Search results for: gender classification
3517 Classification of Health Information Needs of Hypertensive Patients in the Online Health Community Based on Content Analysis
Authors: Aijing Luo, Zirui Xin, Yifeng Yuan
Abstract:
Background: With the rapid development of the online health community, more and more patients or families are seeking health information on the Internet. Objective: This study aimed to discuss how to fully reveal the health information needs expressed by hypertensive patients in their questions in the online environment. Methods: This study randomly selected 1,000 text records from the question data of hypertensive patients from 2008 to 2018 collected from the website www.haodf.com and constructed a classification system through literature research and content analysis. This paper identified the background characteristics and questioning the intention of each hypertensive patient based on the patient’s question and used co-occurrence network analysis to explore the features of the health information needs of hypertensive patients. Results: The classification system for health information needs of patients with hypertension is composed of 9 parts: 355 kinds of drugs, 395 kinds of symptoms and signs, 545 kinds of tests and examinations , 526 kinds of demographic data, 80 kinds of diseases, 37 kinds of risk factors, 43 kinds of emotions, 6 kinds of lifestyles, 49 kinds of questions. The characteristics of the explored online health information needs of the hypertensive patients include: i)more than 49% of patients describe the features such as drugs, symptoms and signs, tests and examinations, demographic data, diseases, etc. ii) these groups are most concerned about treatment (77.8%), followed by diagnosis (32.3%); iii) 65.8% of hypertensive patients will ask doctors online several questions at the same time. 28.3% of the patients are very concerned about how to adjust the medication, and they will ask other treatment-related questions at the same time, including drug side effects, whether to take drugs, how to treat a disease, etc.; secondly, 17.6% of the patients will consult the doctors online about the causes of the clinical findings, including the relationship between the clinical findings and a disease, the treatment of a disease, medication, and examinations. Conclusion: In the online environment, the health information needs expressed by Chinese hypertensive patients to doctors are personalized; that is, patients with different background features express their questioning intentions to doctors. The classification system constructed in this study can guide health information service providers in the construction of online health resources, to help solve the problem of information asymmetry in communication between doctors and patients.Keywords: online health community, health information needs, hypertensive patients, doctor-patient communication
Procedia PDF Downloads 1193516 Gender Differences in the Impact and Subjective Interpretation of Childhood Sexual Abuse Survivors
Authors: T. Borja-Alvarez, V. Jiménez-Borja, M. Jiménez Borja, C. J. Jiménez-Mosquera
Abstract:
Research on child sexual abuse has predominantly focused on female survivors. This has resulted in less research looking at the particular context in which this abuse takes place for boys and the impact this abuse may have on male survivors. The aim of this study is to examine the sex and age of the perpetrators of child sexual abuse and explore gender differences in the impact along with the subjective interpretation that survivors attribute to these experiences. The data for this study was obtained from Ecuadorian university students (M = 230, F = 293) who reported sexual abuse using the ISPCAN Child Abuse Screening Tool Retrospective version (ICAST-R). Participants completed Horowitz's Impact of Event Scale (IES) and were also requested to choose among neutral, positive, and negative adjectives to describe these experiences. The results indicate that in the case of males, perpetrators were both males (adults =27%, peers =20%, relatives =10.3%, cousins =7.4%) and young females (girlfriends or ex-girlfriends =25.6%, neighborhood =20.7%, school =16.7%, cousins =15.3%, strangers =12.8%). In contrast, almost all females reported that adult males were the perpetrators (relatives =29.6%, neighborhood =11.9%, strangers =19.9%, family friends =9.7%). Regarding the impact of these events, significant gender differences emerged. More females (50%) than males (20%) presented symptoms of post-traumatic stress disorder (PTSD). Gender differences also surfaced in the way survivors interpret their experiences. Almost half of the male participants selected the word “consensual” followed by the words “normal”, “helped me to mature”, “shameful”, “confusing”, and “traumatic”. In contrast, almost all females chose the word “non-consensual” followed by the words “shameful”, “traumatic”, “scary”, and “confusing”. In conclusion, the findings of this study suggest that young females and adult males were the most common perpetrators of sexually abused boys whereas adult males were the most common perpetrators of sexually abused girls. The impact and the subjective interpretation of these experiences were more negative for girls than for boys. The factors that account for the gender differences in the impact and the interpretation of these experiences need further exploration. It is likely that the cultural expectations of sexual behaviors for boys and girls in Latin American societies may partially explain the differential impact in the way these childhood sexual abuse experiences are interpreted in adulthood. In Ecuador, as is the case in other Latin American countries, the machismo culture not only accepts but encourages early sexual behaviors in boys and negatively judges premature sexual behavior in females. The result of these different sexual expectations may be that sexually abused boys may re-define these experiences as “consensual” and “normal” in adulthood, even though these were not consensual at the time of occurrence. Future studies are needed to more deeply understand the different contexts of sexual abuse for boys and girls in order to analyze the long-term impact of these experiences.Keywords: abuse, child, gender differences, sexual
Procedia PDF Downloads 1043515 Stress, Anxiety and Its Associated Factors Within the Transgender Population of Delhi: A Cross-Sectional Study
Authors: Annie Singh, Ishaan Singh
Abstract:
Background: Transgenders are people who have a gender identity different from their sex assigned at birth. Their gender behaviour doesn’t match their body anatomy. The community faces discrimination due to their gender identity all across the world. The term transgender is an umbrella term for many people non-conformal to their biological identity; note that the term transgender is different from gender dysphoria, which is a DSM-5 disorder defined as problems faced by an individual due to their non-conforming gender identity. Transgender people have been a part of Indian culture for ages yet have continued to face exclusion and discrimination in society. This has led to the low socio-economic status of the community. Various studies done across the world have established the role of discrimination, harassment and exclusion in the development of psychological disorders. The study is aimed to assess the frequency of stress and anxiety in the transgender population and understand the various factors affecting the same. Methodology: A cross-sectional survey of self consenting transgender individuals above the age of 18 residing in Delhi was done to assess their socioeconomic status and experiential ecology. Recruitment of participants was done with the help of NGOs. The survey was constructed GAD-7 and PSS-10, two well-known scales were used to assess the stress and anxiety levels. Medians, means and ranges are used for reporting continuous data wherever required, while frequencies and percentages are used for categorical data. For associations and comparison between groups in categorical data, the Chi-square test was used, while the Kruskal-Wallis H test was employed for associations involving multiple ordinal groups. SPSS v28.0 was used to perform the statistical analysis for this study. Results: The survey showed that the frequency of stress and anxiety is high in the transgender population. A demographic survey indicates a low socio-economic background. 44% of participants reported facing discrimination on a daily basis; the frequency of discrimination is higher in transwomen than in transmen. Stress and anxiety levels are similar among both transmen and transwomen. Only 34.5% of participants said they had receptive family or friends. The majority of participants (72.7%) reported a positive or neutral experience with healthcare workers. The prevalence of discrimination is significantly lower in the higher educated groups. Analysis of data shows a positive impact of acceptance and reception on mental health, while discrimination is correlated with higher levels of stress and anxiety. Conclusion: The prevalence of widespread transphobia and discrimination faced by the transgender community has culminated in high levels of stress and anxiety in the transgender population and shows variance according to multiple socio-demographic factors. Educating people about the LGBT community formation of support groups, policies and laws are required to establish trust and promote integration.Keywords: transgender, gender, stress, anxiety, mental health, discrimination, exclusion
Procedia PDF Downloads 1113514 Islam, Gender and Education in Contemporary Georgia: The Example of Kvemo Kartli
Authors: N. Gelovani, D. Ismailov, S. Bochorishvili
Abstract:
Religious minorities of Georgia include Muslims. Their composition is sufficiently miscellaneous, enclosing both ethnical viewpoint and belonging to the inner Islamic denomination. A majority of Muslims represent Azerbaijanis, who chiefly live in Kvemo Kartli (Bolnisi, Gardabani, Dmanisi, Tetri Tskaro, Marneuli and Tsalka). The catalyst for researchers of Islamic History is the geopolitical interests of Georgia, centuries-old contacts with the Islamic world, the not entirely trivial portion of Islam confessor population, the increasing influence of the Islamic factor in current religious-political processes in the world, the elevating procedure of Muslim religious self-consciousness in the Post-Soviet states, significant challenges of international terrorism, and perspectives of rapid globalization. The rise in the level of religious identity of Muslim citizens of Georgia (first of all of those who are not ethnic Georgians) is noticeable. New mosques have been constructed and, sometimes, even young people are being sent to the religious educational institutions of Muslim countries to gain a higher Islamic education. At a time when gender studies are substantive, the goal of which is to eliminate gender-based discrimination and violence in societies, it is essential in Georgia to conduct researches around the concrete problem – Islamic tradition, woman and education in Georgia. A woman’s right to education is an important indicator of women’s general status in a society. The appropriate resources, innovative analysis of Georgian ethnological materials, and surveying of the population (quantitative and qualitative research reports, working papers), condition the success of these researches. In the presented work, interrelation matters of Islam, gender and education in contemporary Georgia by the example of the Azerbaijani population in Kvemo Kartli during period 1992-2016 are studied. We researched the history of Muslim religious education centers in Tbilisi and Kvemo Kartli (Bolnisi, Gardabani, Dmanisi, Tetri Tskaro, Marneuli and Tsalka) in 1992-2016, on the one hand, and the results of sociological interrogation, on the other. As a result of our investigation, we found that Azeri women in the Kvemo Kartli (Georgia) region mostly receive their education in Georgia and Azerbaijan. Educational and Cultural Institutions are inaccessible for most Azeri women. The main reasons are the absence of educational and religious institutions at their places of residence and state policies towards Georgia’s Muslims.Keywords: Islam, gender, Georgia, education
Procedia PDF Downloads 2273513 Effect of Gender on Carcass Parameters in Japanese Quail
Authors: M. Bolacali
Abstract:
This study was conducted to determine the effects of and sex on the carcass characteristics in Japanese quails. A total of 320 (160 for each sex groups) one-day-old quail chicks were randomly allocated to the sex groups, each containing 160 chicks according to a completely randomized design. Each gender was then divided into five replicate groups of 32 chicks. According to sex groups, the chicks of all replicate groups were housed in cages. The normality of distribution for all data was tested with the Shapiro-Wilk test at 95% confidence interval. A P value of ≤ 0.05 was interpreted as different. The statistical analysis for normal distribution data of the dietary groups was carried out with the general linear model procedure of SPSS software. The results are expressed as mean ± standard deviation of five replications. Duncan’s multiple range test was used for multiple comparisons in important groups. Data points bearing different letters are significantly different P ≤ 0.05. For the distribution of data that was different from normal, Kruskal Wallis H-Test was applied as a nonparametric test, and the results were expressed as median, minimum and maximum values. Pairwise comparisons of groups were made when Kruskal Wallis H-Test was significant. The study period lasted 42 days. Hot carcass, cold carcass, heart, and leg percentages in male quails was higher than female quails (P < 0.05), but liver, and breast percentages in female quails was higher than male quails (P > 0.05). The highest slaughter and carcass weight values were determined in the female quails in the cage. As a conclusion, it may be recommended to quail meat producers, who would like to obtain higher carcass weight to make more economic profit, to raise female quails in cage.Keywords: carcass yield, chick, gender, management
Procedia PDF Downloads 1883512 Early-Warning Lights Classification Management System for Industrial Parks in Taiwan
Authors: Yu-Min Chang, Kuo-Sheng Tsai, Hung-Te Tsai, Chia-Hsin Li
Abstract:
This paper presents the early-warning lights classification management system for industrial parks promoted by the Taiwan Environmental Protection Administration (EPA) since 2011, including the definition of each early-warning light, objectives, action program and accomplishments. All of the 151 industrial parks in Taiwan were classified into four early-warning lights, including red, orange, yellow and green, for carrying out respective pollution management according to the monitoring data of soil and groundwater quality, regulatory compliance, and regulatory listing of control site or remediation site. The Taiwan EPA set up a priority list for high potential polluted industrial parks and investigated their soil and groundwater qualities based on the results of the light classification and pollution potential assessment. In 2011-2013, there were 44 industrial parks selected and carried out different investigation, such as the early warning groundwater well networks establishment and pollution investigation/verification for the red and orange-light industrial parks and the environmental background survey for the yellow-light industrial parks. Among them, 22 industrial parks were newly or continuously confirmed that the concentrations of pollutants exceeded those in soil or groundwater pollution control standards. Thus, the further investigation, groundwater use restriction, listing of pollution control site or remediation site, and pollutant isolation measures were implemented by the local environmental protection and industry competent authorities; the early warning lights of those industrial parks were proposed to adjust up to orange or red-light. Up to the present, the preliminary positive effect of the soil and groundwater quality management system for industrial parks has been noticed in several aspects, such as environmental background information collection, early warning of pollution risk, pollution investigation and control, information integration and application, and inter-agency collaboration. Finally, the work and goal of self-initiated quality management of industrial parks will be carried out on the basis of the inter-agency collaboration by the classified lights system of early warning and management as well as the regular announcement of the status of each industrial park.Keywords: industrial park, soil and groundwater quality management, early-warning lights classification, SOP for reporting and treatment of monitored abnormal events
Procedia PDF Downloads 3263511 Predicting Expectations of Non-Monogamy in Long-Term Romantic Relationships
Authors: Michelle R. Sullivan
Abstract:
Positive romantic relationships and marriages offer a buffer against a host of physical and emotional difficulties. Conversely, poor relationship quality and marital discord can have deleterious consequences for individuals and families. Research has described non-monogamy, infidelity, and consensual non-monogamy, as both consequential and causal of relationship difficulty, or as a unique way a couple strives to make a relationship work. Much research on consensual non-monogamy has built on feminist theory and critique. To the author’s best knowledge, to date, no studies have examined the predictive relationship between individual and relationship characteristics and expectations of non-monogamy. The current longitudinal study: 1) estimated the prevalence of expectations of partner non-monogamy and 2) evaluated whether gender, sexual identity, age, education, how a couple met, and relationship quality were predictive expectations of partner non-monogamy. This study utilized the publically available longitudinal dataset, How Couples Meet and Stay Together. Adults aged 18- to 98-years old (n=4002) were surveyed by phone over 5 waves from 2009-2014. Demographics and how a couple met were gathered through self-report in Wave 1, and relationship quality and expectations of partner non-monogamy were gathered through self-report in Waves 4 and 5 (n=1047). The prevalence of expectations of partner non-monogamy (encompassing both infidelity and consensual non-monogamy) was 4.8%. Logistic regression models indicated that sexual identity, gender, education, and relationship quality were significantly predictive of expectations of partner non-monogamy. Specifically, male gender, lower education, identifying as lesbian, gay, or bisexual, and a lower relationship quality scores were predictive of expectations of partner non-monogamy. Male gender was not predictive of expectations of partner non-monogamy in the follow up logistic regression model. Age and whether a couple met online were not associated with expectations of partner non-monogamy. Clinical implications include awareness of the increased likelihood of lesbian, gay, and bisexual individuals to have an expectation of non-monogamy and the sequelae of relationship dissatisfaction that may be related. Future research directions could differentiate between non-monogamy subtypes and the person and relationship variables that lead to the likelihood of consensual non-monogamy and infidelity as separate constructs, as well as explore the relationship between predicting partner behavior and actual partner behavioral outcomes.Keywords: open relationship, polyamory, infidelity, relationship satisfaction
Procedia PDF Downloads 1593510 Preparation on Sentimental Analysis on Social Media Comments with Bidirectional Long Short-Term Memory Gated Recurrent Unit and Model Glove in Portuguese
Authors: Leonardo Alfredo Mendoza, Cristian Munoz, Marco Aurelio Pacheco, Manoela Kohler, Evelyn Batista, Rodrigo Moura
Abstract:
Natural Language Processing (NLP) techniques are increasingly more powerful to be able to interpret the feelings and reactions of a person to a product or service. Sentiment analysis has become a fundamental tool for this interpretation but has few applications in languages other than English. This paper presents a classification of sentiment analysis in Portuguese with a base of comments from social networks in Portuguese. A word embedding's representation was used with a 50-Dimension GloVe pre-trained model, generated through a corpus completely in Portuguese. To generate this classification, the bidirectional long short-term memory and bidirectional Gated Recurrent Unit (GRU) models are used, reaching results of 99.1%.Keywords: natural processing language, sentiment analysis, bidirectional long short-term memory, BI-LSTM, gated recurrent unit, GRU
Procedia PDF Downloads 1593509 A Comparative Study of the Evolution of Disparities in Salaries of Hospital Executives
Authors: Lesley Clack, Rachel Ellison, Elizabeth Chambers
Abstract:
A belief exists that there are huge gender and racial disparities among hospital CEO’s in the United States, and historically, male, Caucasian healthcare executives have made significantly larger salaries than females and other races. With a recent focus on reducing barriers and disparities in healthcare, it remains to be seen whether there have been changes in these disparities over time. The purpose of this study was to explore disparities among salaries of hospital executives in the United States. Analysis of salary data was conducted utilizing online hospital salary databases. Statistical analysis was conducted to examine the significance of the differences. Results indicated that there had been improvements in disparities among some ethnicities. Gender disparities remain the largest gap. The implications of this study are significant for the field of healthcare management as disparities can affect both social dynamics and organizational culture. Understanding where disparities lie is the first step towards bridging the gap and reducing barriers for cultural diversity within healthcare management.Keywords: health care, disparities, management, executives
Procedia PDF Downloads 1243508 Classification of Digital Chest Radiographs Using Image Processing Techniques to Aid in Diagnosis of Pulmonary Tuberculosis
Authors: A. J. S. P. Nileema, S. Kulatunga , S. H. Palihawadana
Abstract:
Computer aided detection (CAD) system was developed for the diagnosis of pulmonary tuberculosis using digital chest X-rays with MATLAB image processing techniques using a statistical approach. The study comprised of 200 digital chest radiographs collected from the National Hospital for Respiratory Diseases - Welisara, Sri Lanka. Pre-processing was done to remove identification details. Lung fields were segmented and then divided into four quadrants; right upper quadrant, left upper quadrant, right lower quadrant, and left lower quadrant using the image processing techniques in MATLAB. Contrast, correlation, homogeneity, energy, entropy, and maximum probability texture features were extracted using the gray level co-occurrence matrix method. Descriptive statistics and normal distribution analysis were performed using SPSS. Depending on the radiologists’ interpretation, chest radiographs were classified manually into PTB - positive (PTBP) and PTB - negative (PTBN) classes. Features with standard normal distribution were analyzed using an independent sample T-test for PTBP and PTBN chest radiographs. Among the six features tested, contrast, correlation, energy, entropy, and maximum probability features showed a statistically significant difference between the two classes at 95% confidence interval; therefore, could be used in the classification of chest radiograph for PTB diagnosis. With the resulting value ranges of the five texture features with normal distribution, a classification algorithm was then defined to recognize and classify the quadrant images; if the texture feature values of the quadrant image being tested falls within the defined region, it will be identified as a PTBP – abnormal quadrant and will be labeled as ‘Abnormal’ in red color with its border being highlighted in red color whereas if the texture feature values of the quadrant image being tested falls outside of the defined value range, it will be identified as PTBN–normal and labeled as ‘Normal’ in blue color but there will be no changes to the image outline. The developed classification algorithm has shown a high sensitivity of 92% which makes it an efficient CAD system and with a modest specificity of 70%.Keywords: chest radiographs, computer aided detection, image processing, pulmonary tuberculosis
Procedia PDF Downloads 1263507 Students Attitudes University of Tabuk Toward the Study at the Deanship of the Preparatory Year According to the Variables of the Academic and Gender
Authors: Awad Alhwiti
Abstract:
The purpose of this study was to investigate attitudes students in Tabuk University towards the study in the deanship of the preparation year according to the study stream (scientific, literature) and gender (male, female).The sample of the study consisted of (219) males, (120) of them are in the scientific stream and (99) from the literature stream. Moreover, (238) females, (172) of them are in the scientific stream and (66) from the literature stream. The researcher developed valid and reliable instrument to measure their attitudes towards the study in the deanship of the preparation year. The scale of the study consisted of a group of paragraphs which take positive numbers from (1) to (13) in the meter, and a group of paragraphs which take negative number from (14) to (34) in the scale. The findings of the study showed that (13) items of the scale had a high degree of evaluation, while two items had an average evaluation degree. Meanwhile, (19) items had a low evaluation degree, and the trends in general where it came from (19) paragraphs negative, and (14) paragraphs positive. As the total means of Tabuk students attitudes towards the study in the deanship of the preparation year was (1.92) with a standard deviation of (0.64) with an average evaluation degree. The findings showed that there were significant statistical difference at the level of (α = 0.05) in the samples’ attitudes towards the study in the preparation year attributed to study stream (scientific, literature) on the favor of the scientific stream. While, there were no significant statistical difference at the level of (α = 0.05) in the samples’ attitudes towards the study in the preparation year attributed to and gender (male, female).Keywords: students attitudes, preparation year deanship, Tabuk University, education technology
Procedia PDF Downloads 2553506 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record
Authors: Raghavi C. Janaswamy
Abstract:
In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.Keywords: electronic health record, graph neural network, heterogeneous data, prediction
Procedia PDF Downloads 863505 Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components
Authors: Mohamed Mounir Tellache, Hiroyuki Kambara, Yasuharu Koike, Makoto Miyakoshi, Natsue Yoshimura
Abstract:
This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.Keywords: brain-computer interface, electroencephalography, finger motion decoding, independent component analysis, pseudo real-time motion decoding
Procedia PDF Downloads 1383504 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes
Authors: L. S. Chathurika
Abstract:
Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.Keywords: algorithm, classification, evaluation, features, testing, training
Procedia PDF Downloads 1193503 Analysis, Evaluation and Optimization of Food Management: Minimization of Food Losses and Food Wastage along the Food Value Chain
Authors: G. Hafner
Abstract:
A method developed at the University of Stuttgart will be presented: ‘Analysis, Evaluation and Optimization of Food Management’. A major focus is represented by quantification of food losses and food waste as well as their classification and evaluation regarding a system optimization through waste prevention. For quantification and accounting of food, food losses and food waste along the food chain, a clear definition of core terms is required at the beginning. This includes their methodological classification and demarcation within sectors of the food value chain. The food chain is divided into agriculture, industry and crafts, trade and consumption (at home and out of home). For adjustment of core terms, the authors have cooperated with relevant stakeholders in Germany for achieving the goal of holistic and agreed definitions for the whole food chain. This includes modeling of sub systems within the food value chain, definition of terms, differentiation between food losses and food wastage as well as methodological approaches. ‘Food Losses’ and ‘Food Wastes’ are assigned to individual sectors of the food chain including a description of the respective methods. The method for analyzing, evaluation and optimization of food management systems consist of the following parts: Part I: Terms and Definitions. Part II: System Modeling. Part III: Procedure for Data Collection and Accounting Part. IV: Methodological Approaches for Classification and Evaluation of Results. Part V: Evaluation Parameters and Benchmarks. Part VI: Measures for Optimization. Part VII: Monitoring of Success The method will be demonstrated at the example of an invesigation of food losses and food wastage in the Federal State of Bavaria including an extrapolation of respective results to quantify food wastage in Germany.Keywords: food losses, food waste, resource management, waste management, system analysis, waste minimization, resource efficiency
Procedia PDF Downloads 4053502 Gendered Perceptions in Maize Supply Chains: Evidence from Uganda
Authors: Anusha De, Bjorn Van Campenhout
Abstract:
Faced with imperfect information, economic actors use judgment and perceptions in decision-making. Inaccurate perceptions or false beliefs may result in inefficient value chains, and systematic bias in perceptions may affect inclusiveness. In this paper, perceptions in Ugandan maize supply chains are studied. A random sample of maize farmers where they were asked to rate other value chain actors—agro-input dealers, assembly traders and maize millers—on a set of important attributes such as service quality, price competitiveness, ease of access, and overall reputation. These other value chain actors are tracked and asked to assess themselves on the same attributes. It is observed that input dealers, traders and millers assess themselves more favorably than farmers do. Zooming in on heterogeneity in perceptions related to gender, it is evident that women rate higher than men. The sex of the actor being rated does not affect the rating.Keywords: gender, input dealers, maize supply chain, perceptions, processors
Procedia PDF Downloads 1663501 Gender Analysis of the Influence of Sources of Information on the Adoption of Tenera Oil Palm Technology among Smallholder Farmers in Edo State, Nigeria
Authors: Cornelius Michael Ekenta
Abstract:
The research made a gender comparative analysis of the influence of sources of information on the adoption of tenera improved oil palm technology. Purposive, stratified and random sampling techniques were used to sample a total of 292 farmers (155 males and 137 females) for the study. Structured questionnaire was used to obtain primary data used for analysis. Obtained data were analyzed with descriptive statistics and Logit regressions analysis. Findings revealed that radio, extension office, television and farmers’ group were the most preferred sources of information by the farmers both male and female. Also, males perceived information from radio (92%) and farmers’ group (84%) to be available and information from Research Institutes as credible (95%). Similarly, the female perceived information from Research Institutes to be reliable (70%). The study showed that 38% of men adopted the variety, 25% of the women adopted the variety while 32% of both men and women adopted the variety in the study area. Regressions analysis indicated that radio, extension office, television, farmers’ group and research institute were significant at 0.5% of probability for men and female farmers. The study concluded that the adoption of tenera improved oil palm technology was low among male and female farmers though men adopted more than the women. It was recommended therefore that Agricultural Development Programme (ADP) in other states of the country should partner with their state radio and television stations to broadcast agricultural programmes periodically to ensure efficient dissemination of agricultural information to the farmers.Keywords: analysis, Edo, gender, influence, information, sources, tenera
Procedia PDF Downloads 1123500 Issues in Translating Hadith Terminologies into English: A Critical Approach
Authors: Mohammed Riyas Pp
Abstract:
This study aimed at investigating major issues in translating the Arabic Hadith terminologies into English, focusing on choosing the most appropriate translation for each, reviewing major Hadith works in English. This study is confined to twenty terminologies with regard to classification of Hadith based on authority, strength, number of transmitters and connections in Isnad. Almost all available translations are collected and analyzed to find the most proper translation based on linguistic and translational values. To the researcher, many translations lack precise understanding of either Hadith terminologies or English language and varieties of methodologies have influence on varieties of translations. This study provides a classification of translational and conceptual issues. Translational issues are related to translatability of these terminologies and their equivalence. Conceptual issues provide a list of misunderstandings due to wrong translations of terminologies. This study ends with a suggestion for unification in translating terminologies based on convention of Muslim scholars having good understanding of Hadith terminologies and English language.Keywords: english language, hadith terminologies, equivalence in translation, problems in translation
Procedia PDF Downloads 1883499 Diversity in Finance Literature Revealed through the Lens of Machine Learning: A Topic Modeling Approach on Academic Papers
Authors: Oumaima Lahmar
Abstract:
This paper aims to define a structured topography for finance researchers seeking to navigate the body of knowledge in their extrapolation of finance phenomena. To make sense of the body of knowledge in finance, a probabilistic topic modeling approach is applied on 6000 abstracts of academic articles published in three top journals in finance between 1976 and 2020. This approach combines both machine learning techniques and natural language processing to statistically identify the conjunctions between research articles and their shared topics described each by relevant keywords. The topic modeling analysis reveals 35 coherent topics that can well depict finance literature and provide a comprehensive structure for the ongoing research themes. Comparing the extracted topics to the Journal of Economic Literature (JEL) classification system, a significant similarity was highlighted between the characterizing keywords. On the other hand, we identify other topics that do not match the JEL classification despite being relevant in the finance literature.Keywords: finance literature, textual analysis, topic modeling, perplexity
Procedia PDF Downloads 1703498 The Representation of Women in Iraq: Gender Wage Gap and the Position of Women within Iraqi Society
Authors: Hanaa Sameen Ameen Bajilan
Abstract:
Human rights should be protected and promoted without regard to race, ethnicity, religion, political philosophy, or sexual orientation, following our firm convictions. Thus, any infringement of these rights or disdain for; any use of violence against women undermines the principles and human values of equality and endangers the entire society, including its potential to live in peace and to make growth and development. This paper represents the condition of the new Iraqi women regarding issues such as the gender wage gap, education, health, and violence against women. The study aims to determine the impact of traditions and customs on the legal position of Iraqi women. First, it seeks to assess the effects of culture as a historical agency on the legal status of Iraqi women. Second, the influence of cultural developments in the later part of the twentieth century on Iraqi women's legal standing, and third, the importance of cultural variety as a progressive cultural component in women's legal position. Finally, the study highlights the representation of women in Iraq: Gender wage Gap, Women's liberation between culture and law, and the role of women within Iraqi society based on an Iraqi novel named (Orange Light) in Arabic: برتقالو ضو. in her book, the Iraqi writer Nadia Al-Abru succeeds in portraying the post-war society's devotion to the sexual, emotional and mental marginalization of women in terms of the value of attendance. Since the study of Iraqi women's literature in Arabic-English translation is a new avenue of research that contributes to all three areas, this investigation aims to establish critical lines of engagement between contemporary Iraqi women's literature in English translation and feminist translation conceptual frameworks, and this is accomplished by first focusing on why analyzing Iraqi women writers' novels in Arabic-English translation is a timeline of inquiry that contributes to existing and emerging knowledge fields concerning Iraqi women writers' contemporary critical contexts and scholarship on Arab women's literature in Arabic-English translation.Keywords: women in İraq, equality, violence, gender wage gap, Nadia Al-Abru, (orange light), women's liberation, İraqi women's literature,
Procedia PDF Downloads 913497 A Framework for Auditing Multilevel Models Using Explainability Methods
Authors: Debarati Bhaumik, Diptish Dey
Abstract:
Multilevel models, increasingly deployed in industries such as insurance, food production, and entertainment within functions such as marketing and supply chain management, need to be transparent and ethical. Applications usually result in binary classification within groups or hierarchies based on a set of input features. Using open-source datasets, we demonstrate that popular explainability methods, such as SHAP and LIME, consistently underperform inaccuracy when interpreting these models. They fail to predict the order of feature importance, the magnitudes, and occasionally even the nature of the feature contribution (negative versus positive contribution to the outcome). Besides accuracy, the computational intractability of SHAP for binomial classification is a cause of concern. For transparent and ethical applications of these hierarchical statistical models, sound audit frameworks need to be developed. In this paper, we propose an audit framework for technical assessment of multilevel regression models focusing on three aspects: (i) model assumptions & statistical properties, (ii) model transparency using different explainability methods, and (iii) discrimination assessment. To this end, we undertake a quantitative approach and compare intrinsic model methods with SHAP and LIME. The framework comprises a shortlist of KPIs, such as PoCE (Percentage of Correct Explanations) and MDG (Mean Discriminatory Gap) per feature, for each of these three aspects. A traffic light risk assessment method is furthermore coupled to these KPIs. The audit framework will assist regulatory bodies in performing conformity assessments of AI systems using multilevel binomial classification models at businesses. It will also benefit businesses deploying multilevel models to be future-proof and aligned with the European Commission’s proposed Regulation on Artificial Intelligence.Keywords: audit, multilevel model, model transparency, model explainability, discrimination, ethics
Procedia PDF Downloads 953496 Large Neural Networks Learning From Scratch With Very Few Data and Without Explicit Regularization
Authors: Christoph Linse, Thomas Martinetz
Abstract:
Recent findings have shown that Neural Networks generalize also in over-parametrized regimes with zero training error. This is surprising, since it is completely against traditional machine learning wisdom. In our empirical study we fortify these findings in the domain of fine-grained image classification. We show that very large Convolutional Neural Networks with millions of weights do learn with only a handful of training samples and without image augmentation, explicit regularization or pretraining. We train the architectures ResNet018, ResNet101 and VGG19 on subsets of the difficult benchmark datasets Caltech101, CUB_200_2011, FGVCAircraft, Flowers102 and StanfordCars with 100 classes and more, perform a comprehensive comparative study and draw implications for the practical application of CNNs. Finally, we show that VGG19 with 140 million weights learns to distinguish airplanes and motorbikes with up to 95% accuracy using only 20 training samples per class.Keywords: convolutional neural networks, fine-grained image classification, generalization, image recognition, over-parameterized, small data sets
Procedia PDF Downloads 883495 The Processing of Implicit Stereotypes in Everyday Scene Perception
Authors: Magali Mari, Fabrice Clement
Abstract:
The present study investigated the influence of implicit stereotypes on adults’ visual information processing, using an eye-tracking device. Implicit stereotyping is an automatic and implicit process; it happens relatively quickly, outside of awareness. In the presence of a member of a social group, a set of expectations about the characteristics of this social group appears automatically in people’s minds. The study aimed to shed light on the cognitive processes involved in stereotyping and to further investigate the use of eye movements to measure implicit stereotypes. With an eye-tracking device, the eye movements of participants were analyzed, while they viewed everyday scenes depicting women and men in congruent or incongruent gender role activities (e.g., a woman ironing or a man ironing). The settings of these scenes had to be analyzed to infer the character’s role. Also, participants completed an implicit association test that combined the concept of gender with attributes of occupation (home/work), while measuring reaction times to assess participants’ implicit stereotypes about gender. The results showed that implicit stereotypes do influence people’s visual attention; within a fraction of a second, the number of returns, between stereotypical and counter-stereotypical scenes, differed significantly, meaning that participants interpreted the scene itself as a whole before identifying the character. They predicted that, in such a situation, the character was supposed to be a woman or a man. Also, the study showed that eye movements could be used as a fast and reliable supplement for traditional implicit association tests to measure implicit stereotypes. Altogether, this research provides further understanding of implicit stereotypes processing as well as a natural method to study implicit stereotypes.Keywords: eye-tracking, implicit stereotypes, social cognition, visual attention
Procedia PDF Downloads 1593494 Modeling Discrimination against Gay People: Predictors of Homophobic Behavior against Gay Men among High School Students in Switzerland
Authors: Patrick Weber, Daniel Gredig
Abstract:
Background and Purpose: Research has well documented the impact of discrimination and micro-aggressions on the wellbeing of gay men and, especially, adolescents. For the prevention of homophobic behavior against gay adolescents, however, the focus has to shift on those who discriminate: For the design and tailoring of prevention and intervention, it is important to understand the factors responsible for homophobic behavior such as, for example, verbal abuse. Against this background, the present study aimed to assess homophobic – in terms of verbally abusive – behavior against gay people among high school students. Furthermore, it aimed to establish the predictors of the reported behavior by testing an explanatory model. This model posits that homophobic behavior is determined by negative attitudes and knowledge. These variables are supposed to be predicted by the acceptance of traditional gender roles, religiosity, orientation toward social dominance, contact with gay men, and by the perceived expectations of parents, friends and teachers. These social-cognitive variables in turn are assumed to be determined by students’ gender, age, immigration background, formal school level, and the discussion of gay issues in class. Method: From August to October 2016, we visited 58 high school classes in 22 public schools in a county in Switzerland, and asked the 8th and 9th year students on three formal school levels to participate in survey about gender and gay issues. For data collection, we used an anonymous self-administered questionnaire filled in during class. Data were analyzed using descriptive statistics and structural equation modelling (Generalized Least Square Estimates method). The sample included 897 students, 334 in the 8th and 563 in the 9th year, aged 12–17, 51.2% being female, 48.8% male, 50.3% with immigration background. Results: A proportion of 85.4% participants reported having made homophobic statements in the 12 month before survey, 4.7% often and very often. Analysis showed that respondents’ homophobic behavior was predicted directly by negative attitudes (β=0.20), as well as by the acceptance of traditional gender roles (β=0.06), religiosity (β=–0.07), contact with gay people (β=0.10), expectations of parents (β=–0.14) and friends (β=–0.19), gender (β=–0.22) and having a South-East-European or Western- and Middle-Asian immigration background (β=0.09). These variables were predicted, in turn, by gender, age, immigration background, formal school level, and discussion of gay issues in class (GFI=0.995, AGFI=0.979, SRMR=0.0169, CMIN/df=1.199, p>0.213, adj. R2 =0.384). Conclusion: Findings evidence a high prevalence of homophobic behavior in the responding high school students. The tested explanatory model explained 38.4% of the assessed homophobic behavior. However, data did not found full support of the model. Knowledge did not turn out to be a predictor of behavior. Except for the perceived expectation of teachers and orientation toward social dominance, the social-cognitive variables were not fully mediated by attitudes. Equally, gender and immigration background predicted homophobic behavior directly. These findings demonstrate the importance of prevention and provide also leverage points for interventions against anti-gay bias in adolescents – also in social work settings as, for example, in school social work, open youth work or foster care.Keywords: discrimination, high school students, gay men, predictors, Switzerland
Procedia PDF Downloads 3293493 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas
Abstract:
The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining
Procedia PDF Downloads 1213492 The Stylistic Representation of Subjectivity in Exemplary Written and Audiovisual Biographical Records about the Brazilian Modernist Artist Tarsila Do Amaral
Authors: Juliane Noack Napoles, Vivian Martins Nogueira Napoles
Abstract:
This paper operates at the stylistic level of biographical records about the artist Tarsila do Amaral (1886-1973) and the various biographical modes of representation of her subjectivity. Tarsila do Amaral was a Brazilian nationalistic painter, who took part in the first half of the last century in the Antoprofágico Moviment and in the Surrealistic Movement - artistic movements that emerged in the 1920’s. The paper will be developed in the field of Cultural and Media Science and based on an understanding of biography as a subgenre of historical records that will be discussed. Doing that, the theoretical principles about the history genre will also be discussed. In this context, the analytical focus of the present project is the stylistic forms of representation of subjectivity in the postmodern period as expressed in written and audiovisual biographical representation of Tarsila do Amaral. Some exemplary audiovisual biographical records about Tarsila do Amaral will be first analyzed on their own. Then, they will be related to some written biographical records about the painter. At the end, both written and audiovisual records and their stylistic forms of representation of Tarsila do Amaral’s subjectivity are going be analyzed. Tarsila do Amaral will be considered as a Subject Form, following actual concepts about this term in Cultural Studies. For these purposes, it will also be discussed about cultural identity – gender and national identity – and developed a heuristic model so that different understandings and conceptual proposals correlate, including those pertaining to the terms biography, gender, identity, mediality, style, subject and subjectivity. This model will finally be used for the analysis of the selected biographical records.Keywords: biography, gender, identity, modernism, postmodernism, style, subject, subjectivity, surrealism, Tarsila do Amaral
Procedia PDF Downloads 1763491 Enhancing the Interpretation of Group-Level Diagnostic Results from Cognitive Diagnostic Assessment: Application of Quantile Regression and Cluster Analysis
Authors: Wenbo Du, Xiaomei Ma
Abstract:
With the empowerment of Cognitive Diagnostic Assessment (CDA), various domains of language testing and assessment have been investigated to dig out more diagnostic information. What is noticeable is that most of the extant empirical CDA-based research puts much emphasis on individual-level diagnostic purpose with very few concerned about learners’ group-level performance. Even though the personalized diagnostic feedback is the unique feature that differentiates CDA from other assessment tools, group-level diagnostic information cannot be overlooked in that it might be more practical in classroom setting. Additionally, the group-level diagnostic information obtained via current CDA always results in a “flat pattern”, that is, the mastery/non-mastery of all tested skills accounts for the two highest proportion. In that case, the outcome does not bring too much benefits than the original total score. To address these issues, the present study attempts to apply cluster analysis for group classification and quantile regression analysis to pinpoint learners’ performance at different proficiency levels (beginner, intermediate and advanced) thus to enhance the interpretation of the CDA results extracted from a group of EFL learners’ reading performance on a diagnostic reading test designed by PELDiaG research team from a key university in China. The results show that EM method in cluster analysis yield more appropriate classification results than that of CDA, and quantile regression analysis does picture more insightful characteristics of learners with different reading proficiencies. The findings are helpful and practical for instructors to refine EFL reading curriculum and instructional plan tailored based on the group classification results and quantile regression analysis. Meanwhile, these innovative statistical methods could also make up the deficiencies of CDA and push forward the development of language testing and assessment in the future.Keywords: cognitive diagnostic assessment, diagnostic feedback, EFL reading, quantile regression
Procedia PDF Downloads 1463490 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement
Procedia PDF Downloads 943489 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications
Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo
Abstract:
Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer
Procedia PDF Downloads 263488 Study of COVID-19 Intensity Correlated with Specific Biomarkers and Environmental Factors
Authors: Satendra Pal Singh, Dalip Kr. Kakru, Jyoti Mishra, Rajesh Thakur, Tarana Sarwat
Abstract:
COVID-19 is still an intrigue as far as morbidity or mortality is concerned. The rate of recovery varies from person to person, & it depends upon the accessibility of the healthcare system and the roles played by the physicians and caregivers. It is envisaged that with the passage of time, people would become immune to this virus, and those who are vulnerable would sustain themselves with the help of vaccines. The proposed study deals with the severeness of COVID-19 is associated with some specific biomarkers linked to correlate age and gender. We will be assessing the overall homeostasis of the persons who were affected by the coronavirus infection and also of those who recovered from it. Some people show more severe effects, while others show very mild symptoms, however, they show low CT values. Thus far, it is unclear why the new strain of Covid has different effects on different people in terms of age, gender, and ABO blood typing. According to data, the fatality rate with heart disease was 10.5 percent, 7.3 percent were diabetic, and 6 percent who are already infected from other comorbidities. However, some COVID-19 cases are worse than others & it is not fully explainable as of date. Overall data show that the ABO blood group is effective or prone to the risk of SARS-COV2 infection, while another study also shows the phenotypic effects of the blood group related to covid. It is an accepted fact that females have more strong immune systems than males, which may be related to the fact that females have two ‘X’ chromosomes, which might contain a more effective immunity booster gene on the X chromosome, and are capable to protect the female. Also specific sex hormones also induce a better immune response in a specific gender. This calls for in-depth analysis to be able to gain insight into this dilemma. COVID-19 is still not fully characterized, and thus we are not very familiar with its biology, mode of infection, susceptibility, and overall viral load in the human body. How many virus particles are needed to infect a person? How, then, comorbidity contribute to coronavirus infection? Since the emergence of this virus in 2020, a large number of papers have been published, and seemingly, vaccines have been prepared. But still, a large number of questions remain unanswered. The proneness of humans for infection by covid-19 needs to be established to be able to develop a better strategy to fight this virus. Our study will be on the Impact of demography on the Severity of covid-19 infection & at the same time, will look into gender-specific sensitivity of Covid-19 and the Operational variation of different biochemical markers in Covid-19 positive patients. Besides, we will be studying the co-relation, if any, of COVID severity & ABO Blood group type and the occurrence of the most common blood group type amongst positive patience.Keywords: coronavirus, ABO blood group, age, gender
Procedia PDF Downloads 98