Search results for: automotive part manufacturing measurement
10176 Fracture Pressure Predict Based on Well Logs of Depleted Reservoir in Southern Iraqi Oilfield
Authors: Raed H. Allawi
Abstract:
Formation pressure is the most critical parameter in hydrocarbon exploration and exploitation. Specifically, predicting abnormal pressures (high formation pressures) and subnormal pressure zones can provide valuable information to minimize uncertainty for anticipated drilling challenges and risks. This study aims to interpret and delineate the pore and fracture pressure of the Mishrif reservoir in the southern Iraq Oilfield. The data required to implement this study included acoustic compression wave, gamma-ray, bulk density, and drilling events. Furthermore, supporting these models needs the pore pressure measurement from the Modular Formation Dynamics Tester (MDT). Many measured values of pore pressure were used to validate the accurate model. Using sonic velocity approaches, the mean absolute percentage error (MAPE) was about 4%. The fracture pressure results were consistent with the measurement data, actual drilling report, and events. The model's results will be a guide for successful drilling in future wells in the same oilfield.Keywords: pore pressure, fracture pressure, overburden pressure, effective stress, drilling events
Procedia PDF Downloads 8310175 Validation of the Career Motivation Scale among Chinese University and Vocational College Teachers
Authors: Wei Zhang, Lifen Zhao
Abstract:
The present study aims to translate and validate the Career Motivation Scale among Chinese university and vocational college teachers. Exploratory factor analysis supported a three-factor structure that was consistent with the original structure of career motivation: career insight, career identity, and career resilience. Confirmatory factor analysis showed that a second-order three-factor model with correlated measurement errors best fit the data. Configural, metric, and scalar invariance models were tested, demonstrating that the Chinese version of the Career Motivation Scale did not differ across groups of school type, educational level, and working years in current institutions. The concurrent validity of the Chinese Career Motivation Scale was confirmed by its significant correlations with work engagement, career adaptability, career satisfaction, job crafting, and intention to quit. The results of the study indicated that the Chinese Career Motivation Scale was a valid and reliable measure of career motivation among university and vocational college teachers in China.Keywords: career motivation scale, Chinese University, vocational college teachers, measurement invariance, validation
Procedia PDF Downloads 13210174 A Framework for Teaching the Intracranial Pressure Measurement through an Experimental Model
Authors: Christina Klippel, Lucia Pezzi, Silvio Neto, Rafael Bertani, Priscila Mendes, Flavio Machado, Aline Szeliga, Maria Cosendey, Adilson Mariz, Raquel Santos, Lys Bendett, Pedro Velasco, Thalita Rolleigh, Bruna Bellote, Daria Coelho, Bruna Martins, Julia Almeida, Juliana Cerqueira
Abstract:
This project presents a framework for teaching intracranial pressure monitoring (ICP) concepts using a low-cost experimental model in a neurointensive care education program. Data concerning ICP monitoring contribute to the patient's clinical assessment and may dictate the course of action of a health team (nursing, medical staff) and influence decisions to determine the appropriate intervention. This study aims to present a safe method for teaching ICP monitoring to medical students in a Simulation Center. Methodology: Medical school teachers, along with students from the 4th year, built an experimental model for teaching ICP measurement. The model consists of a mannequin's head with a plastic bag inside simulating the cerebral ventricle and an inserted ventricular catheter connected to the ICP monitoring system. The bag simulating the ventricle can also be changed for others containing bloody or infected simulated cerebrospinal fluid. On the mannequin's ear, there is a blue point indicating the right place to set the "zero point" for accurate pressure reading. The educational program includes four steps: 1st - Students receive a script on ICP measurement for reading before training; 2nd - Students watch a video about the subject created in the Simulation Center demonstrating each step of the ICP monitoring and the proper care, such as: correct positioning of the patient, anatomical structures to establish the zero point for ICP measurement and a secure range of ICP; 3rd - Students train the procedure in the model. Teachers help students during training; 4th - Student assessment based on a checklist form. Feedback and correction of wrong actions. Results: Students expressed interest in learning ICP monitoring. Tests concerning the hit rate are still being performed. ICP's final results and video will be shown at the event. Conclusion: The study of intracranial pressure measurement based on an experimental model consists of an effective and controlled method of learning and research, more appropriate for teaching neurointensive care practices. Assessment based on a checklist form helps teachers keep track of student learning progress. This project offers medical students a safe method to develop intensive neurological monitoring skills for clinical assessment of patients with neurological disorders.Keywords: neurology, intracranial pressure, medical education, simulation
Procedia PDF Downloads 17210173 Computational Feasibility Study of a Torsional Wave Transducer for Tissue Stiffness Monitoring
Authors: Rafael Muñoz, Juan Melchor, Alicia Valera, Laura Peralta, Guillermo Rus
Abstract:
A torsional piezoelectric ultrasonic transducer design is proposed to measure shear moduli in soft tissue with direct access availability, using shear wave elastography technique. The measurement of shear moduli of tissues is a challenging problem, mainly derived from a) the difficulty of isolating a pure shear wave, given the interference of multiple waves of different types (P, S, even guided) emitted by the transducers and reflected in geometric boundaries, and b) the highly attenuating nature of soft tissular materials. An immediate application, overcoming these drawbacks, is the measurement of changes in cervix stiffness to estimate the gestational age at delivery. The design has been optimized using a finite element model (FEM) and a semi-analytical estimator of the probability of detection (POD) to determine a suitable geometry, materials and generated waves. The technique is based on the time of flight measurement between emitter and receiver, to infer shear wave velocity. Current research is centered in prototype testing and validation. The geometric optimization of the transducer was able to annihilate the compressional wave emission, generating a quite pure shear torsional wave. Currently, mechanical and electromagnetic coupling between emitter and receiver signals are being the research focus. Conclusions: the design overcomes the main described problems. The almost pure shear torsional wave along with the short time of flight avoids the possibility of multiple wave interference. This short propagation distance reduce the effect of attenuation, and allow the emission of very low energies assuring a good biological security for human use.Keywords: cervix ripening, preterm birth, shear modulus, shear wave elastography, soft tissue, torsional wave
Procedia PDF Downloads 34510172 Manufacturing Commercial Bricks with Construction and Demolition Wastes
Authors: Mustafa Kara, Yasemin Kilic, Bahattin Murat Demir, Ümit Ustaoglu, Cavit Unal
Abstract:
This paper reports utilization of different kind of construction and demolition wastes (C&D) in the production of bricks at industrial scale. Plastered brick waste and tile wastes were collected from ISTAÇ Co. Compost and Recovery Plant, Istanbul, Turkey. Plastered brick waste and tile waste are mixed with brick clay in the proportion of 0-30% and fired at 900ºC. The physical and mechanical properties of the produced bricks were determined and evaluated according to IKIZLER Brick Company Production values, Brick Industry Association (BIA) and Turkish Standards (TS). The resulted showed that plastered brick waste and tile waste can be used to produce good quality brick for various engineering applications in construction and building. The replacement of brick clay by plastered brick waste and tile waste at the levels of 30% has good effects on the compressive strength of the bricks.Keywords: commercial brick, construction and demolition waste, manufacturing, recycling
Procedia PDF Downloads 35810171 Real-Time Recognition of the Terrain Configuration to Improve Driving Stability for Unmanned Robots
Authors: Bongsoo Jeon, Jayoung Kim, Jihong Lee
Abstract:
Methods for measuring or estimating of ground shape by a laser range finder and a vision sensor (exteroceptive sensors) have critical weakness in terms that these methods need prior database built to distinguish acquired data as unique surface condition for driving. Also, ground information by exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Therefore, this paper proposes a method of recognizing exact and precise ground shape using Inertial Measurement Unit (IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.Keywords: inertial measurement unit, laser range finder, real-time recognition of the ground shape, proprioceptive sensor
Procedia PDF Downloads 28710170 Urban Vitality: Methods for Measuring Vitality in Egypt's Commercial Streets
Authors: Alaa Eldien Sarhaan, Rania A. Galil, Yasmina Youssef
Abstract:
Vital streets transfer a totally different message from the lifeless streets; vitality is considered as the mobility dynamism for the city’s streets. The quality of a street is integral to the vitality. However, most efforts have focused on the requirements of cars resulting in the loss many qualities. A successful street is related to the needs and expectations of pedestrians. The amount of activity held in a place is one of the measures of vitality; hence the meaning of a vital street may be the result of a number of people engaged in various activities meeting their needs and expectations. Consequently, it varies from one city to another. This research focuses on vitality in commercial streets. It studies commercial streets in the Egyptian context, which have developed into a chaotic environment due to inefficiency and high-density activities. The first part identifies the meaning of vitality in the frame of its physical, social and economic dimensions, then determines the methods used in measuring vitality across commercial streets. Secondly, an application on one of the most important commercial streets in Alexandria ‘El-Attareen’ street is chosen as a case study to measure its vitality. The study contributes to a greater understanding of how theories on vital urban life contribute to the development of vital commercial streets in the Egyptian and similar contexts.Keywords: footfall measurement, vitality, urban commercial streets, yield factor
Procedia PDF Downloads 26210169 A Comparative Study of the Modeling and Quality Control of the Propylene-Propane Classical Distillation and Distillation Column with Heat Pump
Authors: C. Patrascioiu, Cao Minh Ahn
Abstract:
The paper presents the research evolution in the propylene – propane distillation process, especially for the distillation columns equipped with heat pump. The paper is structured in three parts: separation of the propylene-propane mixture, steady state process modeling, and quality control systems. The first part is dedicated to state of art of the two distillation processes. The second part continues the author’s researches of the steady state process modeling. There has been elaborated a software simulation instrument that may be used to dynamic simulation of the process and to design the quality control systems. The last part presents the research of the control systems, especially for quality control systems.Keywords: absorption, distillation, heat pump, Unisim design
Procedia PDF Downloads 33810168 Engineering Method to Measure the Impact Sound Improvement with Floor Coverings
Authors: Katarzyna Baruch, Agata Szelag, Jaroslaw Rubacha, Bartlomiej Chojnacki, Tadeusz Kamisinski
Abstract:
Methodology used to measure the reduction of transmitted impact sound by floor coverings situated on a massive floor is described in ISO 10140-3: 2010. To carry out such tests, the standardised reverberation room separated by a standard floor from the second measuring room are required. The need to have a special laboratory results in high cost and low accessibility of this measurement. The authors propose their own engineering method to measure the impact sound improvement with floor coverings. This method does not require standard rooms and floor. This paper describes the measurement procedure of proposed engineering method. Further, verification tests were performed. Validation of the proposed method was based on the analytical model, Statistical Energy Analysis (SEA) model and empirical measurements. The received results were related to corresponding ones obtained from ISO 10140-3:2010 measurements. The study confirmed the usefulness of the engineering method.Keywords: building acoustic, impact noise, impact sound insulation, impact sound transmission, reduction of impact sound
Procedia PDF Downloads 32410167 Design, Simulation and Fabrication of Electro-Magnetic Pulse Welding Coil and Initial Experimentation
Authors: Bharatkumar Doshi
Abstract:
Electro-Magnetic Pulse Welding (EMPW) is a solid state welding process carried out at almost room temperature, in which joining is enabled by high impact velocity deformation. In this process, high voltage capacitor’s stored energy is discharged in an EM coil resulting in a damped, sinusoidal current with an amplitude of several hundred kiloamperes. Due to these transient magnetic fields of few tens of Tesla near the coil is generated. As the conductive (tube) part is positioned in this area, an opposing eddy current is induced in this part. Consequently, high Lorentz forces act on the part, leading to acceleration away from the coil. In case of a tube, it gets compressed under forming velocities of more than 300 meters per second. After passing the joining gap it collides with the second metallic joining rod, leading to the formation of a jet under appropriate collision conditions. Due to the prevailing high pressure, metallurgical bonding takes place. A characteristic feature is the wavy interface resulting from the heavy plastic deformations. In the process, the formation of intermetallic compounds which might deteriorate the weld strength can be avoided, even for metals with dissimilar thermal properties. In order to optimize the process parameters like current, voltage, inductance, coil dimensions, workpiece dimensions, air gap, impact velocity, effective plastic strain, shear stress acting in the welding zone/impact zone etc. are very critical and important to establish. These process parameters could be determined by simulation using Finite Element Methods (FEM) in which electromagnetic –structural couple field analysis is performed. The feasibility of welding could thus be investigated by varying the parameters in the simulation using COMSOL. Simulation results shall be applied in performing the preliminary experiments of welding the different alloy steel tubes and/or alloy steel to other materials. The single turn coil (S.S.304) with field shaper (copper) has been designed and manufactured. The preliminary experiments are performed using existing EMPW facility available Institute for Plasma Research, Gandhinagar, India. The experiments are performed at 22kV charged into 64µF capacitor bank and the energy is discharged into single turn EM coil. Welding of axi-symetric components such as aluminum tube and rod has been proven experimentally using EMPW techniques. In this paper EM coil design, manufacturing, Electromagnetic-structural FEM simulation of Magnetic Pulse Welding and preliminary experiment results is reported.Keywords: COMSOL, EMPW, FEM, Lorentz force
Procedia PDF Downloads 18410166 Investigating the Effectiveness of a 3D Printed Composite Mold
Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg
Abstract:
In composite manufacturing, the fabrication of tooling and tooling maintenance contributes to a large portion of the total cost. However, as the applications of composite materials continue to increase, there is also a growing demand for more tooling. The demand for more tooling places heavy emphasis on the industry’s ability to fabricate high quality tools while maintaining the tool’s cost effectiveness. One of the popular techniques of tool fabrication currently being developed utilizes additive manufacturing technology known as 3D printing. The popularity of 3D printing is due to 3D printing’s ability to maintain low material waste, low cost, and quick fabrication time. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite mold. A steel valve cover from an aircraft reciprocating engine was modeled utilizing 3D scanning and computer-aided design (CAD) to create a 3D printed composite mold. The mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The carbon fiber valve covers were evaluated for dimensional accuracy and quality while the 3D printed composite mold was evaluated for durability and dimensional stability. The data collected from this study provided valuable information in the understanding of 3D printed composite molds, potential improvements for the molds, and considerations for future tooling design.Keywords: additive manufacturing, carbon fiber, composite tooling, molds
Procedia PDF Downloads 11410165 Occupational Heat Stress Condition According to Wet Bulb Globe Temperature Index in Textile Processing Unit: A Case Study of Surat, Gujarat, India
Authors: Dharmendra Jariwala, Robin Christian
Abstract:
Thermal exposure is a common problem in every manufacturing industry where heat is used in the manufacturing process. In developing countries like India, a lack of awareness regarding the proper work environmental condition is observed among workers. Improper planning of factory building, arrangement of machineries, ventilation system, etc. play a vital role in the rise of temperature within the manufacturing areas. Due to the uncontrolled thermal stress, workers may be subjected to various heat illnesses from mild disorder to heat stroke. Heat stress is responsible for the health risk and reduction in production. Wet Bulb Globe Temperature (WBGT) index and relative humidity are used to evaluate heat stress conditions. WBGT index is a weighted average of natural wet bulb temperature, globe temperature, dry bulb temperature, which are measured with standard instrument QuestTemp 36 area stress monitor. In this study textile processing units have been selected in the industrial estate in the Surat city. Based on the manufacturing process six locations were identified within the plant at which process was undertaken at 120°C to 180°C. These locations were jet dying machine area, stenter machine area, printing machine, looping machine area, washing area which generate process heat. Office area was also selected for comparision purpose as a sixth location. Present Study was conducted in the winter season and summer season for day and night shift. The results shows that average WBGT index was found above Threshold Limiting Value (TLV) during summer season for day and night shift in all three industries except office area. During summer season highest WBGT index of 32.8°C was found during day shift and 31.5°C was found during night shift at printing machine area. Also during winter season highest WBGT index of 30°C and 29.5°C was found at printing machine area during day shift and night shift respectively.Keywords: relative humidity, textile industry, thermal stress, WBGT
Procedia PDF Downloads 17410164 Impact of Financial Factors on Total Factor Productivity: Evidence from Indian Manufacturing Sector
Authors: Lopamudra D. Satpathy, Bani Chatterjee, Jitendra Mahakud
Abstract:
The rapid economic growth in terms of output and investment necessitates a substantial growth of Total Factor Productivity (TFP) of firms which is an indicator of an economy’s technological change. The strong empirical relationship between financial sector development and economic growth clearly indicates that firms financing decisions do affect their levels of output via their investment decisions. Hence it establishes a linkage between the financial factors and productivity growth of the firms. To achieve the smooth and continuous economic growth over time, it is imperative to understand the financial channel that serves as one of the vital channels. The theoretical or logical argument behind this linkage is that when the internal financial capital is not sufficient enough for the investment, the firms always rely upon the external sources of finance. But due to the frictions and existence of information asymmetric behavior, it is always costlier for the firms to raise the external capital from the market, which in turn affect their investment sentiment and productivity. This kind of financial position of the firms puts heavy pressure on their productive activities. Keeping in view this theoretical background, the present study has tried to analyze the role of both external and internal financial factors (leverage, cash flow and liquidity) on the determination of total factor productivity of the firms of manufacturing industry and its sub-industries, maintaining a set of firm specific variables as control variables (size, age and disembodied technological intensity). An estimate of total factor productivity of the Indian manufacturing industry and sub-industries is computed using a semi-parametric approach, i.e., Levinsohn- Petrin method. It establishes the relationship between financial factors and productivity growth of 652 firms using a dynamic panel GMM method covering the time period between 1997-98 and 2012-13. From the econometric analyses, it has been found that the internal cash flow has a positive and significant impact on the productivity of overall manufacturing sector. The other financial factors like leverage and liquidity also play the significant role in the determination of total factor productivity of the Indian manufacturing sector. The significant role of internal cash flow on determination of firm-level productivity suggests that access to external finance is not available to Indian companies easily. Further, the negative impact of leverage on productivity could be due to the less developed bond market in India. These findings have certain implications for the policy makers to take various policy reforms to develop the external bond market and easily workout through which the financially constrained companies will be able to raise the financial capital in a cost-effective manner and would be able to influence their investments in the highly productive activities, which would help for the acceleration of economic growth.Keywords: dynamic panel, financial factors, manufacturing sector, total factor productivity
Procedia PDF Downloads 33210163 Indoor and Outdoor Concentration of PM₁₀, PM₂.₅ and PM₁ in Residential Building and Evaluation of Negative Air Ions (NAIs) in Indoor PM Removal
Authors: Hossein Arfaeinia, Azam Nadali, Zahra Asadgol, Mohammad Fahiminia
Abstract:
Indoor and outdoor particulate matters (PM) were monitored in 20 residential buildings in a two-part study. In part I, the levels of indoor and outdoor PM₁₀, PM₂.₅ and PM₁ was measured using real time GRIMM dust monitors. In part II, the effect of negative air ions (NAIs) method was investigated on the reduction of indoor concentration of PM in these residential buildings. Hourly average concentration and standard deviation (SD) of PM₁₀ in indoor and outdoor at residential buildings were 90.1 ± 33.5 and 63.5 ± 27.4 µg/ m3, respectively. Indoor and outdoor concentrations of PM₂.₅ in residential buildings were 49.5 ± 18.2 and 39.4± 18.1 µg/ m3 and for PM₁ the concentrations were 6.5 ± 10.1and 4.3 ± 7.7 µg/ m3, respectively. Indoor/outdoor (I/O) ratios and concentrations of all size fractions of PM were strongly correlated with wind speed and temperature whereas a good relationship was not observed between humidity and I/O ratios of PM. We estimated that nearly 71.47 % of PM₁₀, 79.86 % of PM₂.₅ and of 61.25 % of PM₁ in indoor of residential buildings can be removed by negative air ions.Keywords: particle matter (PM), indoor air, negative air ions (NAIs), residential building
Procedia PDF Downloads 25610162 The Application of Lean-Kaizen in Course Plan and Delivery in Malaysian Higher Education Sector
Authors: Nur Aishah Binti Awi, Zulfiqar Khan
Abstract:
Lean-kaizen has always been applied in manufacturing sector since many years ago. What about education sector? This paper discuss on how lean-kaizen can also be applied in education sector, specifically in academic area of Malaysian’s higher education sector. The purpose of this paper is to describe the application of lean kaizen in course plan and delivery. Lean-kaizen techniques have been used to identify waste in the course plan and delivery. A field study has been conducted to obtain the data. This study used both quantitative and qualitative data. The researcher had interviewed the chosen lecturers regarding to the problems of course plan and delivery that they encountered. Secondary data of students’ feedback at the end of semester also has been used to improve course plan and delivery. The result empirically shows that lean-kaizen helps to improve the course plan and delivery by reducing the wastes. Thus, this study demonstrates that lean-kaizen can also help education sector to improve their services as achieved by manufacturing sector.Keywords: course delivery, education, Kaizen, lean
Procedia PDF Downloads 36910161 An Enhanced Approach in Validating Analytical Methods Using Tolerance-Based Design of Experiments (DoE)
Authors: Gule Teri
Abstract:
The effective validation of analytical methods forms a crucial component of pharmaceutical manufacturing. However, traditional validation techniques can occasionally fail to fully account for inherent variations within datasets, which may result in inconsistent outcomes. This deficiency in validation accuracy is particularly noticeable when quantifying low concentrations of active pharmaceutical ingredients (APIs), excipients, or impurities, introducing a risk to the reliability of the results and, subsequently, the safety and effectiveness of the pharmaceutical products. In response to this challenge, we introduce an enhanced, tolerance-based Design of Experiments (DoE) approach for the validation of analytical methods. This approach distinctly measures variability with reference to tolerance or design margins, enhancing the precision and trustworthiness of the results. This method provides a systematic, statistically grounded validation technique that improves the truthfulness of results. It offers an essential tool for industry professionals aiming to guarantee the accuracy of their measurements, particularly for low-concentration components. By incorporating this innovative method, pharmaceutical manufacturers can substantially advance their validation processes, subsequently improving the overall quality and safety of their products. This paper delves deeper into the development, application, and advantages of this tolerance-based DoE approach and demonstrates its effectiveness using High-Performance Liquid Chromatography (HPLC) data for verification. This paper also discusses the potential implications and future applications of this method in enhancing pharmaceutical manufacturing practices and outcomes.Keywords: tolerance-based design, design of experiments, analytical method validation, quality control, biopharmaceutical manufacturing
Procedia PDF Downloads 8010160 Solutions for Food-Safe 3D Printing
Authors: Geremew Geidare Kailo, Igor Gáspár, András Koris, Ivana Pajčin, Flóra Vitális, Vanja Vlajkov
Abstract:
Three-dimension (3D) printing, a very popular additive manufacturing technology, has recently undergone rapid growth and replaced the use of conventional technology from prototyping to producing end-user parts and products. The 3D Printing technology involves a digital manufacturing machine that produces three-dimensional objects according to designs created by the user via 3D modeling or computer-aided design/manufacturing (CAD/CAM) software. The most popular 3D printing system is Fused Deposition Modeling (FDM) or also called Fused Filament Fabrication (FFF). A 3D-printed object is considered food safe if it can have direct contact with the food without any toxic effects, even after cleaning, storing, and reusing the object. This work analyzes the processing timeline of the filament (material for 3D printing) from unboxing to the extrusion through the nozzle. It is an important task to analyze the growth of bacteria on the 3D printed surface and in gaps between the layers. By default, the 3D-printed object is not food safe after longer usage and direct contact with food (even though they use food-safe filaments), but there are solutions for this problem. The aim of this work was to evaluate the 3D-printed object from different perspectives of food safety. Firstly, testing antimicrobial 3D printing filaments from a food safety aspect since the 3D Printed object in the food industry may have direct contact with the food. Therefore, the main purpose of the work is to reduce the microbial load on the surface of a 3D-printed part. Coating with epoxy resin was investigated, too, to see its effect on mechanical strength, thermal resistance, surface smoothness and food safety (cleanability). Another aim of this study was to test new temperature-resistant filaments and the effect of high temperature on 3D printed materials to see if they can be cleaned with boiling or similar hi-temp treatment. This work proved that all three mentioned methods could improve the food safety of the 3D printed object, but the size of this effect variates. The best result we got was with coating with epoxy resin, and the object was cleanable like any other injection molded plastic object with a smooth surface. Very good results we got by boiling the objects, and it is good to see that nowadays, more and more special filaments have a food-safe certificate and can withstand boiling temperatures too. Using antibacterial filaments reduced bacterial colonies to 1/5, but the biggest advantage of this method is that it doesn’t require any post-processing. The object is ready out of the 3D printer. Acknowledgements: The research was supported by the Hungarian and Serbian bilateral scientific and technological cooperation project funded by the Hungarian National Office for Research, Development and Innovation (NKFI, 2019-2.1.11-TÉT-2020-00249) and the Ministry of Education, Science and Technological Development of the Republic of Serbia. The authors acknowledge the Hungarian University of Agriculture and Life Sciences’s Doctoral School of Food Science for the support in this studyKeywords: food safety, 3D printing, filaments, microbial, temperature
Procedia PDF Downloads 14210159 Revolutionizing Manufacturing: Embracing Additive Manufacturing with Eggshell Polylactide (PLA) Polymer
Authors: Choy Sonny Yip Hong
Abstract:
This abstract presents an exploration into the creation of a sustainable bio-polymer compound for additive manufacturing, specifically 3D printing, with a focus on eggshells and polylactide (PLA) polymer. The project initially conducted experiments using a variety of food by-products to create bio-polymers, and promising results were obtained when combining eggshells with PLA polymer. The research journey involved precise measurements, drying of PLA to remove moisture, and the utilization of a filament-making machine to produce 3D printable filaments. The project began with exploratory research and experiments, testing various combinations of food by-products to create bio-polymers. After careful evaluation, it was discovered that eggshells and PLA polymer produced promising results. The initial mixing of the two materials involved heating them just above the melting point. To make the compound 3D printable, the research focused on finding the optimal formulation and production process. The process started with precise measurements of the PLA and eggshell materials. The PLA was placed in a heating oven to remove any absorbed moisture. Handmade testing samples were created to guide the planning for 3D-printed versions. The scrap PLA was recycled and ground into a powdered state. The drying process involved gradual moisture evaporation, which required several hours. The PLA and eggshell materials were then placed into the hopper of a filament-making machine. The machine's four heating elements controlled the temperature of the melted compound mixture, allowing for optimal filament production with accurate and consistent thickness. The filament-making machine extruded the compound, producing filament that could be wound on a wheel. During the testing phase, trials were conducted with different percentages of eggshell in the PLA mixture, including a high percentage (20%). However, poor extrusion results were observed for high eggshell percentage mixtures. Samples were created, and continuous improvement and optimization were pursued to achieve filaments with good performance. To test the 3D printability of the DIY filament, a 3D printer was utilized, set to print the DIY filament smoothly and consistently. Samples were printed and mechanically tested using a universal testing machine to determine their mechanical properties. This testing process allowed for the evaluation of the filament's performance and suitability for additive manufacturing applications. In conclusion, the project explores the creation of a sustainable bio-polymer compound using eggshells and PLA polymer for 3D printing. The research journey involved precise measurements, drying of PLA, and the utilization of a filament-making machine to produce 3D printable filaments. Continuous improvement and optimization were pursued to achieve filaments with good performance. The project's findings contribute to the advancement of additive manufacturing, offering opportunities for design innovation, carbon footprint reduction, supply chain optimization, and collaborative potential. The utilization of eggshell PLA polymer in additive manufacturing has the potential to revolutionize the manufacturing industry, providing a sustainable alternative and enabling the production of intricate and customized products.Keywords: additive manufacturing, 3D printing, eggshell PLA polymer, design innovation, carbon footprint reduction, supply chain optimization, collaborative potential
Procedia PDF Downloads 7210158 SynKit: A Event-Driven and Scalable Microservices-Based Kitting System
Authors: Bruno Nascimento, Cristina Wanzeller, Jorge Silva, João A. Dias, André Barbosa, José Ribeiro
Abstract:
The increasing complexity of logistics operations stems from evolving business needs, such as the shift from mass production to mass customization, which demands greater efficiency and flexibility. In response, Industry 4.0 and 5.0 technologies provide improved solutions to enhance operational agility and better meet market demands. The management of kitting zones, combined with the use of Autonomous Mobile Robots, faces challenges related to coordination, resource optimization, and rapid response to customer demand fluctuations. Additionally, implementing lean manufacturing practices in this context must be carefully orchestrated by intelligent systems and human operators to maximize efficiency without sacrificing the agility required in an advanced production environment. This paper proposes and implements a microservices-based architecture integrating principles from Industry 4.0 and 5.0 with lean manufacturing practices. The architecture enhances communication and coordination between autonomous vehicles and kitting management systems, allowing more efficient resource utilization and increased scalability. The proposed architecture focuses on the modularity and flexibility of operations, enabling seamless flexibility to change demands and the efficient allocation of resources in realtime. Conducting this approach is expected to significantly improve logistics operations’ efficiency and scalability by reducing waste and optimizing resource use while improving responsiveness to demand changes. The implementation of this architecture provides a robust foundation for the continuous evolution of kitting management and process optimization. It is designed to adapt to dynamic environments marked by rapid shifts in production demands and real-time decision-making. It also ensures seamless integration with automated systems, aligning with Industry 4.0 and 5.0 needs while reinforcing Lean Manufacturing principles.Keywords: microservices, event-driven, kitting, AMR, lean manufacturing, industry 4.0, industry 5.0
Procedia PDF Downloads 2410157 Simulation Modeling and Analysis of In-Plant Logistics at a Cement Manufacturing Plant in India
Authors: Sachin Kamble, Shradha Gawankar
Abstract:
This paper presents the findings of successful implementation of Business Process Reengineering (BPR) of cement dispatch activities in a cement manufacturing plant located in India. Simulation model was developed for the purpose of identifying and analyzing the areas for improvement. The company was facing a problem of low throughput rate and subsequent forced stoppages of the plant leading to a high production loss of 15000MT per month. It was found from the study that the present systems and procedures related to the in-plant logistics plant required significant changes. The major recommendations included process improvement at the entry gate, reducing the cycle time at the security gate and installation of an additional weigh bridge. This paper demonstrates how BPR can be implemented for improving the in-plant logistics process. Various recommendations helped the plant to increase its throughput by 14%.Keywords: in-plant logistics, cement logistics, simulation modelling, business process re-engineering, supply chain management
Procedia PDF Downloads 30010156 Design and Development of Herbal Formulations: Challenges and Solutions
Authors: B. Sathyanarayana
Abstract:
As per the report of World Health Organization, more than 80% of world population uses medicines made from herbal and natural materials. They have stood the test of time for their safety, efficacy, cultural acceptability and lesser side effects. Quality assurance and control measures, such as national quality specification and standards for herbal materials, good manufacturing practices (GMP) for herbal medicines, labelling, and licensing schemes for manufacturing, imports and marketing, should be in place in every country where herbal medicines are regulated. These measures are vital for ensuring the safety and efficacy of herbal medicines. In the case of herbal products challenge begins at the stage of designing itself except the classical products. Selection of herbal ingredients, officinal parts to be used, proportions are vital. Once the formulation is designed one should take utmost care to produce the standardized product of assured quality and safety. Quality control measures should cover the validation of quality and identity of raw materials, in process control (as per SOP and GMP norms) and at the level of final product. Quality testing, safety and efficacy studies of the final product are required to ensure the safe and effective use of the herbal products in human beings. Medicinal plants being the materials of natural resource are subjected to great variation making it really difficult to fix quality standards especially in the case of polyherbal preparations. Manufacturing also needs modification according to the type of ingredients present. Hence, it becomes essential to develop Standard operative Procedure for a specific herbal product. Present paper throws a light on the challenges that are encountered during the design and development of herbal products.Keywords: herbal product, challenges, quality, safety, efficacy
Procedia PDF Downloads 50210155 Modified Design of Flyer with Reduced Weight for Use in Textile Machinery
Authors: Payal Patel
Abstract:
Textile machinery is one of the fastest evolving areas which has an application of mechanical engineering. The modular approach towards the processing right from the stage of cotton to the fabric, allows us to observe the result of each process on its input. Cost and space being the major constraints. The flyer is a component of roving machine, which is used as a part of spinning process. In the present work using the application of Hyper Works, the flyer arm has been modified which saves the material used for manufacturing the flyer. The size optimization of the flyer is carried out with the objective of reduction in weight under the constraints of standard operating conditions. The new design of the flyer is proposed and validated using the module of HyperWorks which is equally strong, but light weighted compared to the existing design. Dynamic balancing of the optimized model is carried out to align a principal inertia axis with the geometric axis of rotation. For the balanced geometry of flyer, air resistance is obtained theoretically and with Gambit and Fluent. Static analysis of the balanced geometry has been done to verify the constraint of operating condition. Comparison of weight, deflection, and factor of safety has been made for different aluminum alloys.Keywords: flyer, size optimization, textile, weight
Procedia PDF Downloads 21610154 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images
Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann
Abstract:
FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design
Procedia PDF Downloads 27810153 Enhancing Intra-Organizational Supply Chain Relationships in Manufacturing Companies: A Case Study in Tigray, Ethiopia
Authors: Weldeabrha Kiros Kidanemaryam
Abstract:
The investigation is to examine intra-organizational supply chain relationships of firms, which will help to look at and give an emphasis on internal processes and operations strength and achievements to make an influence even for external relationship management and outstanding performances of organizations. The purpose of the study is to scrutinize the internal supply chain relationships within manufacturing companies located in Tigray. The qualitative and quantitative data analysis methods were employed during the study by applying the primary data sources (questionnaires & interviews) and secondary data sources (organizational reports and documents) with the purposive sampling method. Thus, a descriptive research design was also applied in the research project in line with the cross-sectional research design which portrays simply the magnitude of the issues and problems by collecting the required and necessary data once from the sample respondents. This is because the study variables don’t have any cause-and-effect relationship in the research project that requires other types of research design than a descriptive research design; it already needs to be assessed and analyzed with a detailed description of the results after quantifying the outcomes and degree of the issues and problems based on the data gathered from respondents. The collected data was also analyzed by using the statistical package for social sciences (SPSS Version 20). The intra-organizational relationships of the companies are moderately accomplished, which requires an improvement for enhancing the performances of each unit or department within the firms so as to upgrade and ensure the progress of the companies’ effectiveness and efficiency. Moreover, the manufacturing companies have low industrial discipline and working culture, weak supervision of manpower, delayed delivery in the process within the companies, unsatisfactory quality of products, underutilization of capacity, and low productivity and profitability, which in turn results in minimizing the performance of intra-organizational supply chain relationships and to reduce the companies’ organizational efficiency, effectiveness and sustainability. Hence, the companies should have to give emphasize building and managing the intra-organizational supply chain relationships effectively because nothing can be done without creating successful and progressive relationships with internal units or functional areas and individuals for the production and provision of the required and qualified products that permits to meet the intended customers’ desires. The study contributes to improving the practical applications and gives an emphasis on the policy measurements and implications of the manufacturing companies with regard to intra-organizational supply chain relationships.Keywords: supply chain, supply chain relationships, intra-organizational relationships, manufacturing companies
Procedia PDF Downloads 3410152 Intensification of Heat Transfer in Magnetically Assisted Reactor
Authors: Dawid Sołoducha, Tomasz Borowski, Marian Kordas, Rafał Rakoczy
Abstract:
The magnetic field in the past few years became an important part of many studies. Magnetic field (MF) may be used to affect the process in many ways; for example, it can be used as a factor to stabilize the system. We can use MF to steer the operation, to activate or inhibit the process, or even to affect the vital activity of microorganisms. Using various types of magnetic field generators is always connected with the delivery of some heat to the system. Heat transfer is a very important phenomenon; it can influence the process positively and negatively, so it’s necessary to measure heat stream transferred from the place of generation and prevent negative influence on the operation. The aim of the presented work was to apply various types of magnetic fields and to measure heat transfer phenomena. The results were obtained by continuous measurement at several measuring points with temperature probes. Results were compilated in the form of temperature profiles. The study investigated the undetermined heat transfer in a custom system equipped with a magnetic field generator. Experimental investigations are provided for the explanation of the influence of the various type of magnetic fields on the heat transfer process. The tested processes are described by means of the criteria which defined heat transfer intensification under the action of magnetic field.Keywords: heat transfer, magnetic field, undetermined heat transfer, temperature profile
Procedia PDF Downloads 19610151 Utilizing Laser Cutting Method in Men's' Custom-Made Casualwear
Authors: M A. Habit, S. A. Syed-Sahil, A. Bahari
Abstract:
Abstract—Laser cutting is a method of manufacturing process that uses laser in order to cut materials. It provides and ensures extreme accuracy which has a clean cut effect, CO2 laser dominate this application due to their good- quality beam combined with high output power. It comes with a small scale and it has a limitation in cutting sizes of materials, therefore it is more appropriate for custom- made products. The same laser cutting machine is also capable in cutting fine material such as fine silk, cotton, leather, polyester, etc. Lack of explorations and knowledge besides being unaware about this technology had caused many of the designers not to use this laser cutting method in their collections. The objectives of this study are: 1) To identify the potential of laser cutting technique in Custom-Made Garments for men’s casual wear: 2) To experiment the laser cutting technique in custom made garments: 3) To offer guidelines and formula for men’s custom- made casualwear designs with aesthetic value. In order to achieve the objectives, this research has been conducted by using mixed methods which are interviews with two (2) local experts in the apparel manufacturing industries and interviews via telephone with five (5) local respondents who are local emerging fashion designers, the questionnaires were distributed to one hundred (100) respondents around Klang Valley, in order to gain the information about their understanding and awareness regarding laser cutting technology. The experiment was conducted by using natural and man- made fibers. As a conclusion, all of the objectives had been achieved in producing custom-made men’s casualwear and with the production of these attires it will help to educate and enhance the innovation in fine technology. Therefore, there will be a good linkage and collaboration between the design experts and the manufacturing companies.Keywords: custom-made, fashion, laser cut, men’s wear
Procedia PDF Downloads 44210150 WEMax: Virtual Manned Assembly Line Generation
Authors: Won Kyung Ham, Kang Hoon Cho, Sang C. Park
Abstract:
Presented in this paper is a framework of a software ‘WEMax’. The WEMax is invented for analysis and simulation for manned assembly lines to sustain and improve performance of manufacturing systems. In a manufacturing system, performance, such as productivity, is a key of competitiveness for output products. However, the manned assembly lines are difficult to forecast performance, because human labors are not expectable factors by computer simulation models or mathematical models. Existing approaches to performance forecasting of the manned assembly lines are limited to matters of the human itself, such as ergonomic and workload design, and non-human-factor-relevant simulation. Consequently, an approach for the forecasting and improvement of manned assembly line performance is needed to research. As a solution of the current problem, this study proposes a framework that is for generation and simulation of virtual manned assembly lines, and the framework has been implemented as a software.Keywords: performance forecasting, simulation, virtual manned assembly line, WEMax
Procedia PDF Downloads 32710149 Research on Autonomous Controllability of BeiDou Navigation Satellite System Based on Knowledge Transformation
Authors: Hang Ju, Changmin Zhu
Abstract:
The development level of the BeiDou Navigation Satellite System (BDS) can strongly reflect national defense strength as an important spatial information infrastructure. BDS can be not only used for military purposes, such as intelligence gathering, nuclear explosion monitoring, emergency communications, but also for location services, transportation, mapping, precision agriculture. In order to ensure the national defense security and the wide application of BDS in civil and military areas, BDS must be autonomous and controllable. As a complex system of knowledge-intensive, knowledge transformation runs through the whole process of research and development, production, operation, and maintenance of BDS. Based on the perspective of knowledge transformation, this paper expounds on the meaning of socialization, externalization, combination, and internalization of knowledge transformation, and the coupling relationship of autonomy and control on the basis of analyzing the status quo and problems of the autonomy and control of BDS. The autonomous and controllable framework of BDS based on knowledge transformation is constructed from six dimensions of management capability, R&D capability, technical capability, manufacturing capability, service support capability, and application capability. It can provide support for the smooth implementation of information security policy, provide a reference for the autonomy and control of the upstream and downstream industrial chains in Beidou, and provide a reference for the autonomous and controllable research of aerospace components, military measurement test equipment, and other related industries.Keywords: knowledge transformation, BeiDou Navigation Satellite System, autonomy and control, framework
Procedia PDF Downloads 18410148 Effects of Foam Rolling with Different Application Volumes on the Isometric Force of the Calf Muscle with Consideration of Muscle Activity
Authors: T. Poppendieker, H. Maurer, C. Segieth
Abstract:
Over the past ten years, foam rolling has become a new trend in the fitness and health market. It is also a frequently used technique for self-massage. However, the scope of effects from foam rolling has only recently started to be researched and understood. The focus of this study is to examine the effects of prolonged foam rolling on muscle performance. Isometric muscle force was used as a parameter to determine an improving impact of the myofascial roller in two different application volumes. Besides the maximal muscle force, data were also collected on muscle activation during all tests. Twenty-four (17 females, 7 males) healthy students with an average age of 23.4 ± 2.8 years were recruited. The study followed a cross-over pre-/post design in which the order of conditions was counterbalanced. The subjects performed a one-minute and three-minute foam rolling application set on two separate days. Isometric maximal muscle force of the dominant calf was tested before and after the self-myofascial release application. The statistic software program SPSS 22 was used to analyze the data of the maximal isometric force of the calf muscle by a 2 x 2 (time of measurement x intervention) analysis of variance with repeated measures. The statistic significance level was set at p ≤ 0.05. Neither for the main effect of time of measurement (F(1,23) = .93, p = .36, f = .20) nor for the interaction of time of measurement x intervention (F(1,23) = 1.99, p = .17, f = 0.29) significant p-values were found. However, the effect size indicates a mean interaction effect with a tendency of greater pre-post improvements under the three-minute foam rolling condition. Changes in maximal force did not correlate with changes in EMG-activity (r = .02, p = .95 in the short and r = -.11, p = .65 in the long rolling condition). Results support findings of previous studies and suggest a positive potential for use of the foam roll as a means for keeping muscle force at least at the same performance level while leading to an increase in flexibility.Keywords: application volume differences, foam rolling, isometric maximal force, self-myofascial release
Procedia PDF Downloads 28710147 Study of Environmental Impact
Authors: Houmame Benbouali
Abstract:
The risks, in general, exist in any project; one can hardly carry out a project without taking risks. The hydraulic works are rather complex projects in their design, realization and exploitation, and are often subjected at the multiple risks being able to influence with their good performance, and can have an negative impact on their environment. The present study was carried out to quote the impacts caused by purification plant STEP Chlef on the environment, it aims has studies the environmental impacts during construction and when designing this STEP, it is divided into two parts: The first part results from a research task bibliographer which contain three chapters (-cleansing of water worn-general information on water worn-proceed of purification of waste water). The second part is an experimental part which is divided into four chapters (detailed state initial-description of the station of purification-evaluation of the impacts of the project analyzes measurements and recommendations).Keywords: treatment plant, waste water, waste water treatment, environmental impact
Procedia PDF Downloads 511