Search results for: Earth's surface
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7462

Search results for: Earth's surface

6322 Computational Fluid Dynamics (CFD) Simulation of Transient Flow in a Rectangular Bubble Column Using a Coupled Discrete Phase Model (DPM) and Volume of Fluid (VOF) Model

Authors: Sonia Besbes, Mahmoud El Hajem, Habib Ben Aissia, Jean Yves Champagne, Jacques Jay

Abstract:

In this work, we present a computational study for the characterization of the flow in a rectangular bubble column. To simulate the dynamic characteristics of the flow, a three-dimensional transient numerical simulations based on a coupled discrete phase model (DPM) and Volume of Fluid (VOF) model are performed. Modeling of bubble column reactor is often carried out under the assumption of a flat liquid surface with a degassing boundary condition. However, the dynamic behavior of the top surface surmounting the liquid phase will to some extent influence the meandering oscillations of the bubble plume. Therefore it is important to capture the surface behavior, and the assumption of a flat surface may not be applicable. So, the modeling approach needs to account for a dynamic liquid surface induced by the rising bubble plume. The volume of fluid (VOF) model was applied for the liquid and top gas which both interacts with bubbles implemented with a discrete phase model. This model treats the bubbles as Lagrangian particles and the liquid and the top gas as Eulerian phases with a sharp interface. Two-way coupling between Eulerian phases and Lagrangian bubbles are accounted for in a single set continuous phase momentum equation for the mixture of the two Eulerian phases. The effect of gas flow rate on the dynamic and time-averaged flow properties was studied. The time averaged liquid velocity field predicted from simulations and from our previous PIV measurements shows that the liquid is entrained up flow in the wake of the bubbles and down flow near the walls. The simulated and measured vertical velocity profiles exhibit a reasonable agreement looking at the minimum velocity values near the walls and the maximum values at the column center.

Keywords: bubble column, computational fluid dynamics (CFD), coupled DPM and VOF model, hydrodynamics

Procedia PDF Downloads 387
6321 Design and Analysis of Metamaterial Based Vertical Cavity Surface Emitting Laser

Authors: Ishraq M. Anjum

Abstract:

Distributed Bragg reflectors are used in vertical-cavity surface-emitting lasers (VCSELs) in order to achieve very high reflectivity. Use of metamaterial in place of distributed Bragg reflector can reduce the device size significantly. A silicon-based metamaterial near perfect reflector is designed to be used in place of distributed Bragg reflectors in VCSELs. Mie resonance in dielectric microparticles is exploited in order to design the metamaterial. A reflectivity of 98.31% is achieved using finite-difference time-domain method. An 808nm double intra-cavity contacted VCSEL structure with 1.5 λ cavity is proposed using this metamaterial near perfect reflector. The active region is designed to be composed of seven GaAs/AlGaAs quantum wells. Upon numerical investigation of the designed VCSEL structure, the threshold current is found to be 2.96 mA at an aperture of 40 square micrometers and the maximum output power is found to be 71 mW at a current of 141 mA. Miniaturization of conventional VCSELs is possible using this design.

Keywords: GaAs, LASER, metamaterial, VCSEL, vertical cavity surface emitting laser

Procedia PDF Downloads 182
6320 Experimental Investigation on Sustainable Machining of Hastelloy C-276 Utilizing Different Cooling Strategies

Authors: Balkar Singh, Gurpreet Singh, Vivek Aggarwal, Sehijpal Singh

Abstract:

The present research focused to improve the machinability of Hastelloy C-276 at different machining speeds such as 31, 55, and 79 m/min. The use of CO2 gas and Minimum quantity lubrication (MQL) was applied as coolant and lubrication purposes to enhance the machinability of the superalloy. The output in the form of surface roughness (S.R) and heat generation was monitored under dry, MQL, and MQL-CO2-cooled conditions. The Design of the Experiment was prepared using MINITAB software utilizing Taguchi L-27 orthogonal arrays followed by ANOVA analysis for finding the impact of input variables on output responses. At different speeds and lubrication conditions, different behavioral patterns for Surface Roughness and the temperature was observed. ANOVA analysis depicted that the cooling environment impacted the S.R. majorly (50%) followed by cutting speed (29.84%), feed rate (5.09%), and least through depth of cut (4.95%). On the other side, the temperature was greatly influenced by cutting speed (69.12%), Cryo-MQL (8.09%), feed rate (7.59%), and depth of cut (6.20%). Experimental results revealed that Cryo-MQL cooling enhanced the Surface roughness by 12% compared to MQL condition.

Keywords: Hastelloy C-276, minimum quantity lubrication, olive oil, cryogenic Cooling (CO2)

Procedia PDF Downloads 142
6319 A Case Study of Typhoon Tracks: Insights from the Interaction between Typhoon Hinnamnor and Ocean Currents in 2022

Authors: Wei-Kuo Soong

Abstract:

The forecasting of typhoon tracks remains a formidable challenge, primarily attributable to the paucity of observational data in the open sea and the intricate influence of weather systems at varying scales. This study investigates the case of Typhoon Hinnamnor in 2022, examining its trajectory and intensity fluctuations in relation to the interaction with a concurrent tropical cyclone and sea surface temperatures (SST). Utilizing the Weather Research and Forecasting Model (WRF), to simulate and analyze the interaction between Typhoon Hinnamnor and its environmental factors, shedding light on the mechanisms driving typhoon development and enhancing forecasting capabilities.

Keywords: typhoon, sea surface temperature, forecasting, WRF

Procedia PDF Downloads 52
6318 Spectroscopic Studies of Dy³⁺ Ions in Alkaline-Earth Boro Tellurite Glasses for Optoelectronic Devices

Authors: K. Swapna

Abstract:

A Series of Alkali-Earth Boro Tellurite (AEBT) glasses doped with different concentrations of Dy³⁺ ions have been prepared by using melt quenching technique and characterized through spectroscopic techniques such as optical absorption, excitation, emission and photoluminescence decay to understand their utility in optoelectronic devices such as lasers and white light emitting diodes (w-LEDs). Raman spectrum recorded for an undoped glass is used to measure the phonon energy of the host glass and various functional groups present in the host glass (AEBT). The intensities of the electronic transitions and the ligand environment around the Dy³⁺ ions were studied by applying Judd-Ofelt (J-O) theory to the recorded absorption spectra of the glasses. The evaluated J-O parameters are subsequently used to measure various radiative parameters such as transition probability (AR), radiative branching ratio (βR) and radiative lifetimes (τR) for the prominent fluorescent levels of Dy³⁺ ions in the as-prepared glasses. The luminescence spectra recorded at 387 nm excitation show three emission transitions (⁴F9/2→⁶H15/2 (blue), ⁴F9/2→⁶H13/2 (yellow) and ⁴F9/2 → ⁶H11/2 (red)) of which the yellow transition observed at 575 nm is found to be highly intense. The experimental branching ratio (βexp) and stimulated emission crosssection (σse) were measured from luminescence spectra. The experimental lifetimes (τexp) measured from the decay spectral profiles are combined with radiative lifetimes to measure quantum efficiencies of the as-prepared glasses. The yellow to blue intensity ratios and chromaticity color coordinates are found to vary with Dy³⁺ ion concentrations. The aforementioned results reveal that these glasses are aptly suitable for w-LEDs and laser devices.

Keywords: glasses, J-O parameters, photoluminescence, I-H model

Procedia PDF Downloads 158
6317 Corrosion Control of Carbon Steel Surface by Phosphonic Acid Nano-Layers

Authors: T. Abohalkuma, J. Telegdi

Abstract:

Preparation, characterization, and application of self-assembled monolayers (SAM) formed by fluorophosphonic and undecenyl phosphonic acids on carbon steel surfaces as anticorrosive nanocoatings were demonstrated. The anticorrosive efficacy of these SAM layers was followed by atomic force microscopy, as the change in the surface morphology caused by layer deposition and corrosion processes was monitored. The corrosion process was determined by electrochemical potentiodynamic polarization, whereas the surface wettability of the carbon steel samples was tested with the use of static and dynamic contact angle measurements. Results showed that both chemicals produced good protection against corrosion as they performed as anodic inhibitors, especially with increasing the time of layer formation, which results in a more compact molecular film. According to the atomic force microscope (AFM) images, the fluoro-phosphonic acid self-assembled molecular layer can control the general as well as the pitting corrosion, but the SAM layers of the undecenyl-phosphonic acid cannot inhibit the pitting corrosion. The AFM and the contact angle measurements confirmed the results achieved by electrochemical measurements.

Keywords: nanolayers, corrosion, phosphonic acids, coatings

Procedia PDF Downloads 171
6316 Design and Optimization of Flow Field for Cavitation Reduction of Valve Sleeves

Authors: Kamal Upadhyay, Zhou Hua, Yu Rui

Abstract:

This paper aims to improve the streamline linked with the flow field and cavitation on the valve sleeve. We observed that local pressure fluctuation produces a low-pressure zone, central to the formation of vapor volume fraction within the valve chamber led to air-bubbles (or cavities). Thus, it allows simultaneously to a severe negative impact on the inner surface and lifespan of the valve sleeves. Cavitation reduction is a vitally important issue to pressure control valves. The optimization of the flow field is proposed in this paper to reduce the cavitation of valve sleeves. In this method, the inner wall of the valve sleeve is changed from a cylindrical surface to the conical surface, leading to the decline of the fluid flow velocity and the rise of the outlet pressure. Besides, the streamline is distributed inside the sleeve uniformly. Thus, the bubble generation is lessened. The fluid models are built and analysis of flow field distribution, pressure, vapor volume and velocity was carried out using computational fluid dynamics (CFD) and numerical technique. The results indicate that this structure can suppress the cavitation of valve sleeves effectively.

Keywords: streamline, cavitation, optimization, computational fluid dynamics

Procedia PDF Downloads 145
6315 Characterization of Kopff Crater Using Remote Sensing Data

Authors: Shreekumari Patel, Prabhjot Kaur, Paras Solanki

Abstract:

Moon Mineralogy Mapper (M3), Miniature Radio Frequency (Mini-RF), Kaguya Terrain Camera images, Lunar Orbiter Laser Altimeter (LOLA) digital elevation model (DEM) and Lunar Reconnaissance Orbiter Camera (LROC)- Narrow angle camera (NAC) and Wide angle camera (WAC) images were used to study mineralogy, surface physical properties, and age of the 42 km diameter Kopff crater. M3 indicates the low albedo crater floor to be high-Ca pyroxene dominated associated with floor fracture suggesting the igneous activity of the gabbroic material. Signature of anorthositic material is sampled on the eastern edge as target material is excavated from ~3 km diameter impact crater providing access to the crustal composition. Several occurrences of spinel were detected in northwestern rugged terrain. Our observation can be explained by exposure of spinel by this crater that impacted onto the inner rings of Orientale basin. Spinel was part of the pre-impact target, an intrinsic unit of basin ring. Crater floor was dated by crater counts performed on Kaguya TC images. Nature of surface was studied in detail with LROC NAC and Mini-RF. Freshly exposed surface and boulder or debris seen in LROC NAC images have enhanced radar signal in comparison to mature terrain of Kopff crater. This multidisciplinary analysis of remote sensing data helps to assess lunar surface in detail.

Keywords: crater, mineralogy, moon, radar observations

Procedia PDF Downloads 161
6314 Improved Elastoplastic Bounding Surface Model for the Mathematical Modeling of Geomaterials

Authors: Andres Nieto-Leal, Victor N. Kaliakin, Tania P. Molina

Abstract:

The nature of most engineering materials is quite complex. It is, therefore, difficult to devise a general mathematical model that will cover all possible ranges and types of excitation and behavior of a given material. As a result, the development of mathematical models is based upon simplifying assumptions regarding material behavior. Such simplifications result in some material idealization; for example, one of the simplest material idealization is to assume that the material behavior obeys the elasticity. However, soils are nonhomogeneous, anisotropic, path-dependent materials that exhibit nonlinear stress-strain relationships, changes in volume under shear, dilatancy, as well as time-, rate- and temperature-dependent behavior. Over the years, many constitutive models, possessing different levels of sophistication, have been developed to simulate the behavior geomaterials, particularly cohesive soils. Early in the development of constitutive models, it became evident that elastic or standard elastoplastic formulations, employing purely isotropic hardening and predicated in the existence of a yield surface surrounding a purely elastic domain, were incapable of realistically simulating the behavior of geomaterials. Accordingly, more sophisticated constitutive models have been developed; for example, the bounding surface elastoplasticity. The essence of the bounding surface concept is the hypothesis that plastic deformations can occur for stress states either within or on the bounding surface. Thus, unlike classical yield surface elastoplasticity, the plastic states are not restricted only to those lying on a surface. Elastoplastic bounding surface models have been improved; however, there is still need to improve their capabilities in simulating the response of anisotropically consolidated cohesive soils, especially the response in extension tests. Thus, in this work an improved constitutive model that can more accurately predict diverse stress-strain phenomena exhibited by cohesive soils was developed. Particularly, an improved rotational hardening rule that better simulate the response of cohesive soils in extension. The generalized definition of the bounding surface model provides a convenient and elegant framework for unifying various previous versions of the model for anisotropically consolidated cohesive soils. The Generalized Bounding Surface Model for cohesive soils is a fully three-dimensional, time-dependent model that accounts for both inherent and stress induced anisotropy employing a non-associative flow rule. The model numerical implementation in a computer code followed an adaptive multistep integration scheme in conjunction with local iteration and radial return. The one-step trapezoidal rule was used to get the stiffness matrix that defines the relationship between the stress increment and the strain increment. After testing the model in simulating the response of cohesive soils through extensive comparisons of model simulations to experimental data, it has been shown to give quite good simulations. The new model successfully simulates the response of different cohesive soils; for example, Cardiff Kaolin, Spestone Kaolin, and Lower Cromer Till. The simulated undrained stress paths, stress-strain response, and excess pore pressures are in very good agreement with the experimental values, especially in extension.

Keywords: bounding surface elastoplasticity, cohesive soils, constitutive model, modeling of geomaterials

Procedia PDF Downloads 315
6313 Trinary Affinity—Mathematic Verification and Application (1): Construction of Formulas for the Composite and Prime Numbers

Authors: Liang Ming Zhong, Yu Zhong, Wen Zhong, Fei Fei Yin

Abstract:

Trinary affinity is a description of existence: every object exists as it is known and spoken of, in a system of 2 differences (denoted dif1, dif₂) and 1 similarity (Sim), equivalently expressed as dif₁ / Sim / dif₂ and kn / 0 / tkn (kn = the known, tkn = the 'to be known', 0 = the zero point of knowing). They are mathematically verified and illustrated in this paper by the arrangement of all integers onto 3 columns, where each number exists as a difference in relation to another number as another difference, and the 2 difs as arbitrated by a third number as the Sim, resulting in a trinary affinity or trinity of 3 numbers, of which one is the known, the other the 'to be known', and the third the zero (0) from which both the kn and tkn are measured and specified. Consequently, any number is horizontally specified either as 3n, or as '3n – 1' or '3n + 1', and vertically as 'Cn + c', so that any number seems to occur at the intersection of its X and Y axes and represented by its X and Y coordinates, as any point on Earth’s surface by its latitude and longitude. Technically, i) primes are viewed and treated as progenitors, and composites as descending from them, forming families of composites, each capable of being measured and specified from its own zero called in this paper the realistic zero (denoted 0r, as contrasted to the mathematic zero, 0m), which corresponds to the constant c, and the nature of which separates the composite and prime numbers, and ii) any number is considered as having a magnitude as well as a position, so that a number is verified as a prime first by referring to its descriptive formula and then by making sure that no composite number can possibly occur on its position, by dividing it with factors provided by the composite number formulas. The paper consists of 3 parts: 1) a brief explanation of the trinary affinity of things, 2) the 8 formulas that represent ALL the primes, and 3) families of composite numbers, each represented by a formula. A composite number family is described as 3n + f₁‧f₂. Since there are an infinitely large number of composite number families, to verify the primality of a great probable prime, we have to have it divided with several or many a f₁ from a range of composite number formulas, a procedure that is as laborious as it is the surest way to verifying a great number’s primality. (So, it is possible to substitute planned division for trial division.)

Keywords: trinary affinity, difference, similarity, realistic zero

Procedia PDF Downloads 211
6312 Development and Characterization of a Fluorinated-Ethylene-Propylene (FEP) Polymer Coating on Brass Faucets

Authors: S. Zouari, H. Ghorbel, H. Liao, R. Elleuch

Abstract:

Research is increasingly moving towards the use of surface treatment processes to limit environmental effects. Electrolytic plating has traditionally been seen as a way to protect brass products, especially faucets, from mechanical and chemical damage. However, this method was not effective industrially, economically and ecologically. The aim of this work is to develop non-usual polymer coatings for brass faucets in order to improve the performance of brass and to replace electrolytic chromium coatings, thereby reducing environmental impact. Fluorinated-Ethylene-Propylene polymer (FEP) was chosen for its excellent mechanical and chemical properties and its good environmental performance. This coating was developed by spraying (painting) process onto brass substrates. The coatings obtained were characterized using a scanning electron microscope to evaluate the morphology of the deposits and their porosity rate. Grid adhesion, surface energy and corrosion tests (salt spray) were also performed to evaluate the mechanical and chemical behavior of these coatings properly. The results show that the deposits obtained have a homogeneous microstructure with a very low porosity rate. The results of the grid adhesion test prove the conformity of the test according to the NF077 standard. The coatings have a hydrophobic character following the low values of surface energy obtained and a very good resistance to corrosion. These results are interesting and may represent real technological issues in the industrial field.

Keywords: FEP coatings, spraying process, brass, adhesion, surface energy, corrosion resistance

Procedia PDF Downloads 141
6311 Effects of Tool State on the Output Parameters of Front Milling Using Discrete Wavelet Transform

Authors: Bruno S. Soria, Mauricio R. Policena, Andre J. Souza

Abstract:

The state of the cutting tool is an important factor to consider during machining to achieve a good surface quality. The vibration generated during material cutting can also directly affect the surface quality and life of the cutting tool. In this work, the effect of mechanical broken failure (MBF) on carbide insert tools during face milling of AISI 304 stainless steel was evaluated using three levels of feed rate and two spindle speeds for each tool condition: three carbide inserts have perfect geometry, and three other carbide inserts have MBF. The axial and radial depths remained constant. The cutting forces were determined through a sensory system that consists of a piezoelectric dynamometer and data acquisition system. Discrete Wavelet Transform was used to separate the static part of the signals of force and vibration. The roughness of the machined surface was analyzed for each machining condition. The MBF of the tool increased the intensity and force of vibration and worsened the roughness factors.

Keywords: face milling, stainless steel, tool condition monitoring, wavelet discrete transform

Procedia PDF Downloads 146
6310 Lentil Protein Fortification in Cranberry Squash

Authors: Sandhya Devi A

Abstract:

The protein content of the cranberry squash (protein: 0g) may be increased by extracting protein from the lentils (9 g), which is particularly linked to a lower risk of developing heart disease. Using the technique of alkaline extraction from the lentils flour, protein may be extracted. Alkaline extraction of protein from lentil flour was optimized utilizing response surface approach in order to maximize both protein content and yield. Cranberry squash may be taken if a protein fortification syrup is prepared and processed into the squash.

Keywords: alkaline extraction, cranberry squash, protein fortification, response surface methodology

Procedia PDF Downloads 111
6309 Effect of Tooth Bleaching Agents on Enamel Demineralisation

Authors: Najlaa Yousef Qusti, Steven J. Brookes, Paul A. Brunton

Abstract:

Background: Tooth discoloration can be an aesthetic problem, and tooth whitening using carbamide peroxide bleaching agents are a popular treatment option. However, there are concerns about possible adverse effects such as demineralisation of the bleached enamel; however, the cause of this demineralisation is unclear. Introduction: Teeth can become stained or discoloured over time. Tooth whitening is an aesthetic solution for tooth discoloration. Bleaching solutions of 10% carbamide peroxide (CP) have become the standard agent used in dentist-prescribed and home-applied ’vital bleaching techniques’. These materials release hydrogen peroxide (H₂O₂), the active whitening agent. However, there is controversy in the literature regarding the effect of bleaching agents on enamel integrity and enamel mineral content. The purpose of this study was to establish if carbamide peroxide bleaching agents affect the acid solubility of enamel (i.e., make teeth more prone to demineralisation). Materials and Methods: Twelve human premolar teeth were sectioned longitudinally along the midline and varnished to leave the natural enamel surface exposed. The baseline behavior of each tooth half in relation to its demineralisation in acid was established by sequential exposure to 4 vials containing 1ml of 10mM acetic acid (1 minute/vial). This was followed by exposure to 10% CP for 8 hours. After washing in distilled water, the tooth half was sequentially exposed to 4 further vials containing acid to test if the acid susceptibility of the enamel had been affected. The corresponding tooth half acted as a control and was exposed to distilled water instead of CP. The mineral loss was determined by measuring [Ca²⁺] and [PO₄³⁻] released in each vial using a calcium ion-selective electrode and the phosphomolybdenum blue method, respectively. The effect of bleaching on the tooth surfaces was also examined using SEM. Results: Exposure to carbamide peroxide did not significantly alter the susceptibility of enamel to acid attack, and SEM of the enamel surface revealed a slight alteration in surface appearance. SEM images of the control enamel surface showed a flat enamel surface with some shallow pits, whereas the bleached enamel appeared with an increase in surface porosity and some areas of mild erosion. Conclusions: Exposure to H₂O₂ equivalent to 10% CP does not significantly increase subsequent acid susceptibility of enamel as determined by Ca²⁺ release from the enamel surface. The effects of bleaching on mineral loss were indistinguishable from distilled water in the experimental system used. However, some surface differences were observed by SEM. The phosphomolybdenum blue method for phosphate is compromised by peroxide bleaching agents due to their oxidising properties. However, the Ca²⁺ electrode is unaffected by oxidising agents and can be used to determine the mineral loss in the presence of peroxides.

Keywords: bleaching, carbamide peroxide, demineralisation, teeth whitening

Procedia PDF Downloads 127
6308 Hydrologic Balance and Surface Water Resources of the Cheliff-Zahrez Basin

Authors: Mehaiguene Madjid, Touhari Fadhila, Meddi Mohamed

Abstract:

The Cheliff basin offers a good hydrological example for the possibility of studying the problem which elucidated in the future, because of the unclearity in several aspects and hydraulic installation. Thus, our study of the Cheliff basin is divided into two principal parts: The spatial evaluation of the precipitation: also, the understanding of the modes of the reconstitution of the resource in water supposes a good knowledge of the structuring of the precipitation fields in the studied space. In the goal of a good knowledge of revitalizes them in water and their management integrated one judged necessary to establish a precipitation card of the Cheliff basin for a good understanding of the evolution of the resource in water in the basin and that goes will serve as basis for all study of hydraulic planning in the Cheliff basin. Then, the establishment of the precipitation card of the Cheliff basin answered a direct need of setting to the disposition of the researchers for the region and a document of reference that will be completed therefore and actualized. The hydrological study, based on the statistical hydrometric data processing will lead us to specify the hydrological terms of the assessment hydrological and to clarify the fundamental aspects of the annual flow, seasonal, extreme and thus of their variability and resources surface water.

Keywords: hydrological assessment, surface water resources, Cheliff, Algeria

Procedia PDF Downloads 304
6307 Monitoring of 53 Contaminants of Emerging Concern: Occurrence in Effluents, Sludges, and Surface Waters Upstream and Downstream of 7 Wastewater Treatment Plants

Authors: Azziz Assoumani, Francois Lestremau, Celine Ferret, Benedicte Lepot, Morgane Salomon, Helene Budzinski, Marie-Helene Devier, Pierre Labadie, Karyn Le Menach, Patrick Pardon, Laure Wiest, Emmanuelle Vulliet, Pierre-Francois Staub

Abstract:

Seven French wastewater treatment plants (WWTP) were monitored for 53 contaminants of emerging concern within a nation-wide monitoring campaign in surface waters, which took place in 2018. The overall objective of the 2018 campaign was to provide the exercise of prioritization of emerging substances, which is being carried out in 2021, with monitoring data. This exercise should make it possible to update the list of relevant substances to be monitored (SPAS) as part of future water framework directive monitoring programmes, which will be implemented in the next water body management cycle (2022). One sampling campaign was performed in October 2018 in the seven WWTP, where affluent and sludge samples were collected. Surface water samples were collected in September 2018 at three to five sites upstream and downstream the point of effluent discharge of each WWTP. The contaminants (36 biocides and 17 surfactants, selected by the Prioritization Experts Committee) were determined in the seven WWTP effluent and sludge samples and in surface water samples by liquid or gas chromatography coupled with tandem mass spectrometry, depending on the contaminant. Nine surfactants and three biocides were quantified at least in one WWTP effluent sample. Linear alkylbenzene sulfonic acids (LAS) and fipronil were quantified in all samples; the LAS were quantified at the highest median concentrations. Twelve surfactants and 13 biocides were quantified in at least one sludge sample. The LAS and didecyldimethylammonium were quantified in all samples and at the highest median concentrations. Higher concentration levels of the substances quantified in WWTP effluent samples were observed in the surface water samples collected downstream the effluents discharge points, compared with the samples collected upstream, suggesting a contribution of the WWTP effluents in the contamination of surface waters.

Keywords: contaminants of emerging concern, effluent, monitoring, river water, sludge

Procedia PDF Downloads 147
6306 Covalent Functionalization of Graphene Oxide with Aliphatic Polyisocyanate

Authors: E. Changizi, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian

Abstract:

In this study, the graphene oxide was functionalized with polyisocyanate (piGO). The functionalization was carried out at 45⁰C for 24 hrs under nitrogen atmosphere. The X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) and thermal gravimetric analysis (TGA) were utilized in order to evaluate the GO functionalization. The GO and piGO stability were then investigated in polar and nonpolar solvents. Results obtained showed that polyisocyanate was successfully grafted on the surface of graphen oxide sheets through covalent bonds formation. The surface nature of the graphen oxide was changed into the hydrophobic after functionalization. Moreover, the graphen oxide sheets interlayer distance increased after modification.

Keywords: graphen oxide, functionalization, polyisocyanate, XRD, TGA, FTIR

Procedia PDF Downloads 443
6305 Influence of Morphology and Coatings in the Tribological Behavior of a Texturised Deterministic Surface by Photochemical Machining

Authors: Juan C. Sanchez, Jose L. Endrino, Alejandro Toro, Hugo A. Estupinan, Glenn Leighton

Abstract:

For years, the reduction of friction and wear has been a matter of interest in the engineering field. Several solutions have been proposed to address this issue, including the use of lubricants and coatings to reduce the frictional forces and to increase the surface wear resistance. Alternatively, texturing processes have been used in a wide variety of materials, in many cases inspired in natural surfaces. Nature has shown how species adapt to the environment and the engineers try to understand natural surfaces for particular applications by analyzing outstanding species such as gecko for high adhesion, lotus leaves for hydrophobicity, sharks for reduced flow resistance and snakes for optimized frictional response. Texturized surfaces have shown a superior performance in terms of the frictional response in many situations, and the control of its behavior greatly depends on the manufacturing process. The focus of this work is to evaluate the tribological behavior of AISI 52100 steel samples texturized by Photochemical Machining (PCM). The surface texture was inspired by several features of the snakeskin such as aspect ratio of fibrils and mean fibril spacing. Two coatings were applied on the texturized surface, namely Diamond-like Carbon (DLC) and Molybdenum Disulphide (MoS₂), and their tribological behavior after pin-on-disk tests were compared with that of the non-texturized and uncovered surfaces. The samples were characterised through Stereoscopic Microscope (SM), Scanning Electron Microscope (SEM), Optical Microscope (OM), Profilometer, Raman Spectrometer (RS) and X-Ray Diffractometer (XRD). The Coefficient of Friction (COF) measured in pin-on-disk tests showed correlations with the sliding direction (relative to the texture features) and the aspect ratio of the texture features. Regarding the coated surfaces, the DLC and MoS₂ coating had a good performance in terms of wear rate and coefficient of friction compared with the uncoated and non-texturized surfaces. On the other hand, for the uncoated surfaces, the texture showed an influence in the tribological performance with respect to the non-texturized surface.

Keywords: coating, coefficient of friction, deterministic surface, photochemical machining

Procedia PDF Downloads 149
6304 Simulation of Climatic Change Effects on the Potential Fishing Zones of Dorado Fish (Coryphaena hippurus L.) in the Colombian Pacific under Scenarios RCP Using CMIP5 Model

Authors: Adriana Martínez-Arias, John Josephraj Selvaraj, Luis Octavio González-Salcedo

Abstract:

In the Colombian Pacific, Dorado fish (Coryphaena hippurus L.) fisheries is of great commercial interest. However, its habitat and fisheries may be affected by climatic change especially by the actual increase in sea surface temperature. Hence, it is of interest to study the dynamics of these species fishing zones. In this study, we developed Artificial Neural Networks (ANN) models to predict Catch per Unit Effort (CPUE) as an indicator of species abundance. The model was based on four oceanographic variables (Chlorophyll a, Sea Surface Temperature, Sea Level Anomaly and Bathymetry) derived from satellite data. CPUE datasets for model training and cross-validation were obtained from logbooks of commercial fishing vessel. Sea surface Temperature for Colombian Pacific were projected under Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 using Coupled Model Intercomparison Project Phase 5 (CMIP5) and CPUE maps were created. Our results indicated that an increase in sea surface temperature reduces the potential fishing zones of this species in the Colombian Pacific. We conclude that ANN is a reliable tool for simulation of climate change effects on the potential fishing zones. This research opens a future agenda for other species that have been affected by climate change.

Keywords: climatic change, artificial neural networks, dorado fish, CPUE

Procedia PDF Downloads 243
6303 Next-Generation Laser-Based Transponder and 3D Switch for Free Space Optics in Nanosatellite

Authors: Nadir Atayev, Mehman Hasanov

Abstract:

Future spacecraft will require a structural change in the way data is transmitted due to the increase in the volume of data required for space communication. Current radio frequency communication systems are already facing a bottleneck in the volume of data sent to the ground segment due to their technological and regulatory characteristics. To overcome these issues, free space optics communication plays an important role in the integrated terrestrial space network due to its advantages such as significantly improved data rate compared to traditional RF technology, low cost, improved security, and inter-satellite free space communication, as well as uses a laser beam, which is an optical signal carrier to establish satellite-ground & ground-to-satellite links. In this approach, there is a need for high-speed and energy-efficient systems as a base platform for sending high-volume video & audio data. Nano Satellite and its branch CubeSat platforms have more technical functionality than large satellites, wheres cover an important part of the space sector, with their Low-Earth-Orbit application area with low-cost design and technical functionality for building networks using different communication topologies. Along the research theme developed in this regard, the output parameter indicators for the FSO of the optical communication transceiver subsystem on the existing CubeSat platforms, and in the direction of improving the mentioned parameters of this communication methodology, 3D optical switch and laser beam controlled optical transponder with 2U CubeSat structural subsystems and application in the Low Earth Orbit satellite network topology, as well as its functional performance and structural parameters, has been studied accordingly.

Keywords: cubesat, free space optics, nano satellite, optical laser communication.

Procedia PDF Downloads 89
6302 High Rate of Dual Carriage of Hepatitis B Surface and Envelope Antigen in Gombe in Infants and Young Children, North-East Nigeria: 2000-2015

Authors: E. Isaac, I. Jalo, Y. Alkali, A. Ajani, A. Rasaki, Y. Jibrin, K. Mustapha, S. Charanchi, A. Kudi, H. Danlami

Abstract:

Introduction: Hepatitis B infection is endemic in sub-Saharan Africa, where transmission predominantly occurs in infants and children by perinatal and horizontal routes. The risk of chronic infection peaks when infection is acquired early. Materials and Methods: Records of Hepatitis B surface and envelope antigen results in Federal Teaching Hospital, Gombe between May 2000 and May 2015 were retrieved and analyzed. Results: Paediatric outpatient visits and in-patient admissions were 64,193 accounting for 13% of total. Individuals tested for Hepatitis B surface antigenaemia were 23,866. Children aged 0-18 years constituted 11% (2,626). Among children tested, males accounted for 52.8% (1386/2626) and females 47.2% (1240/2626). Infants contributed 65 (2.3%); 1-4 year old children 309 (11.7%); 5-9 year old children 564 (21.4%) and adolescents 1717 (65.1%). HbSAg sero-positivity was 18% (496/2626) among children tested. The highest number of children tested per year was in 2009 (518) and 2014 (569) and the lowest, in the first study year (62). The highest sero-positivity rate was in 2010; 21.7% (54/255). Children aged 0-18years accounted for 10.5% (496/4720) of individuals with Hepatitis B surface antigenaemia. Sero-positivity was 3.1% (2/65); 12.9% (40/309); 18.1% (102/564); and 20.5% (352/1717) in infants, children ages 1-4years, 5-9years and adolescents respectively. 2.5% (1/40) and 4% (1/25) of male and female infants respectively had HbSAg. Among children aged 1-4years, 15.1% (30/198) of males and 9.0% (10/111) of females were seropositive; 14.8% (52/350) and 22% (50/224) of male and female 5-9year old children respectively has HbSAg. 14.3% (138/943) of adolescent females had Hepatitis B surface antigenaemia. Adolescent males demonstrated the highest sero-positivity rate 27.6% (214/774). 97.3% (483/496) of children who demonstrated Hepatitis B surface antigenaemia were tested for dual carriage with the e antigen. Males accounted for 296/483 (63.1%) and females 187/483 (36.9%). Infants constituted 0.97% (4/482); children aged 1-4years, 5-9years and adolescents were 6.8% (33/483); 20.9% (100/483) and 71.3% (342/483) respectively. 17.6% (85/483) of children tested had HBe antigenaemia. Of these, males accounted for 69.4% (59/85). 1.2% (1/85) were infants; 9.4% (8/85%) 1-4years; 22.3% (19/85) 5-9years and 68.2% (58/85) adolescents. 25% (1/4) infants; 24% (8/33) children aged 1-4 years; 19% (19/100) 5-9 year old children and 16.9% (58/342) adolescents had dual carriage. Infants and young children demonstrated the highest rate of dual carriage but were less likely to be tested for dual carriage 37/42 (88%) than their 5-9 year old 98% (100/102) and adolescent 342/352 (97%) counterparts. HB e antigen positivity rate was 45.4% (59/130) males and 36.0% (27/75) in females. Conclusion: Hepatitis B surface antigenaemia is high among adolescent males. Infants and young children who had HBSAg had the highest rate of envelope antigen carriage. Testing in pregnancy, vaccination programmes and prophylaxis need to be strengthened.

Keywords: children, dual carriage, Gombe, hepatitis B

Procedia PDF Downloads 310
6301 Response Surface Methodology for Optimum Hardness of TiN on Steel Substrate

Authors: R. Joseph Raviselvan, K. Ramanathan, P. Perumal, M. R. Thansekhar

Abstract:

Hard coatings are widely used in cutting and forming tool industries. Titanium Nitride (TiN) possesses good hardness, strength and corrosion resistant. The coating properties are influenced by many process parameters. The coatings were deposited on steel substrate by changing the process parameters such as substrate temperature, nitrogen flow rate and target power in a D.C planer magnetron sputtering. The structure of coatings were analysed using XRD. The hardness of coatings was found using Micro hardness tester. From the experimental data, a regression model was developed and the optimum response was determined using Response Surface Methodology (RSM).

Keywords: hardness, RSM, sputtering, TiN XRD

Procedia PDF Downloads 321
6300 i-Plastic: Surface and Water Column Microplastics From the Coastal North Eastern Atlantic (Portugal)

Authors: Beatriz Rebocho, Elisabete Valente, Carla Palma, Andreia Guilherme, Filipa Bessa, Paula Sobral

Abstract:

The global accumulation of plastic in the oceans is a growing problem. Plastic is transported from its source to the oceans via rivers, which are considered the main route for plastic particles from land-based sources to the ocean. These plastics undergo physical and chemical degradation resulting in microplastics. The i-Plastic project aims to understand and predict the dispersion, accumulation and impacts of microplastics (5 mm to 1 µm) and nano plastics (below 1 µm) in marine environments from the tropical and temperate land-ocean interface to the open ocean under distinct flow and climate regimes. Seasonal monitoring of the fluxes of microplastics was carried out in (three) coastal areas in Brazil, Portugal and Spain. The present work shows the first results of in-situ seasonal monitoring and mapping of microplastics in ocean waters between Ovar and Vieira de Leiria (Portugal), in which 43 surface water samples and 43 water column samples were collected in contrasting seasons (spring and autumn). The spring and autumn surface water samples were collected with a 300 µm and 150 µm pore neuston net, respectively. In both campaigns, water column samples were collected using a conical mesh with a 150 µm pore. The experimental procedure comprises the following steps: i) sieving by a metal sieve; ii) digestion with potassium hydroxide to remove the organic matter original from the sample matrix. After a filtration step, the content is retained on a membrane and observed under a stereomicroscope, and physical and chemical characterization (type, color, size, and polymer composition) of the microparticles is performed. Results showed that 84% and 88% of the surface water and water column samples were contaminated with microplastics, respectively. Surface water samples collected during the spring campaign averaged 0.35 MP.m-3, while surface water samples collected during autumn recorded 0.39 MP.m-3. Water column samples from the spring campaign had an average of 1.46 MP.m-3, while those from the autumn recorded 2.54 MP.m-3. In the spring, all microplastics found were fibers, predominantly black and blue. In autumn, the dominant particles found in the surface waters were fibers, while in the water column, fragments were dominant. In spring, the average size of surface water particles was 888 μm, while in the water column was 1063 μm. In autumn, the average size of surface and water column microplastics was 1333 μm and 1393 μm, respectively. The main polymers identified by Attenuated Total Reflectance (ATR) and micro-ATR Fourier Transform Infrared (FTIR) spectroscopy from all samples were low-density polyethylene (LDPE), polypropylene (PP), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). The significant difference between the microplastic concentration in the water column between the two campaigns could be due to the remixing of the water masses that occurred that week due to the occurrence of a storm. This work presents preliminary results since the i-Plastic project is still in progress. These results will contribute to the understanding of the spatial and temporal dispersion and accumulation of microplastics in this marine environment.

Keywords: microplastics, Portugal, Atlantic Ocean, water column, surface water

Procedia PDF Downloads 80
6299 A Cross-Cultural Approach for Communication with Biological and Non-Biological Intelligences

Authors: Thomas Schalow

Abstract:

This paper posits the need to take a cross-cultural approach to communication with non-human cultures and intelligences in order to meet the following three imminent contingencies: communicating with sentient biological intelligences, communicating with extraterrestrial intelligences, and communicating with artificial super-intelligences. The paper begins with a discussion of how intelligence emerges. It disputes some common assumptions we maintain about consciousness, intention, and language. The paper next explores cross-cultural communication among humans, including non-sapiens species. The next argument made is that we need to become much more serious about communicating with the non-human, intelligent life forms that already exist around us here on Earth. There is an urgent need to broaden our definition of communication and reach out to the other sentient life forms that inhabit our world. The paper next examines the science and philosophy behind CETI (communication with extraterrestrial intelligences) and how it has proven useful, even in the absence of contact with alien life. However, CETI’s assumptions and methodology need to be revised and based on the cross-cultural approach to communication proposed in this paper if we are truly serious about finding and communicating with life beyond Earth. The final theme explored in this paper is communication with non-biological super-intelligences using a cross-cultural communication approach. This will present a serious challenge for humanity, as we have never been truly compelled to converse with other species, and our failure to seriously consider such intercourse has left us largely unprepared to deal with communication in a future that will be mediated and controlled by computer algorithms. Fortunately, our experience dealing with other human cultures can provide us with a framework for this communication. The basic assumptions behind intercultural communication can be applied to the many types of communication envisioned in this paper if we are willing to recognize that we are in fact dealing with other cultures when we interact with other species, alien life, and artificial super-intelligence. The ideas considered in this paper will require a new mindset for humanity, but a new disposition will prepare us to face the challenges posed by a future dominated by artificial intelligence.

Keywords: artificial intelligence, CETI, communication, culture, language

Procedia PDF Downloads 358
6298 On the Quantum Behavior of Nanoparticles: Quantum Theory and Nano-Pharmacology

Authors: Kurudzirayi Robson Musikavanhu

Abstract:

Nanophase particles exhibit quantum behavior by virtue of their small size, being particles of gamma to x-ray wavelength [atomic range]. Such particles exhibit high frequencies, high energy/photon, high penetration power, high ionization power [atomic behavior] and are stable at low energy levels as opposed to bulk phase matter [macro particles] which exhibit higher wavelength [radio wave end] properties, hence lower frequency, lower energy/photon, lower penetration power, lower ionizing power and are less stable at low temperatures. The ‘unique’ behavioral motion of Nano systems will remain a mystery as long as quantum theory remains a mystery, and for pharmacology, pharmacovigilance profiling of Nano systems becomes virtually impossible. Quantum theory is the 4 – 3 – 5 electromagnetic law of life and life motion systems on planet earth. Electromagnetic [wave-particle] properties of all particulate matter changes as mass [bulkiness] changes from one phase to the next [Nano-phase to micro-phase to milli-phase to meter-phase to kilometer phase etc.] and the subsequent electromagnetic effect of one phase particle on bulk matter [different phase] changes from one phase to another. All matter exhibit electromagnetic properties [wave-particle duality] in behavior and the lower the wavelength [and the lesser the bulkiness] the higher the gamma ray end properties exhibited and the higher the wavelength [and the greater the bulkiness], the more the radio-wave end properties are exhibited. Quantum theory is the 4 [moon] – 3[sun] – [earth] 5 law of the Electromagnetic spectrum [solar system]. 4 + 3 = 7; 4 + 3 + 5 = 12; 4 * 3 * 5 = 60; 42 + 32 = 52; 43 + 33 + 53 = 63. Quantum age is overdue.

Keywords: electromagnetic solar system, nano-material, nano pharmacology, pharmacovigilance, quantum theory

Procedia PDF Downloads 450
6297 Optimization of Process Parameters using Response Surface Methodology for the Removal of Zinc(II) by Solvent Extraction

Authors: B. Guezzen, M.A. Didi, B. Medjahed

Abstract:

A factorial design of experiments and a response surface methodology were implemented to investigate the liquid-liquid extraction process of zinc (II) from acetate medium using the 1-Butyl-imidazolium di(2-ethylhexyl) phosphate [BIm+][D2EHP-]. The optimization process of extraction parameters such as the initial pH effect (2.5, 4.5, and 6.6), ionic liquid concentration (1, 5.5, and 10 mM) and salt effect (0.01, 5, and 10 mM) was carried out using a three-level full factorial design (33). The results of the factorial design demonstrate that all these factors are statistically significant, including the square effects of pH and ionic liquid concentration. The results showed that the order of significance: IL concentration > salt effect > initial pH. Analysis of variance (ANOVA) showing high coefficient of determination (R2 = 0.91) and low probability values (P < 0.05) signifies the validity of the predicted second-order quadratic model for Zn (II) extraction. The optimum conditions for the extraction of zinc (II) at the constant temperature (20 °C), initial Zn (II) concentration (1mM) and A/O ratio of unity were: initial pH (4.8), extractant concentration (9.9 mM), and NaCl concentration (8.2 mM). At the optimized condition, the metal ion could be quantitatively extracted.

Keywords: ionic liquid, response surface methodology, solvent extraction, zinc acetate

Procedia PDF Downloads 374
6296 Experimental Testing of Solar Still with Movable Inclined Surface and Equipped with Wick

Authors: Ahmed N. Shmroukh

Abstract:

This study examined a new solar still equipped with a movable inclined back, and this back is covered with a wick for seawater desalination. The tested backside inclination angles were 105, 125 and 160, respectively. The wick helped in increasing the seawater evaporation rate by increasing the evaporation surface area allowed for seawater in the still basin. The proposed modified solar still was compared with the conventional simple still. The results showed that the daily produced desalinated water of the modified solar still with angles 105, 125 and 160 increased by approximately 13.7%, 27.9%, and 39.2%, respectively, compared with the conventional solar still.

Keywords: solar still, inclined still, porous materials, Wick

Procedia PDF Downloads 67
6295 Microwave Assisted Synthesis of Ag/ZnO Sub-Microparticles Deposited on Various Cellulose Surfaces

Authors: Lukas Munster, Pavel Bazant, Ivo Kuritka

Abstract:

Zinc oxide sub-micro particles and metallic silver nano particles (Ag/ZnO) were deposited on micro crystalline cellulose surface by a fast, simple and environmentally friendly one-pot microwave assisted solvo thermal synthesis in an open vessel system equipped with an external reflux cooler. In order to increase the interaction between the surface of cellulose and the precipitated Ag/ZnO particles, oxidized form of cellulose (cellulose dialdehyde, DAC) prepared by periodate oxidation of micro crystalline cellulose was added to the reaction mixture of Ag/ZnO particle precursors and untreated micro crystalline cellulose. The structure and morphology of prepared hybrid powder materials were analysed by X-ray diffraction (XRD), energy dispersive analysis (EDX), scanning electron microscopy (SEM) and nitrogen absorption method (BET). Microscopic analysis of the prepared materials treated by ultra-sonication showed that Ag/ZnO particles deposited on the cellulose/DAC sample exhibit increased adhesion to the surface of the cellulose substrate which can be explained by the DAC adhesive effect in comparison with the material prepared without DAC addition.

Keywords: microcrystalline cellulose, microwave synthesis, silver nanoparticles, zinc oxide sub-microparticles, cellulose dialdehyde

Procedia PDF Downloads 478
6294 Improvement of Environment and Climate Change Canada’s Gem-Hydro Streamflow Forecasting System

Authors: Etienne Gaborit, Dorothy Durnford, Daniel Deacu, Marco Carrera, Nathalie Gauthier, Camille Garnaud, Vincent Fortin

Abstract:

A new experimental streamflow forecasting system was recently implemented at the Environment and Climate Change Canada’s (ECCC) Canadian Centre for Meteorological and Environmental Prediction (CCMEP). It relies on CaLDAS (Canadian Land Data Assimilation System) for the assimilation of surface variables, and on a surface prediction system that feeds a routing component. The surface energy and water budgets are simulated with the SVS (Soil, Vegetation, and Snow) Land-Surface Scheme (LSS) at 2.5-km grid spacing over Canada. The routing component is based on the Watroute routing scheme at 1-km grid spacing for the Great Lakes and Nelson River watersheds. The system is run in two distinct phases: an analysis part and a forecast part. During the analysis part, CaLDAS outputs are used to force the routing system, which performs streamflow assimilation. In forecast mode, the surface component is forced with the Canadian GEM atmospheric forecasts and is initialized with a CaLDAS analysis. Streamflow performances of this new system are presented over 2019. Performances are compared to the current ECCC’s operational streamflow forecasting system, which is different from the new experimental system in many aspects. These new streamflow forecasts are also compared to persistence. Overall, the new streamflow forecasting system presents promising results, highlighting the need for an elaborated assimilation phase before performing the forecasts. However, the system is still experimental and is continuously being improved. Some major recent improvements are presented here and include, for example, the assimilation of snow cover data from remote sensing, a backward propagation of assimilated flow observations, a new numerical scheme for the routing component, and a new reservoir model.

Keywords: assimilation system, distributed physical model, offline hydro-meteorological chain, short-term streamflow forecasts

Procedia PDF Downloads 130
6293 Studies on Effect of Nano Size and Surface Coating on Enhancement of Bioavailability and Toxicity of Berberine Chloride; A p-gp Substrate

Authors: Sanjay Singh, Parameswara Rao Vuddanda

Abstract:

The aim of the present study is study the factual benefit of nano size and surface coating of p-gp efflux inhibitor on enhancement of bioavailability of Berberine chloride (BBR); a p-gp substrate. In addition, 28 days sub acute oral toxicity study was also conducted to assess the toxicity of the formulation on chronic administration. BBR loaded polymeric nanoparticles (BBR-NP) were prepared by nanoprecipitation method. BBR NP were surface coated (BBR-SCNP) with the 1 % w/v of vitamin E TPGS. For bioavailability study, total five groups (n=6) of rat were treated as follows first; pure BBR, second; physical mixture of BBR, carrier and vitamin E TPGS, third; BBR-NP, fourth; BBR-SCNP and fifth; BBR and verapamil (widely used p-gp inhibitor). Blood was withdrawn at pre-set timing points in 24 hrs study and drug was quantified by HPLC method. In oral chronic toxicity study, total four groups (n=6) were treated as follows first (control); water, second; pure BBR, third; BBR surface coated nanoparticles and fourth; placebo BBR surface coated nanoparticles. Biochemical levels of liver (AST, ALP and ALT) and kidney (serum urea and creatinine) along with their histopathological studies were also examined (0-28 days). The AUC of BBR-SCNP was significantly 3.5 folds higher compared to all other groups. The AUC of BBR-NP was 3.23 and 1.52 folds higher compared to BBR solution and BBR with verapamil group, respectively. The physical mixture treated group showed slightly higher AUC than BBR solution treated group but significantly low compared to other groups. It indicates that encapsulation of BBR in nanosize form can circumvent P-gp efflux effect. BBR-NP showed pharmacokinetic parameters (Cmax and AUC) which are near to BBR-SCNP. However, the difference in values of T1/2 and clearance indicate that surface coating with vitamin E TPGS not only avoids the P-gp efflux at its absorption site (intestine) but also at organs which are responsible for metabolism and excretion (kidney and liver). It may be the reason for observed decrease in clearance of BBR-SCNP. No toxicity signs were observed either in biochemical or histopathological examination of liver and kidney during toxicity studies. The results indicate that administration of BBR in surface coated nanoformulation would be beneficial for enhancement of its bioavailability and longer retention in systemic circulation. Further, sub acute oral dose toxicity studies for 28 days such as evaluation of intestine, liver and kidney histopathology and biochemical estimations indicated that BBR-SCNP developed were safe for long use.

Keywords: bioavailability, berberine nanoparticles, p-gp efflux inhibitor, nanoprecipitation method

Procedia PDF Downloads 390