Search results for: business intelligence readiness model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20304

Search results for: business intelligence readiness model

19164 HRCT of the Chest and the Role of Artificial Intelligence in the Evaluation of Patients with COVID-19

Authors: Parisa Mansour

Abstract:

Introduction: Early diagnosis of coronavirus disease (COVID-19) is extremely important to isolate and treat patients in time, thus preventing the spread of the disease, improving prognosis and reducing mortality. High-resolution computed tomography (HRCT) chest imaging and artificial intelligence (AI)-based analysis of HRCT chest images can play a central role in the treatment of patients with COVID-19. Objective: To investigate different chest HRCT findings in different stages of COVID-19 pneumonia and to evaluate the potential role of artificial intelligence in the quantitative assessment of lung parenchymal involvement in COVID-19 pneumonia. Materials and Methods: This retrospective observational study was conducted between May 1, 2020 and August 13, 2020. The study included 2169 patients with COVID-19 who underwent chest HRCT. HRCT images showed the presence and distribution of lesions such as: ground glass opacity (GGO), compaction, and any special patterns such as septal thickening, inverted halo, mark, etc. HRCT findings of the breast at different stages of the disease (early: andlt) 5 days, intermediate: 6-10 days and late stage: >10 days). A CT severity score (CTSS) was calculated based on the extent of lung involvement on HRCT, which was then correlated with clinical disease severity. Use of artificial intelligence; Analysis of CT pneumonia and quot; An algorithm was used to quantify the extent of pulmonary involvement by calculating the percentage of pulmonary opacity (PO) and gross opacity (PHO). Depending on the type of variables, statistically significant tests such as chi-square, analysis of variance (ANOVA) and post hoc tests were applied when appropriate. Results: Radiological findings were observed in HRCT chest in 1438 patients. A typical pattern of COVID-19 pneumonia, i.e., bilateral peripheral GGO with or without consolidation, was observed in 846 patients. About 294 asymptomatic patients were radiologically positive. Chest HRCT in the early stages of the disease mostly showed GGO. The late stage was indicated by such features as retinal enlargement, thickening and the presence of fibrous bands. Approximately 91.3% of cases with a CTSS = 7 were asymptomatic or clinically mild, while 81.2% of cases with a score = 15 were clinically severe. Mean PO and PHO (30.1 ± 28.0 and 8.4 ± 10.4, respectively) were significantly higher in the clinically severe categories. Conclusion: Because COVID-19 pneumonia progresses rapidly, radiologists and physicians should become familiar with typical TC chest findings to treat patients early, ultimately improving prognosis and reducing mortality. Artificial intelligence can be a valuable tool in treating patients with COVID-19.

Keywords: chest, HRCT, covid-19, artificial intelligence, chest HRCT

Procedia PDF Downloads 63
19163 Embedded Hybrid Intuition: A Deep Learning and Fuzzy Logic Approach to Collective Creation and Computational Assisted Narratives

Authors: Roberto Cabezas H

Abstract:

The current work shows the methodology developed to create narrative lighting spaces for the multimedia performance piece 'cluster: the vanished paradise.' This empirical research is focused on exploring unconventional roles for machines in subjective creative processes, by delving into the semantics of data and machine intelligence algorithms in hybrid technological, creative contexts to expand epistemic domains trough human-machine cooperation. The creative process in scenic and performing arts is guided mostly by intuition; from that idea, we developed an approach to embed collective intuition in computational creative systems, by joining the properties of Generative Adversarial Networks (GAN’s) and Fuzzy Clustering based on a semi-supervised data creation and analysis pipeline. The model makes use of GAN’s to learn from phenomenological data (data generated from experience with lighting scenography) and algorithmic design data (augmented data by procedural design methods), fuzzy logic clustering is then applied to artificially created data from GAN’s to define narrative transitions built on membership index; this process allowed for the creation of simple and complex spaces with expressive capabilities based on position and light intensity as the parameters to guide the narrative. Hybridization comes not only from the human-machine symbiosis but also on the integration of different techniques for the implementation of the aided design system. Machine intelligence tools as proposed in this work are well suited to redefine collaborative creation by learning to express and expand a conglomerate of ideas and a wide range of opinions for the creation of sensory experiences. We found in GAN’s and Fuzzy Logic an ideal tool to develop new computational models based on interaction, learning, emotion and imagination to expand the traditional algorithmic model of computation.

Keywords: fuzzy clustering, generative adversarial networks, human-machine cooperation, hybrid collective data, multimedia performance

Procedia PDF Downloads 142
19162 Analyzing the Practicality of Drawing Inferences in Automation of Commonsense Reasoning

Authors: Chandan Hegde, K. Ashwini

Abstract:

Commonsense reasoning is the simulation of human ability to make decisions during the situations that we encounter every day. It has been several decades since the introduction of this subfield of artificial intelligence, but it has barely made some significant progress. The modern computing aids also have remained impotent in this regard due to the absence of a strong methodology towards commonsense reasoning development. Among several accountable reasons for the lack of progress, drawing inference out of commonsense knowledge-base stands out. This review paper emphasizes on a detailed analysis of representation of reasoning uncertainties and feasible prospects of programming aids for drawing inferences. Also, the difficulties in deducing and systematizing commonsense reasoning and the substantial progress made in reasoning that influences the study have been discussed. Additionally, the paper discusses the possible impacts of an effective inference technique in commonsense reasoning.

Keywords: artificial intelligence, commonsense reasoning, knowledge base, uncertainty in reasoning

Procedia PDF Downloads 187
19161 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model

Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson

Abstract:

The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.

Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania

Procedia PDF Downloads 106
19160 The Modern Era in the Cricket World: How Far Have We Really Come?

Authors: Habib Noorbhai

Abstract:

History of Cricket: Cricket has a known history spanning from the 16th century till present, with international matches having been played since 1844. The game of cricket arrived in Australia as soon as colonization began in 1788. Cricketers started playing on turf wickets in the late 1800’s and dimensions for both the boundary and pitch later became assimilated. As the years evolved, cricket bats and balls, protective equipment, playing surfaces and the three formats of the game adapted to the playing conditions and laws of cricket. Business of Cricket: During the late 1900's, the shorter version of the game (T20) was introduced in order to attract the crowds to stadiums and television viewers for broadcasting rights. One could argue if this was merely a business venture or a platform for enhancing the performance of cricketers. Between the 16th and 20th century, cricket was a common sport played for passion and pure enjoyment. Industries saw a potential in diversified business ventures in the game (as well as other sports played globally) and cricket subsequently became a career for players, administrators and coaches, the media, health professionals, managers and the corporate world. Pros and Cons of Cricket Developments: At present, the game has significantly gained from the use of technology, sports sciences and varied mechanisms to optimize the performances and forecast frameworks for injury prevention in cricket players. Unfortunately, these had not been utilized in the earlier times of cricket and it would prove interesting to observe how the greats of the game would have benefited with such developments. Cricketers in the 21st century are faced with many overwhelming commitments. One of these is playing cricket for 11 months in a year, making it more than 250 days away from home and their families. As the demand of player contracts increase, the supply of commitment and performances from players increase. Way Forward and Future Implications: The questions are: Are such disadvantages contributing to the overload and injury risks of players? How far have we really come in the cricketing world or has everything since the game’s inception become institutionalized with a business model? These are the fundamental questions which need to be addressed and legislation, policies and ethical considerations need to be drafted and implemented. These will ensure that there is equilibrium of effective transitions and management of not only the players, but also the credibility of the wonderful game.

Keywords: enterprising business of cricket, technology, legislation, credibility

Procedia PDF Downloads 448
19159 Integrated Performance Management System a Conceptual Design for PT. XYZ

Authors: Henrie Yunianto, Dermawan Wibisono

Abstract:

PT. XYZ is a family business (private company) in Indonesia that provide an educational program and consultation services. Since its establishment in 2011, the company has run without any strategic management system implemented. Though the company could survive until now. The management of PT. XYZ sees the business opportunity for such product is huge, even though the targeted market is very specific (niche), the volume is large (due to large population of Indonesia) and numbers of competitors are low (now). It can be said if the product life cycle is in between ‘Introduction stage’ and ‘growth’ stage. It is observed that nowadays the new entrants (competitors) are increasing, thus PT. XYZ consider reacting in facing the intense business rivalry by conducting the business in an appropriate manner. A Performance Management System is important to be implemented in accordance with the business sustainability and growth. The framework of Performance Management System chosen is Integrated Performance Management System (IPMS). IPMS framework has the advantages of its simplicity, linkage between its business variables and indicators where the company can see the connections between all factors measured. IPMS framework consists of perspectives: (1) Business Result, (2) Internal Processes, (3) Resource Availability. Variables and indicators were examined through deep analysis of the business external and internal environments, Strength-Weakness-Opportunity-Threat (SWOT) analysis, Porter’s five forces analysis. Analytical Hierarchy Process (AHP) analysis was then used to quantify the weight of each variable/indicators. AHP is needed since in this study, PT. XYZ, the data of existing performance indicator was not available. Later, where the IPMS is implemented, the real data measured can be examined to determine the weight factor of each indicators using correlation analysis (or other methods). In this study of IPMS design for PT. XYZ, the analysis shows that with current company goals, along with the AHP methodology, the critical indicators for each perspective are: (1) Business results: Customer satisfaction and Employee satisfaction, (2) Internal process: Marketing performance, Supplier quality, Production quality, Continues improvement; (3) Resources Availability: Leadership and company culture & value, Personal Competences, Productivity. Company and/or organization require performance management system to help them in achieving their vision and mission. Company strategy will be effectively defined and addressed by using performance management system. Integrated Performance Management System (IPMS) framework and AHP analysis help us in quantifying the factors which influence the business output expected.

Keywords: analytical hierarchy process, business strategy, differentiation strategy, integrated performance management system

Procedia PDF Downloads 308
19158 Improving the Deficiencies in Entrepreneurship Training for Small Businesses in Emerging Markets

Authors: Eno Jah Tabogo

Abstract:

The aim of this research is to identify and examine current deficiencies in entrepreneurial training in improving the performance of small businesses in sub Saharan Africa economies. This research achieves this by examining the course content, training methods, and profiles of trainers and trainees of small business service providers in Sub Saharan Africa (SSA) to identify training deficiencies in improving small businesses. Data was for the analysis was collected from a sample of four entrepreneurial training providers in SSA. These four providers served an average of 1,500 trainees. Questionnaire was used to collect data via face to face and through telephone. Face validity was determined by distributing the questionnaire among a group of colleagues, followed by a group discussion to strengthen the validity of the questionnaire. Interviews were also held with managers of training programs. Content and descriptive statistics was used to analyse the data collected. The results indicated only 25% of the training content were entrepreneurial. In terms of service provided, both business, entrepreneurial, technical and after-care services were identified. It was also discovered that owners of training firms had no formal entrepreneurship background. The paper contributes by advocating for a comprehensive entrepreneurship-training program for successful small business enterprises. Recommendations that could help sustain emerging small business enterprises and direction for further research are presented.

Keywords: entrepreneurship, emerging markets, small business, training

Procedia PDF Downloads 141
19157 Stage-Gate Framework Application for Innovation Assessment among Small and Medium-Sized Enterprises

Authors: Indre Brazauskaite, Vilte Auruskeviciene

Abstract:

The paper explores the Stage-Gate framework application for innovation maturity among small and medium-sized enterprises (SMEs). Innovation management becomes an essential business survival process for all sizes of organizations that can be evaluated and audited systemically. This research systemically defines and assesses the innovation process from the perspective of the company’s top management. Empirical research explores attitudes and existing practices of innovation management in SMEs in Baltic countries. It structurally investigates the current innovation management practices, level of standardization, and potential challenges in the area. Findings allow to structure of existing practices based on an institutionalized model and contribute to a more advanced understanding of the innovation process among SMEs. Practically, findings contribute to advanced decision-making and business planning in the process.

Keywords: innovation measure, innovation process, SMEs, stage-gate framework

Procedia PDF Downloads 98
19156 An Investigation into the Strategies Adopted by Women Entrepreneurs to Ensure Small Business Success in Nkonkobe Municipality, Eastern Cape Province, South Africa

Authors: Agholor Deborah Ewere, Emmanuel Ade, Seriki Idowu

Abstract:

The role women entrepreneur plays to combat unemployment should not be underestimated, especially in countries with growing unemployment rates such as South Africa. Women entrepreneurs contribute significantly to economic development in South Africa, but their contribution has not been adequately studied and developed. Hence, the study identified business strategies adopted by women entrepreneurs to sustain growth and development of entrepreneurship. Survey research design approach was adopted and convenience sampling method was used for sample selection. The structured questionnaire was used to elicit information from the respondents. The findings revealed some of the operational challenges women entrepreneur faced to include lack of finance, marketing skills and planning and also showed that the strategies adopted by women entrepreneurs have a positive effect on the success of small businesses. It was recommended among others that the women entrepreneurs should take some time to study the nature of challenges other women have faced in business and possibly provide solutions to such issues before starting their own business. It was however concluded that unless the operational challenges named above are resolved, the role of women entrepreneurs in the developing nations will continue to experience deprived economic growth, development and display substandard competitiveness.

Keywords: business, entrepreneurs, small, strategies, success, women

Procedia PDF Downloads 461
19155 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis

Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee

Abstract:

In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.

Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences

Procedia PDF Downloads 743
19154 Impact of the Fourth Industrial Revolution on Food Security in South Africa

Authors: Fiyinfoluwa Giwa, Nicholas Ngepah

Abstract:

This paper investigates the relationship between the Fourth Industrial Revolution and food security in South Africa. The Ordinary Least Square was adopted from 2012 Q1 to 2021 Q4. The study used artificial intelligence investment and the food production index as the measure for the fourth industrial revolution and food security, respectively. Findings reveal a significant and positive coefficient of 0.2887, signifying a robust statistical relationship between AI adoption and the food production index. As a policy recommendation, this paper recommends the introduction of incentives for farmers and agricultural enterprises to adopt AI technologies -and the expansion of digital connectivity and access to technology in rural areas.

Keywords: Fourth Industrial Revolution, food security, artificial intelligence investment, food production index, ordinary least square

Procedia PDF Downloads 75
19153 Canadian Business Leaders’ Phenomenological Online Education Expansion

Authors: Amna Khaliq

Abstract:

This research project centers on Canadian business leaders’ phenomenological online education expansion by navigating the challenges faced by strategic leaders concerning the expansion of online education in the Canadian higher education sector from a business perspective. The study identifies the problems and opportunities of faculty members’ transition from traditional face-to-face to online instruction, particularly in the context of technology-enhanced learning (TEL), and their influence on the growth strategies of Canadian educational institutions. It explores strategic leaders’ approaches and the impact of emerging technologies to assist with developing and executing business strategies to expand online education in Canada. As online education has gained prominence in the country, this research addresses a relevant business problem for educational institutions. The research employs a phenomenological approach in the qualitative research design to conduct this investigation. The study interviews eighteen faculty members engaged in online education in Canada. The interview data is analyzed to answer the three research questions for strategic leaders to expand online education with higher education institutions in Canada. The recommendations include 1) data privacy, infrastructure, security, and technology, 2) support and training for student engagement, 3) accessibility and inclusion, and 4) collaboration among institutions associated with expanding online education.

Keywords: strategic leadership, Canada, education, technology

Procedia PDF Downloads 64
19152 The Outcome of Using Machine Learning in Medical Imaging

Authors: Adel Edwar Waheeb Louka

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery

Procedia PDF Downloads 73
19151 Consequences of Employees' Perception of Political Behavior in Kuwaiti Business Organizations

Authors: Ali Muhammad

Abstract:

The purpose of this study is to examine the effect of employees’ perception of political behavior on their behavior and attitudes. The model tested in this study suggests that employees’ perception of political behavior in their organizations leads to lower levels of job satisfaction, and organizational commitment, and higher levels of work-related stress, and intentions to leave the organization. A sample of 182 employees working in six Kuwaiti business organizations were surveyed using a questionnaire, and data was analyzed using correlation analysis, regression analysis, and non-parametric tests. Results reveal that employees’ perception of political behavior is negatively associated with job satisfaction and organizational commitment, and positively associated with work-related stress and employees’ intentions to leave the organization. The results of the current study are discussed and are compared to the results of previous studies in this area. Finally, the directions for future research are suggested.

Keywords: perceptions of political behavior, organizational commitment, job satisfaction, intention to leave

Procedia PDF Downloads 353
19150 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization

Authors: R. O. Osaseri, A. R. Usiobaifo

Abstract:

The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.

Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault

Procedia PDF Downloads 323
19149 The Synopsis of the AI-Powered Therapy Web Platform ‘Free AI Therapist'

Authors: Arwa Alnowaiser, Hala Shoukri

Abstract:

The ‘FreeAITherapist’ is an artificial intelligence application that uses the power of AI to offer advice and mental health counseling to its users through its chatbot services. The AI therapist is designed to understand users' issues, concerns, and problems and respond appropriately; it provides empathy and guidance and uses evidence-based therapeutic techniques. With its user-friendly platform, it ensures accessibility for individuals in need, regardless of their geographical location. This website was created in direct response to the growing demand for mental health support, aiming to provide a cost-effective and confidential solution. Through promising confidentiality, it considers user privacy and data security. The ‘FreeAITherapist’ strives to bridge the gap in mental health services, offering a reliable resource for individuals seeking guidance and counseling to improve their overall well-being.

Keywords: artificial intelligence, mental health, AI therapist, website, counseling

Procedia PDF Downloads 45
19148 Artificial Intelligence-Generated Previews of Hyaluronic Acid-Based Treatments

Authors: Ciro Cursio, Giulia Cursio, Pio Luigi Cursio, Luigi Cursio

Abstract:

Communication between practitioner and patient is of the utmost importance in aesthetic medicine: as of today, images of previous treatments are the most common tool used by doctors to describe and anticipate future results for their patients. However, using photos of other people often reduces the engagement of the prospective patient and is further limited by the number and quality of pictures available to the practitioner. Pre-existing work solves this issue in two ways: 3D scanning of the area with manual editing of the 3D model by the doctor or automatic prediction of the treatment by warping the image with hand-written parameters. The first approach requires the manual intervention of the doctor, while the second approach always generates results that aren’t always realistic. Thus, in one case, there is significant manual work required by the doctor, and in the other case, the prediction looks artificial. We propose an AI-based algorithm that autonomously generates a realistic prediction of treatment results. For the purpose of this study, we focus on hyaluronic acid treatments in the facial area. Our approach takes into account the individual characteristics of each face, and furthermore, the prediction system allows the patient to decide which area of the face she wants to modify. We show that the predictions generated by our system are realistic: first, the quality of the generated images is on par with real images; second, the prediction matches the actual results obtained after the treatment is completed. In conclusion, the proposed approach provides a valid tool for doctors to show patients what they will look like before deciding on the treatment.

Keywords: prediction, hyaluronic acid, treatment, artificial intelligence

Procedia PDF Downloads 114
19147 Artificial Intelligence for Generative Modelling

Authors: Shryas Bhurat, Aryan Vashistha, Sampreet Dinakar Nayak, Ayush Gupta

Abstract:

As the technology is advancing more towards high computational resources, there is a paradigm shift in the usage of these resources to optimize the design process. This paper discusses the usage of ‘Generative Design using Artificial Intelligence’ to build better models that adapt the operations like selection, mutation, and crossover to generate results. The human mind thinks of the simplest approach while designing an object, but the intelligence learns from the past & designs the complex optimized CAD Models. Generative Design takes the boundary conditions and comes up with multiple solutions with iterations to come up with a sturdy design with the most optimal parameter that is given, saving huge amounts of time & resources. The new production techniques that are at our disposal allow us to use additive manufacturing, 3D printing, and other innovative manufacturing techniques to save resources and design artistically engineered CAD Models. Also, this paper discusses the Genetic Algorithm, the Non-Domination technique to choose the right results using biomimicry that has evolved for current habitation for millions of years. The computer uses parametric models to generate newer models using an iterative approach & uses cloud computing to store these iterative designs. The later part of the paper compares the topology optimization technology with Generative Design that is previously being used to generate CAD Models. Finally, this paper shows the performance of algorithms and how these algorithms help in designing resource-efficient models.

Keywords: genetic algorithm, bio mimicry, generative modeling, non-dominant techniques

Procedia PDF Downloads 149
19146 A Delphi Study of Factors Affecting the Forest Biorefinery Development in the Pulp and Paper Industry: The Case of Bio-Based Products

Authors: Natasha Gabriella, Josef-Peter Schöggl, Alfred Posch

Abstract:

Being a mature industry, pulp and paper industry (PPI) possess strength points coming from its existing infrastructure, technology know-how, and abundant availability of biomass. However, the declining trend of the wood-based products sales sends a clear signal to the industry to transform its business model in order to increase its profitability. With the emerging global attention on bio-based economy and circular economy, coupled with the low price of fossil feedstock, the PPI starts to integrate biorefinery as a value-added business model to keep the industry’s competitiveness. Nonetheless, biorefinery as an innovation exposes the PPI with some barriers, of which the uncertainty of the promising product becomes one of the major hurdles. This study aims to assess factors that affect the diffusion and development of forest biorefinery in the PPI, including drivers, barriers, advantages, disadvantages, as well as the most promising bio-based products of forest biorefinery. The study examines the identified factors according to the layer of business environment, being the macro-environment, industry, and strategic group level. Besides, an overview of future state of the identified factors is elaborated as to map necessary improvements for implementing forest biorefinery. A two-phase Delphi method is used to collect the empirical data for the study, comprising of an online-based survey and interviews. Delphi method is an effective communication tools to elicit ideas from a group of experts to further reach a consensus of forecasting future trends. Collaborating a total of 50 experts in the panel, the study reveals that influential factors are found in every layers of business of the PPI. The politic dimension is apparent to have a significant influence for tackling the economy barrier while reinforcing the environmental and social benefits in the macro-environment. In the industry level, the biomass availability appears to be a strength point of the PPI while the knowledge gap on technology and market seem to be barriers. Consequently, cooperation with academia and the chemical industry has to be improved. Human resources issue is indicated as one important premise behind the preceding barrier, along with the indication of the PPI’s resistance towards biorefinery implementation as an innovation. Further, cellulose-based products are acknowledged for near-term product development whereas lignin-based products are emphasized to gain importance in the long-term future.

Keywords: forest biorefinery, pulp and paper, bio-based product, Delphi method

Procedia PDF Downloads 278
19145 Review of Full Body Imaging and High-Resolution Automatic 3D Mapping Systems for Medical Application

Authors: Jurijs Salijevs, Katrina Bolocko

Abstract:

The integration of artificial intelligence and neural networks has significantly changed full-body imaging and high-resolution 3D mapping systems, and this paper reviews research in these areas. With an emphasis on their use in the early identification of melanoma and other disorders, the goal is to give a wide perspective on the current status and potential future of these medical imaging technologies. Authors also examine methodologies such as machine learning and deep learning, seeking to identify efficient procedures that enhance diagnostic capabilities through the analysis of 3D body scans. This work aims to encourage further research and technological development to harness the full potential of AI in disease diagnosis.

Keywords: artificial intelligence, neural networks, 3D scan, body scan, 3D mapping system, healthcare

Procedia PDF Downloads 103
19144 The Influence of the Institutional Environment in Increasing Wealth: The Case of Women Business Operators in a Rural Setting

Authors: S. Archsana, Vajira Balasuriya

Abstract:

In Trincomalee of Sri Lanka, a post-conflict area, resettlement projects and policy initiatives are taking place to improve the wealth of the rural communities through promoting economic activities by way of encouraging the rural women to opt to commence and operate Micro and Small Scale (MSS) businesses. This study attempts to identify the manner in which the institutional environment could facilitate these MSS businesses owned and operated by women in the rural environment. The respondents of this study are the beneficiaries of the Divi Neguma Development Training Program (DNDTP); a project designed to aid women owned MSS businesses, in Trincomalee district. 96 women business operators, who had obtained financing facilities from the DNDTP, are taken as the sample based on fixed interval random sampling method. The study reveals that primary challenges encountered by 82% of the women business operators are lack of initial capital followed by 71% initial market finding and 35% access to technology. The low level of education and language barriers are the constraints in accessing support agencies/service providers. Institutional support; specifically management and marketing services, have a significant relationship with wealth augmentation. Institutional support at the setting-up stage of businesses are thin whereas terms and conditions of the finance facilities are perceived as ‘too challenging’. Although diversification enhances wealth of the rural women business operators, assistance from the institutional framework to prepare financial reports that are required for business expansion is skinny. The study further reveals that institutional support is very much weak in terms of providing access to new technology and identifying new market networks. A mechanism that could facilitate the institutional framework to support the rural women business operators to access new technology and untapped market segments, and assistance in preparation of legal and financial documentation is recommended.

Keywords: business facilitation, institutional support, rural women business operators, wealth augmentation

Procedia PDF Downloads 438
19143 Model Canvas and Process for Educational Game Design in Outcome-Based Education

Authors: Ratima Damkham, Natasha Dejdumrong, Priyakorn Pusawiro

Abstract:

This paper explored the solution in game design to help game designers in the educational game designing using digital educational game model canvas (DEGMC) and digital educational game form (DEGF) based on Outcome-based Education program. DEGMC and DEGF can help designers develop an overview of the game while designing and planning their own game. The way to clearly assess players’ ability from learning outcomes and support their game learning design is by using the tools. Designers can balance educational content and entertainment in designing a game by using the strategies of the Business Model Canvas and design the gameplay and players’ ability assessment from learning outcomes they need by referring to the Constructive Alignment. Furthermore, they can use their design plan in this research to write their Game Design Document (GDD). The success of the research was evaluated by four experts’ perspectives in the education and computer field. From the experiments, the canvas and form helped the game designers model their game according to the learning outcomes and analysis of their own game elements. This method can be a path to research an educational game design in the future.

Keywords: constructive alignment, constructivist theory, educational game, outcome-based education

Procedia PDF Downloads 354
19142 Personal Development of School-Children on Lessons Physical Culture

Authors: Rogaleva Liudmila, Malkin Valery

Abstract:

Physical culture lessons are considered not only to be a means of physical development of students, but a matter of their personal development. Physical culture lessons can enable to develop such qualities of students as activity and initiation, readiness to cooperate, self-confidence, ability to define and reach targets, readiness to overcome difficulties and assess their abilities (and disadvantages) properly in any precise situation as well to be responsible for their own decision. The solution of this problem is possible under the circumstance if the students aware themselves as the subject of the activity that are able to develop their possibilities. The research was aimed to learn the matters that enable female teenagers of senior forms to become strong personalities attending physical culture lessons. There were two stages of the research. At the first stage we define the interests and demands of the girls. According the results of research we changed the programme of physical culture lessons. We took into consideration values of youth subculture: youth music, preferences to sport-dancing physical activities, demand of self-determination, revealing their individualities, needs of cooperative work. At the second stage we worked out motivating technology of course. This technology was aimed to create sush conditions under which students could show themselves as the subjects of activity and self-development. The active participation sport-dance festivals during 2-3 years creates the conditions for their self-realization. 78% students of the experimental groups considered their main motives to were: the interest, developing of their abilities, the satisfaction of the achievements of targets. Control groups 67% of the students claimed the success school good marks. The girls said that due to festivals they became self-confident (94%), responsible (86%), ability to cooperate (73%), aspiration for reaching the target (68%), self-exactingness (57 %). The main factors that provide successful performance were called: efforts to reach the target (87%), mutual support and mutual understanding (77%). The research on values showed that in the experimental groups we can find increase of importance of such values as: social initiative (active life) 83%, friends (75%), self-control (73%), effectiveness in deeds (58%).

Keywords: physical culture, subject, personal development, self-determination

Procedia PDF Downloads 470
19141 Artificial Intelligence-Based Thermal Management of Battery System for Electric Vehicles

Authors: Raghunandan Gurumurthy, Aricson Pereira, Sandeep Patil

Abstract:

The escalating adoption of electric vehicles (EVs) across the globe has underscored the critical importance of advancing battery system technologies. This has catalyzed a shift towards the design and development of battery systems that not only exhibit higher energy efficiency but also boast enhanced thermal performance and sophisticated multi-material enclosures. A significant leap in this domain has been the incorporation of simulation-based design optimization for battery packs and Battery Management Systems (BMS), a move further enriched by integrating artificial intelligence/machine learning (AI/ML) approaches. These strategies are pivotal in refining the design, manufacturing, and operational processes for electric vehicles and energy storage systems. By leveraging AI/ML, stakeholders can now predict battery performance metrics—such as State of Health, State of Charge, and State of Power—with unprecedented accuracy. Furthermore, as Li-ion batteries (LIBs) become more prevalent in urban settings, the imperative for bolstering thermal and fire resilience has intensified. This has propelled Battery Thermal Management Systems (BTMs) to the forefront of energy storage research, highlighting the role of machine learning and AI not just as tools for enhanced safety management through accurate temperature forecasts and diagnostics but also as indispensable allies in the early detection and warning of potential battery fires.

Keywords: electric vehicles, battery thermal management, industrial engineering, machine learning, artificial intelligence, manufacturing

Procedia PDF Downloads 97
19140 Dow Polyols near Infrared Chemometric Model Reduction Based on Clustering: Reducing Thirty Global Hydroxyl Number (OH) Models to Less Than Five

Authors: Wendy Flory, Kazi Czarnecki, Matthijs Mercy, Mark Joswiak, Mary Beth Seasholtz

Abstract:

Polyurethane Materials are present in a wide range of industrial segments such as Furniture, Building and Construction, Composites, Automotive, Electronics, and more. Dow is one of the leaders for the manufacture of the two main raw materials, Isocyanates and Polyols used to produce polyurethane products. Dow is also a key player for the manufacture of Polyurethane Systems/Formulations designed for targeted applications. In 1990, the first analytical chemometric models were developed and deployed for use in the Dow QC labs of the polyols business for the quantification of OH, water, cloud point, and viscosity. Over the years many models have been added; there are now over 140 models for quantification and hundreds for product identification, too many to be reasonable for support. There are 29 global models alone for the quantification of OH across > 70 products at many sites. An attempt was made to consolidate these into a single model. While the consolidated model proved good statistics across the entire range of OH, several products had a bias by ASTM E1655 with individual product validation. This project summary will show the strategy for global model updates for OH, to reduce the number of models for quantification from over 140 to 5 or less using chemometric methods. In order to gain an understanding of the best product groupings, we identify clusters by reducing spectra to a few dimensions via Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). Results from these cluster analyses and a separate validation set allowed dow to reduce the number of models for predicting OH from 29 to 3 without loss of accuracy.

Keywords: hydroxyl, global model, model maintenance, near infrared, polyol

Procedia PDF Downloads 135
19139 The Role of Societas Europaea in Business Environment of Czech Republic

Authors: Werner Bernatik, Pavel Adamek

Abstract:

The Societas Europaea is the legal form of company which plays its role within European Union since 2004. Since that it has settled in particular EU's member according to conditions. There is several hundreds of Societas Europaea found in EU and the article pays attention to historical background of conditions which formed the European Entrepreneurial Environment. Also, the differences of particular details of Societas Europaea are mentioned. Furthermore, the case of Czech Republic Business Environment is subject of interest where, surprisingly, the total amount of registered Societas Europaea was identified as the highest. The possible reasons of such situation are subject of research and results are to be presented in the article.

Keywords: Societas Europaea, business environment, legal form of company, entrepreneurial environment, European Union, competitivness

Procedia PDF Downloads 423
19138 Analysis of Backward Supply Chain in Beverages Industry of Pakistan

Authors: Faisal Mehmood

Abstract:

In this globalization era, the supply chain management has acquired strategic importance in diverse business environments. In the current highly competitive business environment, the success of any business considerably depends on the efficiency of the supply chain. Management has now realized that due to the inefficiency of any member of supply chain, the profitability of the business will be affected. This paper proposes an analysis of backward supply chain in the beverages industry of Pakistan. Although reuse of products and materials is a common phenomenon, companies have long ignored this important part of the supply chain, known as backward supply chain or reverse logistics. The beverage industry is among the pioneers of backward supply chain or reverse logistics in Pakistan. The empty glass bottles are returned back from the point of consumption to the warehouse for refilling and reusability purposes. Due to the lack of information on reverse flow of logistics and more attention on the forward distribution, beverages industry in Pakistan is facing high rate of inefficiencies and ineffectiveness. Analysis of backward or reverse logistics practiced in beverages industry is the subject of this study in which framework dictating the current needs of market will be developed.

Keywords: backward supply chain, reverse logistics, refilling, re-usability

Procedia PDF Downloads 348
19137 Educational Leadership and Artificial Intelligence

Authors: Sultan Ghaleb Aldaihani

Abstract:

- The environment in which educational leadership takes place is becoming increasingly complex due to factors like globalization and rapid technological change. - This is creating a "leadership gap" where the complexity of the environment outpaces the ability of leaders to effectively respond. - Educational leadership involves guiding teachers and the broader school system towards improved student learning and achievement. 2. Implications of Artificial Intelligence (AI) in Educational Leadership: - AI has great potential to enhance education, such as through intelligent tutoring systems and automating routine tasks to free up teachers. - AI can also have significant implications for educational leadership by providing better information and data-driven decision-making capabilities. - Computer-adaptive testing can provide detailed, individualized data on student learning that leaders can use for instructional decisions and accountability. 3. Enhancing Decision-Making Processes: - Statistical models and data mining techniques can help identify at-risk students earlier, allowing for targeted interventions. - Probability-based models can diagnose students likely to drop out, enabling proactive support. - These data-driven approaches can make resource allocation and decision-making more effective. 4. Improving Efficiency and Productivity: - AI systems can automate tasks and change processes to improve the efficiency of educational leadership and administration. - Integrating AI can free up leaders to focus more on their role's human, interactive elements.

Keywords: Education, Leadership, Technology, Artificial Intelligence

Procedia PDF Downloads 43
19136 Evaluating the Business Improvement District Redevelopment Model: An Ethnography of a Tokyo Shopping Mall

Authors: Stefan Fuchs

Abstract:

Against the backdrop of the proliferation of shopping malls in Japan during the last two decades, this paper presents the results of an ethnography conducted at a recently built suburban shopping mall in Western Tokyo. Through the analysis of the lived experiences of local residents, mall customers and the mall management this paper evaluates the benefits and disadvantages of the Business Improvement District (BID) model, which was implemented as urban redevelopment strategy in the area surrounding the shopping mall. The results of this research project show that while the BID model has in some respects contributed to the economic prosperity and to the perceived convenience of the area, it has led to gentrification and the redevelopment shows some deficiencies with regard to the inclusion of the elderly population as well as to the democratization of the decision-making process within the area. In Japan, shopping malls have been steadily growing both in size and number since a series of deregulation policies was introduced in the year 2000 in an attempt to push the domestic economy and to rejuvenate urban landscapes. Shopping malls have thereby become defining spaces of the built environment and are arguably important places of social interaction. Notwithstanding the vital role they play as factors of urban transformation, they have been somewhat overlooked in the research on Japan; especially with respect to their meaning for people’s everyday lives. By examining the ways, people make use of space in a shopping mall the research project presented in this paper addresses this gap in the research. Moreover, the research site of this research project is one of the few BIDs of Japan and the results presented in this paper can give indication on the scope of the future applicability of this urban redevelopment model. The data presented in this research was collected during a nine-months ethnographic fieldwork in and around the shopping mall. This ethnography includes semi-structured interviews with ten key informants as well as direct and participant observations examining the lived experiences and perceptions of people living, shopping or working at the shopping mall. The analysis of the collected data focused on recurring themes aiming at ultimately capturing different perspectives on the same aspects. In this manner, the research project documents the social agency of different groups within one communal network. The analysis of the perceptions towards the urban redevelopment around the shopping mall has shown that mainly the mall customers and large businesses benefit from the BID redevelopment model. While local residents benefit to some extent from their neighbourhood becoming more convenient for shopping they perceive themselves as being disadvantaged by changing demographics due to rising living expenses, the general noise level and the prioritisation of a certain customer segment or age group at the shopping mall. Although the shopping mall examined in this research project is just an example, the findings suggest that in future urban redevelopment politics have to provide incentives for landowners and developing companies to think of other ways of transforming underdeveloped areas.

Keywords: business improvement district, ethnography, shopping mall, urban redevelopment

Procedia PDF Downloads 137
19135 Social Networks in a Communication Strategy of a Large Company

Authors: Kherbache Mehdi

Abstract:

Within the framework of the validation of the Master in business administration marketing and sales in INSIM institute international in management Blida, we get the opportunity to do a professional internship in Sonelgaz Enterprise and a thesis. The thesis deals with the integration of social networking in the communication strategy of a company. The problematic is: How communicate with social network can be a solution for companies? The challenges stressed by this thesis were to suggest limits and recommendations to Sonelgaz Enterprise concerning social networks. The whole social networks represent more than a billion people as a potential target for the companies. Thanks to research and a qualitative approach, we have identified tree valid hypothesis. The first hypothesis allows confirming that using social networks cannot be ignored by any company in its communication strategy. However, the second hypothesis demonstrates that it’s necessary to prepare a strategy that integrates social networks in the communication plan of the company. The risk of this strategy is very limited because failure on social networks is not a restraint for the enterprise, social networking is not expensive and, a bad image which could result from it is not as important in the long-term. Furthermore, the return on investment is difficult to evaluate. Finally, the last hypothesis shows that firms establish a new relation between consumers and brands thanks to the proximity allowed by social networks. After the validation of the hypothesis, we suggested some recommendations to Sonelgaz Enterprise regarding the communication through social networks. Firstly, the company must use the interactivity of social network in order to have fruitful exchanges with the community. We also recommended having a strategy to treat negative comments. The company must also suggest delivering resources to the community thanks to a community manager, in order to have a good relation with the community. Furthermore, we advised using social networks to do business intelligence. Sonelgaz Enterprise can have some creative and interactive contents with some amazing applications on Facebook for example. Finally, we recommended to the company to be not intrusive with “fans” or “followers” and to be open to all the platforms: Twitter, Facebook, Linked-In for example.

Keywords: social network, buzz, communication, consumer, return on investment, internet users, web 2.0, Facebook, Twitter, interaction

Procedia PDF Downloads 422