10 mm/s, significantly improved the crystallinity, compressive modulus, and thermal resistance of the PCL scaffolds. These findings suggest that by fine-tuning basic 3D printing parameters, it is possible to modulate the structural and mechanical properties of the scaffold, thereby enhancing its suitability for bone tissue regeneration.Keywords: 3D printing, polymer, scaffolds, tissue engineering, crystallization
Procedia PDF Downloads 27852 Production of Kudzu Starch Gels With Superior Mechanical and Rheological Properties Through Submerged Ethanol Exposure and Implications for in Vitro Digestion
Authors: John-Nelson Ekumah, Xu Han, Qiufang Liang, Benxi Wei, Arif Rashid, Muhammad Safiullah, Abdul Qayum, Selorm Yao-Say Solomon Adade, Nana Adwoa Nkuma Johnson, Abdur Rehman, Xiaofeng Ren
Abstract:
Producing starch gels with superior mechanical attributes remains a challenging pursuit. This research sought to develop a simple method using ethanol exposure to produce robust starch gels. The gels’ mechanical properties, rheology, structural characteristics, and digestion were assessed through textural, rheological, structural, and in vitro digestion analyses. it investigation revealed an improvement in gel’s strength from 62.22 to178.82 g. The thermal transitions were accelerated when ethanol was elevated. The exposure to ethanol resulted in a reduction in syneresis from 11% to 9.5% over a period of 6 hours with noticeable change in size and color. Rheologically, the dominating storage modulus and tan delta (<0.55) emphasized the gel’s improved elasticity. X-ray analysis showed a stable B + V-type pattern after ethanol exposure, with increasing relative crystallinity to 7.9%. Digestibility revealed an ethanol induced resistance, through increased resistant starch from 1.87 to 8.73%. In general, the exposure to ethanol played a crucial role in enhancing the mechanical characteristics of kudzu starch gels, while simultaneously preserving higher levels of resistant starch fractions. These findings have wide-ranging implications in the fields of food and pharmaceuticals, underscoring the extensive academic and industrial importance of this study.Keywords: kudzu starch gels, mechanical properties, rheological properties, submerged ethanol exposure, In vitro digestion
Procedia PDF Downloads 377851 Comparison of Processing Conditions for Plasticized PVC and PVB
Authors: Michael Tupý, Jaroslav Císař, Pavel Mokrejš, Dagmar Měřínská, Alice Tesaříková-Svobodová
Abstract:
The worldwide problem is that the recycled PVB is wildly stored in landfills. However, PVB have very similar chemical properties such as PVC. Moreover, both of them are used in plasticized form. Thus, the thermal properties of plasticized PVC obtained from primary production and the PVB was obtained by recycling of windshields are compared. It is carried out in order to find degradable conditions and decide if blend of PVB/PVC can be processable together. Tested PVC contained 38 % of plasticizer diisononyl phthalate (DINP) and PVB was plasticized with 28 % of triethylene glycol, bis(2-ethylhexanoate) (3GO). Thermal and thermo-oxidative decomposition of both vinyl polymers are compared such as DSC and OOT analysis. The tensile strength analysis is added.Keywords: polyvinyl chloride, polyvinyl butyral, recycling, reprocessing, thermal analysis, decomposition
Procedia PDF Downloads 5147850 Mechanical Properties of Young and Senescence Fibroblast Cells Using Passive Microrheology
Authors: Samira Khalaji, , Fenneke Klein Jan, Kay-E. Gottschalk, Eugenia Makrantonaki, Karin Scharffetter-Kochanek
Abstract:
Biological aging is a multi-dimensional process that takes place over a whole range of scales from the nanoscopic alterations within individual cells, over transformations in tissues and organs and to changes of the whole organism. On the single cell level, aging involves mutation of genes, differences in gene expression levels as well as altered posttranslational modifications of proteins. A variety of proteins is affected, including proteins of the cell cytoskeleton and migration machinery. Previous work quantified the expression of cytoskeleton proteins on the gene and protein levels in senescent and young fibroblasts. Their results show that senescent skin fibroblasts have an upregulated expression of the intermediate filament (IF) protein vimentin in contrast to actin and tubulin, which are downregulated. IFs play an important role in providing mechanical stability of cells. However, the mechanical properties of IFs depending on cellular senescence or age of the donor has not been studied so far. Hence, we employed passive microrheology on primary human dermal fibroblasts from female donors with age of 28 years (young) and 86 years (old) as model of in vivo aging and human normal dermal fibroblast from 11-year old male with CPD 17-35 (young) and CPD 58-59 (senescence) as a model of in vitro replicative senescence. In contrast to the expectations, our primary results show no significant differences in the viscoelastic properties of fibroblasts depending on age of the donor or cellular replicative senescence.Keywords: aging, cytoskeleton, fibroblast, mechanical properties
Procedia PDF Downloads 3207849 Effect of Different Oils on Quality of Deep-fried Dough Stick
Authors: Nuntaporn Aukkanit
Abstract:
The aim of this study was to determine the effect of oils on chemical, physical, and sensory properties of deep-fried dough stick. Five kinds of vegetable oil which were used for addition and frying consist of: palm oil, soybean oil, sunflower oil, rice bran oil, and canola oil. The results of this study showed that using different kinds of oil made significant difference in the quality of deep-fried dough stick. Deep-fried dough stick fried with the rice bran oil had the lowest moisture loss and oil absorption (p≤0.05), but it had some unsatisfactory physical properties (color, specific volume, density, and texture) and sensory characteristics. Nonetheless, deep-fried dough stick fried with the sunflower oil had moisture loss and oil absorption slightly more than the rice bran oil, but it had almost higher physical and sensory properties. Deep-fried dough sticks together with the sunflower oil did not have different sensory score from the palm oil, commonly used for production of deep-fried dough stick. These results indicated that addition and frying with the sunflower oil are appropriate for the production of deep-fried dough stick.Keywords: deep-fried dough stick, palm oil, sunflower oil, rice bran oil
Procedia PDF Downloads 2817848 The Normal-Generalized Hyperbolic Secant Distribution: Properties and Applications
Authors: Hazem M. Al-Mofleh
Abstract:
In this paper, a new four-parameter univariate continuous distribution called the Normal-Generalized Hyperbolic Secant Distribution (NGHS) is defined and studied. Some general and structural distributional properties are investigated and discussed, including: central and non-central n-th moments and incomplete moments, quantile and generating functions, hazard function, Rényi and Shannon entropies, shapes: skewed right, skewed left, and symmetric, modality regions: unimodal and bimodal, maximum likelihood (MLE) estimators for the parameters. Finally, two real data sets are used to demonstrate empirically its flexibility and prove the strength of the new distribution.Keywords: bimodality, estimation, hazard function, moments, Shannon’s entropy
Procedia PDF Downloads 3487847 Structural, Magnetic, Electrical and Dielectric Properties of Pr0.8Na0.2MnO3 Manganite
Authors: H. Ben Khlifa, W. Cheikhrouhou, R. M'nassri
Abstract:
The Orthorhombic Pr0.8Na0.2MnO3 ceramic was prepared in Polycrystalline form by a Pechini sol–gel method and its structural, magnetic, electrical, and dielectric properties were investigated experimentally. A structural study confirms that the sample is a single phase. Magnetic measurements show that the sample is a charge ordered Manganite. The sample undergoes two successive magnetic phase transitions with the variation of temperature: a charge ordering transition occurred at TCO = 212 K followed by a Paramagnetic (PM) to ferromagnetic (FM) transition around TC = 115 K. From an electrical point of view, a saturation region was marked in the conductivity as a function of Temperature s(T) curves at a specific temperature. The dc-conductivity (sdc) reaches a maximum value at 240 K. The obtained results are in good agreement with the temperature dependence of the average normalized change (ANC). We found that the conduction mechanism was governed by small polaron hopping (SPH) in the high-temperature region and by variable range hopping (VRH) in the low-temperature region. Complex impedance analysis indicates the presence of a non-Debye relaxation phenomenon in the system. Also, the compound was modeled by an electrical equivalent circuit. Then, the contribution of the grain boundary in the transport properties was confirmed.Keywords: manganites, preparation methods, magnetization, magnetocaloric effect, electrical and dielectric
Procedia PDF Downloads 1737846 Improving Alginate Bioink by Recombinant Spider-Silk Biopolymer
Authors: Dean Robinson, Miriam Gublebank, Ella Sklan, Tali Tavor Re'em
Abstract:
Alginate, a natural linear polysaccharide polymer extracted from brown seaweed, is extensively applied due to its biocompatibility, all- aqueous ease of handling, and relatively low costs. Alginate easily forms a hydrogel when crosslinked with a divalent ion, such as calcium. However, Alginate hydrogel holds low mechanical properties and is cell-inert. To overcome these drawbacks and to improve alginate as a bio-ink for bioprinting, we produced a new alginate matrix combined with spider silk, one of the most resilient, elastic, strong materials known to men. Recombinant spider silk biopolymer has a sponge-like structure and is known to be biocompatible and non-immunogenic. Our results indicated that combining synthetic spider-silk into bio-printed cell-seeded alginate hydrogels resulted in improved properties compared to alginate: improved mechanical properties of the matrix, achieving a tunable gel viscosity and high printability, alongside prolonged and higher cell viability in culture, probably due to the improved cell-matrix interactions. The new bio-ink was then used for bilayer bioprinting of epithelial and stromal endometrial cells. Such a co-culture model will be used for the formation of the complex endometrial tissue for studying the embryo implantation process.Keywords: cell culture, tissue engineering, spider silk, alginate, bioprinting
Procedia PDF Downloads 1977845 GGA-PBEsol+TB-MBJ Studies of SrxPb1-xS Ternary Semiconductor Alloys
Authors: Y. Benallou, K. Amara, O. Arbouche
Abstract:
In this paper, we report a density functional study of the structural, electronic and elastic properties of the ordered phases of SrxPb1-xS ternary semiconductor alloys namely rocksalt compounds: PbS and SrS and the rocksalt-based compounds: SrPb3S4, SrPbS2, and Sr3PbS4. These First-principles calculations have been performed using the full potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation developed by Perdew–Burke–Ernzerhor for solids (PBEsol). The calculated structural parameters like the lattice parameters, the bulk modulus B and their pressure derivative B' are in reasonable agreement with the available experimental and theoretical data. In addition, the elastic properties such as elastic constants (C11, C12, and C44), the shear modulus G, the Young modulus E, the Poisson’s ratio ν and the B/G ratio are also given. For the electronic properties calculations, the exchange and correlation effects were treated by the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential to prevent the shortcoming of the underestimation of the energy gaps in both LDA and GGA approximations. The obtained results are compared to available experimental data and to other theoretical calculations.Keywords: SrxPb1-xS, GGA-PBEsol+TB-MBJ, density functional, Perdew–Burke–Ernzerhor, FP-LAPW
Procedia PDF Downloads 3967844 Blend of Polyamide 6 with Polybutylene Terephthalate Compatibilized with Epoxidized Natural Rubber (ENR-25) and N Butyl Acrylate Glycidyl Methacrylate Ethylene (EBa-GMA)
Authors: Ramita Vongrat, Pornsri Sapsrithong, Manit Nithitanakul
Abstract:
In this work, blends of polyamide 6 (PA6) and polybutylene terephthalate (PBT) were successfully prepared. The effect of epoxidized natural rubber (ENR-25) and n butyl acrylate glycidyl methacrylate ethylene (EBa-GMA) as a compatibilizer on properties of PA6/PBT blends was also investigated by varying amount of ENR-50 and EBa-GMA, i.e., 0, 0.1, 0.5, 5 and 10 phr. All blends were prepared and shaped by using twin-screw extruder at 230 °C and injection molding machine, respectively. All test specimens were characterized by phase morphology, impact strength, tensile, flexural properties, and hardness. The results exhibited that phase morphology of PA6/PBT blend without compatibilizer was incompatible. This could be attributed to poor interfacial adhesion between the two polymers. SEM micrographs showed that the addition of ENR-25 and EBa-GMA improved the compatibility of PA6/PBT blends. With the addition of ENR-50 as a compatibilizer, the uniformity and the maximum reduction of dispersed phase size were observed. Additionally, the results indicate that, as the amount of ENR-25 increased, and EBa-GMA increased, the mechanical properties, including stress at the peak, tensile modulus, and izod impact strength, were also improved.Keywords: EBa-GMA, epoxidized natural rubber-25, polyamide 6, polybutylene terephthalate
Procedia PDF Downloads 1697843 Durability Study of Binary Blended High Performance Concrete
Authors: Vatsal Patel, Niraj Shah
Abstract:
This paper presents the results of a laboratory study on the properties of binary blended High Performance cementitious systems containing blends of ordinary Portland cement (OPC), Porcelain Powder or Marble Powder blend proportions of 100:00, 95:05, 90:10, 85:15, 80:20 for OPC: Porcelain Powder/Marble Powder. Studies on the Engineering Properties of the cementitious concrete, namely compressive strength, flexural strength, sorptivity, rapid chloride penetration test and accelerated corrosion test have been performed and those of OPC concrete. The results show that the inclusion of Porcelain powder or Marble Powder as binary blended cement alters to a great degree the properties of the binder as well as the resulting concrete. In addition, the results show that the Porcelain powder with 85:15 proportions and Marble powder with 90:10 proportions as binary systems to produce high-performance concrete could potentially be used in the concrete construction industry particular in lowering down the volume of OPC used and lowering emission of CO2 produces during manufacturing of cement.Keywords: accelerated corrosion, binary blended cementitious system, rapid chloride penetration, sorptivity
Procedia PDF Downloads 3867842 Magnetomechanical Effects on MnZn Ferrites
Authors: Ibrahim Ellithy, Mauricio Esguerra, , Rewanth Radhakrishnan
Abstract:
In this study, the effects of hydrostatic stress on the magnetic properties of MnZn ferrite rings of different power grades, were measured and analyzed in terms of the magneto-mechanical effect on core losses was modeled via the Hodgdon-Esguerra hysteresis model. The results show excellent agreement with the model and a correlation between the permeability drop and the core loss increase in dependence of the material grade properties. These results emphasize the vulnerabilities of MnZn ferrites when subjected to mechanical perturbations, especially in real-world scenarios like under-road embedding for WPT.Keywords: hydrostatic stress, power ferrites, core losses, wireless power transfer
Procedia PDF Downloads 707841 Well Stability Analysis Based on Geomechanical Properties of Formations in One of the Wells of Haftgol Oil Field, Iran
Authors: Naser Ebadati
Abstract:
introductory statement: Drilling operations in oil wells often involve significant risks due to varying azimuths, slopes, and the passage through layers with different lithological properties. As a result, maintaining well stability is crucial. Instability in wells can lead to costly well losses, interrupted drilling operations, and halted production from reservoirs. Objective: One of the key challenges in drilling operations is ensuring the stability of the wellbore, particularly in loose and low-resistance formations. These factors make the analysis and evaluation of well stability essential. Therefore, building a geo mechanical model for a hydrocarbon field or reservoir requires both a stress field model and a mechanical properties model of the geological formations. Numerous studies have focused on analyzing the stability of well walls, an issue known as well instability. This study aims to analyze the stability and the safe mud weight window for drilling in one of the oil fields in southern Iran. Methodology: In wellbore stability analysis, it is essential to consider the stress field model, which includes values and directions of the three principal stresses, and the mechanical properties model, which covers elastic properties and rock fracture characteristics. Wellbore instability arises from mechanical failure of the rock. Well stability can be maintained by adjusting the drilling mud weight. This study investigates wellbore stability using field data. The lithological characteristics of the well mainly consist of limestone, dolomite, and shale, as determined from log data. Wellbore logging was conducted throughout the well to calculate the required drilling mud pressure using the Mohr-Coulomb criterion. Findings: The results indicate that the safe and stable drilling mud window ranges between 17.13 MPa and 27.80 MPa. By comparing and calculating induced stresses, it was determined that the wellbore wall primarily exhibits shear fractures in the form of wide shear fractures and tensile fractures in the form of radial tensile fractures.Keywords: drilling mud weight, formation evaluation, sheer strees, safe window
Procedia PDF Downloads 47840 The Influence of Cellulose Nanocrystal (CNC) on the Mechanical Properties and Workability of Oil Well Cement
Authors: Mohammad Reza Dousti, Yaman Boluk, Vivek Bindiganavile
Abstract:
Well cementing is one of the most crucial and important steps in any well completion. Oil well cement paste is employed to fill the annulus between the casing string and the well bore. However, since the cementing process takes place at the end of the drilling process, a satisfying and acceptable job may not be performed. During the cementing process, the cement paste must be pumped in the annulus, therefore concerns arise both in the workability and the flowability associated with the paste. On the other hand, the cement paste around the casing must demonstrate the adequate compressive strength in order to provide a suitable mechanical support for the casing and desirably prevent collapse of the formation. In this experimental study, the influence of cellulose nanocrystal particles on the workability, flowability and also mechanical properties of oil well cement paste has been investigated. The cementitious paste developed in this research is composed of water, class G oil well cement, bentonite and cellulose nanocrystals (CNC). Bentonite is used as a cross contamination component. Two method of testing were considered to understand the flow behavior of the samples: (1) a mini slump test and (2) a conventional flow table test were utilized to study the flowability of the cementitious paste under gravity and also under applied load (number of blows for the flow table test). Furthermore, the mechanical properties of hardened oil well cement paste dosed with CNC were assessed by performing a compression test on cylindrical specimens. Based on the findings in this study, the addition of CNC led to developing a more viscous cement paste with a reduced spread diameter. Also, by introducing a very small dosage of CNC particles (as an additive), a significant increase in the compressive strength of the oil well cement paste was observed.Keywords: cellulose nanocrystal, cement workability, mechanical properties, oil well cement
Procedia PDF Downloads 2597839 Determination of Thermophysical Properties of Water Based Magnetic Nanofluids
Authors: Eyüphan Manay, Bayram Sahin, Emre Mandev, Ibrahim Ates, Tuba Yetim
Abstract:
In this study, it was aimed to determine the thermophysical properties of two different magnetic nanofluids (NiFe2O4-water and CoFe2O4-water). Magnetic nanoparticles were dispersed into the pure water at different volume fractions from 0 vol.% to 4 vol.%. The measurements were performed in the temperature range of 15 oC-55 oC. In order to get better idea on the temperature dependent thermophysical properties of magnetic nanofluids (MNFs), viscosity and thermal conductivity measurements were made. SEM images of both NiFe2O4 and CoFe2O4 nanoparticles were used in order to confirm the average dimensions. The measurements showed that the thermal conductivity of MNFs increased with an increase in the volume fraction as well as viscosity. Increase in the temperature of both MNFs resulted in an increase in the thermal conductivity and a decrease in the viscosity. Based on the measured data, the correlations for both the viscosity and the thermal conductivity were presented with respect to solid volume ratio and temperature. Effective thermal conductivity of the prepared MNFs was also calculated. The results indicated that water based NiFe2O4 nanofluid had higher thermal conductivity than that of the CoFe2O4. Once the viscosity values of both MNFs were compared, almost no difference was observed.Keywords: magnetic nanofluids, thermal conductivity, viscosity, nife2o4-water, cofe2o4-water
Procedia PDF Downloads 2617838 Diffusion Treatment of Niobium and Molybdenum on Pur Titanium and Titanium Alloy Ti-64al and Their Properties
Authors: Kaouka Alaeddine, K. Benarous
Abstract:
This study aims to obtain a surface of pure titanium and titanium alloy Ti-64Al with high performance by the diffusion process. Two agents metal alloy have been used in this treatment, niobium (Nb) and molybdenum (Mo), spread on elemental titanium and Ti-64Al alloy. Nb and Mo are used as powder form to increase the contact surface and to improve the distribution. Both Mo and Nb are distributed on samples of Ti and Ti-64Al at 1100 °C and 1200 °C for 3 h. They were performed to effect different experiments objectives. This work was achieved to improve some properties and microstructure of Ti and Ti-64Al surface, using optical microscopy and SEM and study some mechanical properties. The effects of temperature and the powder contents on the microstructure of Ti and Ti-64Al alloy, different phases and hardness value of Ti and Ti-64Al alloy were determined. Experimental results indicate that increasing the powder contents and/or the temperature, the α + β phases change to the equiaxed β lamellar structure. In particular, experiments in 1200 °C were created by diffusion α + β phases both equiaxed β phase laminar and α + β phase, thus meeting the objectives were established in the work. In addition, simulation results are used for comparison with the experimental results by DICTRA software.Keywords: diffusion, powder metallurgy, titanium alloy, molybdenum, niobium
Procedia PDF Downloads 1477837 Electrical Resistivity of Solid and Liquid Pt: Insight into Electrical Resistivity of ε-Fe
Authors: Innocent C. Ezenwa, Takashi Yoshino
Abstract:
Knowledge of the transport properties of Fe and its alloys at extreme high pressure (P), temperature (T) conditions are essential for understanding the generation and sustainability of the magnetic field of the rocky planets with a metallic core. Since Pt, an unfilled d-band late transition metal with an electronic structure of Xe4f¹⁴5d⁹6s¹, is paramagnetic and remains close-packed structure at ambient conditions and high P-T, it is expected that its transport properties at these conditions would be similar to those of ε-Fe. We investigated the T-dependent electrical resistivity of solid and liquid Pt up to 8 GPa and found it constant along its melting curve both on the liquid and solid sides in agreement with theoretical prediction and experimental results estimated from thermal conductivity measurements. Our results suggest that the T-dependent resistivity of ε-Fe is linear and would not saturate at high P, T conditions. This, in turn, suggests that the thermal conductivity of liquid Fe at Earth’s core conditions may not be as high as previously suggested by models employing saturation resistivity. Hence, thermal convection could have powered the geodynamo before the birth of the inner core. The electrical resistivity and thermal conductivity on the liquid and solid sides of the inner core boundary of the Earth would be significantly different in values.Keywords: electrical resistivity, thermal conductivity, transport properties, geodynamo and geomagnetic field
Procedia PDF Downloads 1437836 Influence of Metakaolin and Cements Types on Compressive Strength and Transport Properties of Self-Consolidating Concrete
Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi
Abstract:
The self-consolidating concrete (SCC) performance over ordinary concrete is generally related to the ingredients used. The metakaolin can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three types of Portland cement and metakaolin on compressive strength and transport properties of SCC at early ages and up to 90 days. Six concrete mixtures were prepared with three types of different cements and substitution of 15% metakaolin. The results show that the highest value of compressive strength was achieved for Portland Slag Cement (PSC) and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for Pozzolanic Portland Cement (PPC) and containing 15% metakaolin. As can be seen in the results, compressive strength in SCC containing Portland cement type II with metakaolin is higher compared to that relative to SCC without metakaolin from 28 days of age. On the other hand, the samples containing PSC and PPC with metakaolin had a lower compressive strength than the plain samples. Therefore, it can be concluded that metakaolin has a negative effect on the compressive strength of SCC containing PSC and PPC. In addition, results show that metakaolin has enhanced chloride durability of SCCs and reduced capillary water absorption at 28, 90 days.Keywords: SCC, metakaolin, cement type, compressive strength, chloride diffusion
Procedia PDF Downloads 2207835 Effect of Chilling on Soundness, Micro Hardness, Ultimate Tensile Strength, and Corrosion Behavior of Nickel Alloy-Fused Silica Metal Matrix Composite
Authors: G. Purushotham, Joel Hemanth
Abstract:
An investigation has been carried out to fabricate and evaluate the strength and soundness of chilled composites consisting of nickel matrix and fused silica particles (size 40–150 μm) in the matrix. The dispersoid added ranged from 3 to 12 wt. % in steps of 3%. The resulting composites cast in moulds containing metallic and non-metallic chill blocks (MS, SiC, and Cu) were tested for their microstructure and mechanical properties. The main objective of the present research is to obtain fine grain Ni/SiO2 chilled sound composite having very good mechanical properties. Results of the investigation reveal the following: (1) Strength of the composite developed is highly dependent on the location of the casting from where the test specimens are taken and also on the dispersoid content of the composite. (2) Chill thickness and chill material, however, does significantly affect the strength and soundness of the composite. (3) Soundness of the composite developed is highly dependent on the chilling rate as well as the dispersoid content. An introduction of chilling and increase in the dispersoid content of the material both result in an increase in the ultimate tensile strength (UTS) of the material. The temperature gradient developed during solidification and volumetric heat capacity (VHC) of the chill used is the important parameters controlling the soundness of the composite. (4) Thermal properties of the end chills are used to determine the magnitude of the temperature gradient developed along the length of the casting solidifying under the influence of chills.Keywords: metal matrix composite, mechanical properties, corrosion behavior, nickel alloy, fused silica, chills
Procedia PDF Downloads 3987834 Using 3-Glycidoxypropyltrimethoxysilane Functionalized Silica Nanoparticles to Improve Flexural Properties of E-Glass/Epoxy Grid-Stiffened Composite Panels
Authors: Reza Eslami-Farsani, Hamed Khosravi, Saba Fayazzadeh
Abstract:
Lightweight and efficient structures have the aim to enhance the efficiency of the components in various industries. Toward this end, composites are one of the most widely used materials because of durability, high strength and modulus, and low weight. One type of the advanced composites is grid-stiffened composite (GSC) structures which have been extensively considered in aerospace, automotive, and aircraft industries. They are one of the top candidates for replacing some of the traditional components which are used here. Although there are a good number of published surveys on the design aspects and fabrication of GSC structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Matrix modification using nanoparticles is an effective method to enhance the flexural properties of the fibrous composites. In the present study, a silane coupling agent (3-glycidoxypropyltrimethoxysilane/3-GPTS) was introduced onto the silica (SiO2) nanoparticle surface and its effects on the three-point flexural response of isogrid E-glass/epoxy composites were assessed. Based on the fourier transform infrared spectrometer (FTIR) spectra, it was inferred that the 3-GPTS coupling agent was successfully grafted onto the surface of SiO2 nanoparticles after modification. Flexural test revealed an improvement of 16%, 14%, and 36% in stiffness, maximum load and energy absorption of the isogrid specimen filled with 3 wt.% 3-GPTS/SiO2 compared to the neat one. It would be worth mentioning that in these structures, a considerable energy absorption was observed after the primary failure related to the load peak. Also, 3-GPTMS functionalization had a positive effect on the flexural behavior of the multiscale isogrid composites. In conclusion, this study suggests that the addition of modified silica nanoparticles is a promising method to improve the flexural properties of the grid-stiffened fibrous composite structures.Keywords: isogrid-stiffened composite panels, silica nanoparticles, surface modification, flexural properties, energy absorption
Procedia PDF Downloads 2487833 Calculated Structural and Electronic Properties of Mg and Bi
Authors: G. Patricia Abdel Rahim, Jairo Arbey Rodriguez M, María Guadalupe Moreno Armenta
Abstract:
The present study shows the structural, electronic and magnetic properties of magnesium (Mg) and bismuth (Bi) in a supercell (1X1X5). For both materials were studied in five crystalline structures: rock salt (NaCl), cesium chloride (CsCl), zinc-blende (ZB), wurtzite (WZ), and nickel arsenide (NiAs), using the Density Functional Theory (DFT), the Generalized Gradient Approximation (GGA), and the Full Potential Linear Augmented Plane Wave (FP-LAPW) method. By means of fitting the Murnaghan's state equation we determine the lattice constant, the bulk modulus and it's derived with the pressure. Also we calculated the density of states (DOS) and the band structure.Keywords: bismuth, magnesium, pseudo-potential, supercell
Procedia PDF Downloads 822