Search results for: Adult dataset
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2461

Search results for: Adult dataset

1321 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory

Authors: Yin Yuanling

Abstract:

A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.

Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks

Procedia PDF Downloads 144
1320 2021 Study of 529 Donor-Conceived Adults

Authors: Wendy Kramer

Abstract:

How and when a donor-conceived person (DCP) learns about their conception significantly affects their experiences and choices, including whether they'd consider using a donor or donating their own gametes. Objective: We sought to identify factors that positively and negatively impact the experience of being a DCP. We sought to determine if DCP would consider utilizing donor gametes themselves, if unable to conceive spontaneously and if DCP were likely to be donors themselves. Materials and Methods: A cross-sectional survey of adult DCP was disseminated to members of the Donor Sibling Registry. The survey consisted of 31 items including whether experience as DCP was positive or negative, the willingness to use donor gametes if spontaneous conception was not an option, and questions regarding donating gametes. Results: 529 people (81.7% female) completed the survey, the median age was 28 years (range 18-77 years) and 94.7% were conceived via donor sperm. Most felt "neutral" (31.6%), "positive" (26.3%) or "very positive" (20.8%) about being a DCP regardless of donor type. While most found out about being a DCP after age 18 (63.4%), those with a positive experience were more likely to "have always known" (40.7%). Conclusions: People conceived by donor-assisted reproduction are more likely to have neutral to positive overall feelings surrounding their conception if they are told at a very young age about their donor-conceived origins by a family member. The majority of DCP are willing to adopt but would not consider using donated gametes themselves if unable to conceive spontaneously. DCP are not likely to become donors themselves despite the majority of DCP having a high positive feeling regarding being donor-conceived.

Keywords: donor conception, donor offspring, sperm donation, egg donation, donor-conceived people

Procedia PDF Downloads 182
1319 Multi-Spectral Deep Learning Models for Forest Fire Detection

Authors: Smitha Haridasan, Zelalem Demissie, Atri Dutta, Ajita Rattani

Abstract:

Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection.

Keywords: deep learning, forest fire detection, multi-spectral learning, natural hazard detection

Procedia PDF Downloads 241
1318 Prediction of the Crustal Deformation of Volcán - Nevado Del RUíz in the Year 2020 Using Tropomi Tropospheric Information, Dinsar Technique, and Neural Networks

Authors: Juan Sebastián Hernández

Abstract:

The Nevado del Ruíz volcano, located between the limits of the Departments of Caldas and Tolima in Colombia, presented an unstable behaviour in the course of the year 2020, this volcanic activity led to secondary effects on the crust, which is why the prediction of deformations becomes the task of geoscientists. In the course of this article, the use of tropospheric variables such as evapotranspiration, UV aerosol index, carbon monoxide, nitrogen dioxide, methane, surface temperature, among others, is used to train a set of neural networks that can predict the behaviour of the resulting phase of an unrolled interferogram with the DInSAR technique, whose main objective is to identify and characterise the behaviour of the crust based on the environmental conditions. For this purpose, variables were collected, a generalised linear model was created, and a set of neural networks was created. After the training of the network, validation was carried out with the test data, giving an MSE of 0.17598 and an associated r-squared of approximately 0.88454. The resulting model provided a dataset with good thematic accuracy, reflecting the behaviour of the volcano in 2020, given a set of environmental characteristics.

Keywords: crustal deformation, Tropomi, neural networks (ANN), volcanic activity, DInSAR

Procedia PDF Downloads 103
1317 Deep Learning Based-Object-classes Semantic Classification of Arabic Texts

Authors: Imen Elleuch, Wael Ouarda, Gargouri Bilel

Abstract:

We proposes in this paper a Deep Learning based approach to classify text in order to enrich an Arabic ontology based on the objects classes of Gaston Gross. Those object classes are defined by taking into account the syntactic and semantic features of the treated language. Thus, our proposed approach is a hybrid one. In fact, it is based on the one hand on the object classes that represents a knowledge based-approach on classification of text and in the other hand it uses the deep learning approach that use the word embedding-based-approach to classify text. We have applied our proposed approach on a corpus constructed from an Arabic dictionary. The obtained semantic classification of text will enrich the Arabic objects classes ontology. In fact, new classes can be added to the ontology or an expansion of the features that characterizes each object class can be updated. The obtained results are compared to a similar work that treats the same object with a classical linguistic approach for the semantic classification of text. This comparison highlight our hybrid proposed approach that can be ameliorated by broaden the dataset used in the deep learning process.

Keywords: deep-learning approach, object-classes, semantic classification, Arabic

Procedia PDF Downloads 88
1316 Analysis of an Alternative Data Base for the Estimation of Solar Radiation

Authors: Graciela Soares Marcelli, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Claudineia Brazil, Rafael Haag

Abstract:

The sun is a source of renewable energy, and its use as both a source of heat and light is one of the most promising energy alternatives for the future. To measure the thermal or photovoltaic systems a solar irradiation database is necessary. Brazil still has a reduced number of meteorological stations that provide frequency tests, as an alternative to the radio data platform, with reanalysis systems, quite significant. ERA-Interim is a global fire reanalysis by the European Center for Medium-Range Weather Forecasts (ECMWF). The data assimilation system used for the production of ERA-Interim is based on a 2006 version of the IFS (Cy31r2). The system includes a 4-dimensional variable analysis (4D-Var) with a 12-hour analysis window. The spatial resolution of the dataset is approximately 80 km at 60 vertical levels from the surface to 0.1 hPa. This work aims to make a comparative analysis between the ERA-Interim data and the data observed in the Solarimmetric Atlas of the State of Rio Grande do Sul, to verify its applicability in the absence of an observed data network. The analysis of the results obtained for a study region as an alternative to the energy potential of a given region.

Keywords: energy potential, reanalyses, renewable energy, solar radiation

Procedia PDF Downloads 164
1315 Role of Music Education as a Pillar in Sustainable Development of India

Authors: Rohit Rutka

Abstract:

The aim of the present paper is to reveal the importance of music as an indispensable aspect in education of art, with regard to every single culture which serves as indisputable support to sustainable development in India. Indian system of education is one of the oldest systems of the world. Both secular and sacred education was handed over systematically by formalizing the system of education. We have found significant growth in the system of education in our country since ancient times. It is a veritable avenue which enables societies to transmit music and musical skills from one generation to the upcoming ones. The research is based on a comprehensive literature review on the impact of music to sustainable development. This paper contextualized that music education is imperative to Sustainable Development, to the adult. It is a vital force of self-expression, communication and empowerment economically, in growing children, involvement in music education will promote their creative ability, thereby contribute to the full development of intellectual capacities, apt emotional development that gives the right values and feelings to various events and happenings, music helps to develop skills, innate and instinctive talent in human being and recommend that the informal music teaching should be incorporated into school system so as to transmit and preserve the cultural music and that the study of music should be made compulsory at all levels of the Indian educational system.

Keywords: sustainable development, music education, culture, music as a pillar to sustainable development

Procedia PDF Downloads 347
1314 Effect of Temperatures on Growth and Development Time of Aphis fabae Scopoli (Homoptera: Aphididae): On Bean (Phaseolus vulgaris L.)

Authors: Rochelyn Dona, Serdar Satar

Abstract:

The aim of this study was to evaluate the biological parameters of A. fabae Scopoli (Hemiptera: Aphididae). Developmental, survival, and reproductive data were collected for Aphis fabae reared on detached bean leaves (Phaseolus vulgaris L.) ‘pinto beans’ at five temperature regimes (12, 16, 20, 24, and 28 °C), 65% relative humidity (RH), relative and a photoperiod of 16:8 (LD) h. The developmental times of immature stages ranged from 16, 65 days at 12°C to 5.70 days at 24°C, but a slight increase again at 28°C (6.62 days). At 24°C from this study presented the developmental threshold for A. fabae slightly to 24°C. The average longevity of mature females significantly decreased from 42.32 days at 12°C to 16.12 days at 28°C. The reproduction rate per female was 62.27 at 16°C and 12.72 at 28°C. The mean generation period of the population ranged from 29.24 at 12°C to 11.50 at 28°C. The highest intrinsic rate of increase (rm = 0.41) were recorded at 24°C, the lowest at 12°C (rm = 0.15). It was evident that temperatures over 28°C augmented the development time, accelerated the death ratio of the nymphal stages, Shrunk Adult longevity, and reduced fecundity. The optimal range of temperature for the population growth of A. fabae on the bean was 16°C-24°C, according to this study.

Keywords: developmental time, intrinsic rate, reproduction period, temperature dependence

Procedia PDF Downloads 228
1313 Aligning Cultural Practices through Information Exchange: A Taxonomy in Global Manufacturing Industry

Authors: Hung Nguyen

Abstract:

With the rise of global supply chain network, the choice of supply chain orientation is critical. The alignment between cultural similarity and supply chain information exchange could help identify appropriate supply chain orientations, which would differentiate the stronger competitors and performers from the weaker ones. Through developing a taxonomy, this study examined whether the choices of action programs and manufacturing performance differ depending on the levels of attainment cultural similarity and information exchange. This study employed statistical tests on a large-scale dataset consisting of 680 manufacturing plants from various cultures and industries. Firms need to align cultural practices with the level of information exchange in order to achieve good overall business performance. There appeared to be consistent three major orientations: the Proactive, the Initiative and the Reactive. Firms are experiencing higher payoffs from various improvements are the ones successful alignment in both information exchange and cultural similarity The findings provide step-by-step decision making for supply chain information exchange and offer guidance especially for global supply chain managers. In including both cultural similarity and information exchange, this paper adds greater comprehensiveness and richness to the supply chain literature.

Keywords: culture, information exchange, supply chain orientation, similarity

Procedia PDF Downloads 359
1312 Acrylamide-Induced Acute Nephrotoxicity in Rats

Authors: Keivan Jamshidi, Afshin Zahedi

Abstract:

Acrylamide (ACR) has been shown to cause neurotoxic effects in humans and neurotoxic, genotoxic, reproductive, and carcinogenic effects in laboratory animals. To investigate the nephrotoxic effect of Acrylamide (ACR), 50 adult male rats (Wistar, approximately 250 g) housed in polycarbonate boxes as 5 per each, and randomly assigned in 5 groups including 4 exposure groups as A, B, C, and D groups of rats (10 rats per exposure group., total) and were exposed to 0.5, 5, 50, 100 mg/kg ACR per day×11days i.p. respectively. The remaining 10 rats were housed in group (E) as control group. Control rats received daily i.p. injections of 0.9% saline (3ml/kg). On day 12, four rats, were randomly selected, perfused , dissected and proper samples were collected from their kidneys. Results of histopathological studies based on H&E technique did show no morphologic changes in kidneys of rats belong to groups A, B and E, while moderate to severe morphologic changes including glomerular hypercellularity, global pattern of proliferative glomerulonephritis, occupation of capsular space, tubular cell swelling and hyaline cast formation, were observed in different stained sections obtained from the kidneys of rats belong to group, C, and D. This finding, beside neurotoxic, reproductive and carcinogenic effects, seems to indicate for the first time another important aspect of toxic effect of ACR, i.e., acute nephrotoxicity.

Keywords: acrylamide, nephrotoxicity, glomerulonephritis, rats

Procedia PDF Downloads 617
1311 Attitudes towards Inclusion of Students with Disabilities in Sultanate Oman Schools

Authors: Ibrahim Azem

Abstract:

The purpose of the present study was to investigate the attitudes of regular classroom teachers, special education teachers, principals, social workers, parents of students without disabilities and parents of students with disabilities, in Sultanate Oman towards inclusion of students with disabilities in the general school setting. Participants’ Four hundred fifty schools were selected randomly from all public schools in Sultanate Oman. From these schools 2,025 individuals volunteered to participate in this study. The Attitude Scale toward inclusion was used to measure adults’ attitudes toward teaching students with disabilities with their peers in an inclusive classroom. The scale was developed based on the conceptualization of attitude as a tri component evaluation consisting of cognitive, affective, and behavioral intention. To investigate the validity and the reliability of the scale, it shows that it has valid appropriate connotations and reliability. The results of the study showed that the adult’s role had significant effect (p < .05) on the participants’ attitudes toward inclusion. Moreover, the results indicated significant (p < .05) gender differences in the attitudes toward inclusion, males scored significantly (p < .05) higher than females. The result of the study also showed that the special education teachers had positives attitudes more than the other type of stakeholders.

Keywords: inclusion, students with disabilities, Oman, stakeholders

Procedia PDF Downloads 308
1310 Social Inclusion of Rural Elderly Left Behind by Internal Labor Migration: A Case Study in a Chinese Rural Village in Anhui Province

Authors: Lei Liu

Abstract:

Since the famous opening up and reform strategy of China, lots of migrants have flowed from rural areas to urban areas. In this paper, the author investigates the rural elderly left behind, which are defined aged people left alone at home while their adult children have to migrant outside. This phenomenon is a quite general and serious social problem that cannot be ignored, accompanied by the process of urbanization and regional transferring of rural labor. The Chinese internal migration not only exerts great influence to China’s economy and urbanization but also obviously reduces the labor and care to rural aged people. Contrary to assumptions in some migration and aging studies, which show the inevitable negative effects of migration upon the old age care, the author highlights unique features in their daily strategies of house holding to integrate into society with the analysis of the conception of social inclusion. Through life history interviews with elderly left behind in one rural village, this article sheds light on three different factors of social inclusion, namely, economic inclusion, social identity and political inclusion and shows its necessaries to fully understand the status of the social wellbeing of rural elderly left behind.

Keywords: labor migration, elderly left behind, social inclusion, rural China

Procedia PDF Downloads 303
1309 3D Vision Transformer for Cervical Spine Fracture Detection and Classification

Authors: Obulesh Avuku, Satwik Sunnam, Sri Charan Mohan Janthuka, Keerthi Yalamaddi

Abstract:

In the United States alone, there are over 1.5 million spine fractures per year, resulting in about 17,730 spinal cord injuries. The cervical spine is where fractures in the spine most frequently occur. The prevalence of spinal fractures in the elderly has increased, and in this population, fractures may be harder to see on imaging because of coexisting degenerative illness and osteoporosis. Nowadays, computed tomography (CT) is almost completely used instead of radiography for the imaging diagnosis of adult spine fractures (x-rays). To stop neurologic degeneration and paralysis following trauma, it is vital to trace any vertebral fractures at the earliest. Many approaches have been proposed for the classification of the cervical spine [2d models]. We are here in this paper trying to break the bounds and use the vision transformers, a State-Of-The-Art- Model in image classification, by making minimal changes possible to the architecture of ViT and making it 3D-enabled architecture and this is evaluated using a weighted multi-label logarithmic loss. We have taken this problem statement from a previously held Kaggle competition, i.e., RSNA 2022 Cervical Spine Fracture Detection.

Keywords: cervical spine, spinal fractures, osteoporosis, computed tomography, 2d-models, ViT, multi-label logarithmic loss, Kaggle, public score, private score

Procedia PDF Downloads 114
1308 Determinants for Discontinuing Contraceptive Use and Regional Variations in Bangladesh: A Sociological Perspective

Authors: Md. Shahriar Sabuz

Abstract:

Bangladesh, a South Asian developing country, has experienced an increasing rate of contraceptive use in the last few decades. But one-third of the pregnancies are still unintended, and the fertility rate surpasses the desired rate of children. It may be because of the discontinuation of the use of contraceptive methods. So, it is necessary to find out the reasons for the discontinuation of the use of contraceptives. Moreover, the rate of contraception discontinuation varies from rural to urban, region to region. In this study, our objectives are to find out the reasons behind the discontinuation of the use of the contraceptive method, and the regional variations of the rate of those reasons. We are using the dataset of Bangladesh Demographic and Health Surveys (BDHS) 2014 for this study and the ever-married women of Bangladesh who have discontinued the use of contraceptive methods aged 15-49. The data was collected from the seven districts of the country. The finding shows that currently there are 23% of women have stopped using their contraception. The most common reasons for stopping using the method are that either they are pregnant or want to be pregnant. A significant number of people are not using the contraceptive method because of the fear of side effects. Though the rate of non-user is higher in rural areas than in urban areas, reasons for method discontinuation are not significantly different between urban and rural areas. However, reasons for discontinuing contraceptive methods significantly vary from region to region.

Keywords: discontinuation of contraceptive, health, pregnant, fertility

Procedia PDF Downloads 95
1307 Driver Behavior Analysis and Inter-Vehicular Collision Simulation Approach

Authors: Lu Zhao, Nadir Farhi, Zoi Christoforou, Nadia Haddadou

Abstract:

The safety test of deploying intelligent connected vehicles (ICVs) on the road network is a critical challenge. Road traffic network simulation can be used to test the functionality of ICVs, which is not only time-saving and less energy-consuming but also can create scenarios with car collisions. However, the relationship between different human driver behaviors and the car-collision occurrences has been not understood clearly; meanwhile, the procedure of car-collisions generation in the traffic numerical simulators is not fully integrated. In this paper, we propose an approach to identify specific driver profiles from real driven data; then, we replicate them in numerical traffic simulations with the purpose of generating inter-vehicular collisions. We proposed three profiles: (i) 'aggressive': short time-headway, (ii) 'inattentive': long reaction time, and (iii) 'normal' with intermediate values of reaction time and time-headway. These three driver profiles are extracted from the NGSIM dataset and simulated using the intelligent driver model (IDM), with an extension of reaction time. At last, the generation of inter-vehicular collisions is performed by varying the percentages of different profiles.

Keywords: vehicular collisions, human driving behavior, traffic modeling, car-following models, microscopic traffic simulation

Procedia PDF Downloads 171
1306 Predicting Potential Protein Therapeutic Candidates from the Gut Microbiome

Authors: Prasanna Ramachandran, Kareem Graham, Helena Kiefel, Sunit Jain, Todd DeSantis

Abstract:

Microbes that reside inside the mammalian GI tract, commonly referred to as the gut microbiome, have been shown to have therapeutic effects in animal models of disease. We hypothesize that specific proteins produced by these microbes are responsible for this activity and may be used directly as therapeutics. To speed up the discovery of these key proteins from the big-data metagenomics, we have applied machine learning techniques. Using amino acid sequences of known epitopes and their corresponding binding partners, protein interaction descriptors (PID) were calculated, making a positive interaction set. A negative interaction dataset was calculated using sequences of proteins known not to interact with these same binding partners. Using Random Forest and positive and negative PID, a machine learning model was trained and used to predict interacting versus non-interacting proteins. Furthermore, the continuous variable, cosine similarity in the interaction descriptors was used to rank bacterial therapeutic candidates. Laboratory binding assays were conducted to test the candidates for their potential as therapeutics. Results from binding assays reveal the accuracy of the machine learning prediction and are subsequently used to further improve the model.

Keywords: protein-interactions, machine-learning, metagenomics, microbiome

Procedia PDF Downloads 376
1305 Empirical Evaluation of Game Components Based on Learning Theory: A Preliminary Study

Authors: Seoi Lee, Dongjoo Chin, Heewon Kim

Abstract:

Gamification refers to a technique that applies game elements to non-gaming elements, such as education and exercise, to make people more engaged in these behaviors. The purpose of this study was to identify effective elements in gamification for changing human behaviors. In order to accomplish this purpose, a survey based on learning theory was developed, especially for assessing antecedents and consequences of behaviors, and 8 popular and 8 unpopular games were selected for comparison. A total of 407 adult males and females were recruited via crowdsourcing Internet marketplace and completed the survey, which consisted of 19 questions for antecedent and 14 questions for consequences. Results showed no significant differences in consequence questions between popular and unpopular games. For antecedent questions, popular games are superior to unpopular games in character customization, play type selection, a sense of belonging, patch update cycle, and influence or dominance. This study is significant in that it reveals the elements of gamification based on learning theory. Future studies need to empirically validate whether these factors affect behavioral change.

Keywords: gamification, learning theory, antecedent, consequence, behavior change, behaviorism

Procedia PDF Downloads 223
1304 Attention-Based ResNet for Breast Cancer Classification

Authors: Abebe Mulugojam Negash, Yongbin Yu, Ekong Favour, Bekalu Nigus Dawit, Molla Woretaw Teshome, Aynalem Birtukan Yirga

Abstract:

Breast cancer remains a significant health concern, necessitating advancements in diagnostic methodologies. Addressing this, our paper confronts the notable challenges in breast cancer classification, particularly the imbalance in datasets and the constraints in the accuracy and interpretability of prevailing deep learning approaches. We proposed an attention-based residual neural network (ResNet), which effectively combines the robust features of ResNet with an advanced attention mechanism. Enhanced through strategic data augmentation and positive weight adjustments, this approach specifically targets the issue of data imbalance. The proposed model is tested on the BreakHis dataset and achieved accuracies of 99.00%, 99.04%, 98.67%, and 98.08% in different magnifications (40X, 100X, 200X, and 400X), respectively. We evaluated the performance by using different evaluation metrics such as precision, recall, and F1-Score and made comparisons with other state-of-the-art methods. Our experiments demonstrate that the proposed model outperforms existing approaches, achieving higher accuracy in breast cancer classification.

Keywords: residual neural network, attention mechanism, positive weight, data augmentation

Procedia PDF Downloads 102
1303 Audio-Visual Recognition Based on Effective Model and Distillation

Authors: Heng Yang, Tao Luo, Yakun Zhang, Kai Wang, Wei Qin, Liang Xie, Ye Yan, Erwei Yin

Abstract:

Recent years have seen that audio-visual recognition has shown great potential in a strong noise environment. The existing method of audio-visual recognition has explored methods with ResNet and feature fusion. However, on the one hand, ResNet always occupies a large amount of memory resources, restricting the application in engineering. On the other hand, the feature merging also brings some interferences in a high noise environment. In order to solve the problems, we proposed an effective framework with bidirectional distillation. At first, in consideration of the good performance in extracting of features, we chose the light model, Efficientnet as our extractor of spatial features. Secondly, self-distillation was applied to learn more information from raw data. Finally, we proposed a bidirectional distillation in decision-level fusion. In more detail, our experimental results are based on a multi-model dataset from 24 volunteers. Eventually, the lipreading accuracy of our framework was increased by 2.3% compared with existing systems, and our framework made progress in audio-visual fusion in a high noise environment compared with the system of audio recognition without visual.

Keywords: lipreading, audio-visual, Efficientnet, distillation

Procedia PDF Downloads 134
1302 Hydroinformatics of Smart Cities: Real-Time Water Quality Prediction Model Using a Hybrid Approach

Authors: Elisa Coraggio, Dawei Han, Weiru Liu, Theo Tryfonas

Abstract:

Water is one of the most important resources for human society. The world is currently undergoing a wave of urban growth, and pollution problems are of a great impact. Monitoring water quality is a key task for the future of the environment and human species. In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for environmental monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the artificial intelligence algorithm. This study derives the methodology and demonstrates its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for the environment monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a new methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the Artificial Intelligence algorithm. This study derives the methodology and demonstrate its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.

Keywords: artificial intelligence, hydroinformatics, numerical modelling, smart cities, water quality

Procedia PDF Downloads 188
1301 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques

Authors: Joseph Wolff, Jeffrey Eilbott

Abstract:

Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.

Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences

Procedia PDF Downloads 209
1300 Israel versus Palestine: Politological and Depth-Psychological Aspects

Authors: Harald Haas, Andrea Plaschke

Abstract:

Many of the contemporary major conflicts on this earth could not be solved so far, they either are perpetuated, or they are reflated again and again. Efforts of purely political conflict management or -resolution aim merely at the symptoms of conflict, not its roots. These roots are, in almost every case, also psychological ones. Thus, this contribution aims to shed light on the roots of one of the best known and longest-lasting conflicts: the Palestinian-Israeli one. Methodologies used were the compilation of existing scientific resources, field research in Palestine and Israel, as well as tests conducted with the Adult Attachment Projective in Palestine and Israel. Findings show that the majority of Palestinian, as well as Israeli test participants, show a disorganised attachment pattern which, in connection with the assumption of collective traumatization, seem to be a major obstacle to a lasting and peaceful conflict-resolution between these two peoples. There appears to be no short-term solution for this conflict, especially not within the range of usual Western legislative periods. Both sides ought to be provided with a kind of 'safe haven' over a long period of time, accompanied by a framework of various arrangements of coping with trauma, building lasting and secure relationships, as well as raising and educating present and future generations of Palestinians and Israelis for peace and co-operation with each other.

Keywords: conflict-management, trauma, political psychology, attachment theory

Procedia PDF Downloads 202
1299 Applied Complement of Probability and Information Entropy for Prediction in Student Learning

Authors: Kennedy Efosa Ehimwenma, Sujatha Krishnamoorthy, Safiya Al‑Sharji

Abstract:

The probability computation of events is in the interval of [0, 1], which are values that are determined by the number of outcomes of events in a sample space S. The probability Pr(A) that an event A will never occur is 0. The probability Pr(B) that event B will certainly occur is 1. This makes both events A and B a certainty. Furthermore, the sum of probabilities Pr(E₁) + Pr(E₂) + … + Pr(Eₙ) of a finite set of events in a given sample space S equals 1. Conversely, the difference of the sum of two probabilities that will certainly occur is 0. This paper first discusses Bayes, the complement of probability, and the difference of probability for occurrences of learning-events before applying them in the prediction of learning objects in student learning. Given the sum of 1; to make a recommendation for student learning, this paper proposes that the difference of argMaxPr(S) and the probability of student-performance quantifies the weight of learning objects for students. Using a dataset of skill-set, the computational procedure demonstrates i) the probability of skill-set events that have occurred that would lead to higher-level learning; ii) the probability of the events that have not occurred that requires subject-matter relearning; iii) accuracy of the decision tree in the prediction of student performance into class labels and iv) information entropy about skill-set data and its implication on student cognitive performance and recommendation of learning.

Keywords: complement of probability, Bayes’ rule, prediction, pre-assessments, computational education, information theory

Procedia PDF Downloads 161
1298 The Use of Visual Drawing and Writing Techniques to Elicit Adult Perceptions of Sex Offenders

Authors: Sasha Goodwin

Abstract:

Public perceptions can play a crucial role in influencing criminal justice policy and legislation, particularly concerning sex offenders. Studies have found a proximate relationship between public perception and policy to manage the risks posed by sex offenders. A significant body of research on public perceptions about sex offenders primarily uses survey methods and standardised instruments such as the Community Attitude Towards Sex Offenders (CATSO) and Perceptions of Sex Offenders (PSO) scales and finds a mostly negative and punitive attitude informed by common misconceptions. A transformative methodology from the emerging sub-field of visual criminology is where the construction of offences and offenders are understood via novel ways of collecting and analysing data. This research paper examines the public perceptions of sex offenders through the utilization of a content analysis of drawings. The study aimed to disentangle the emotions, stereotypes, and myths embedded in public perceptions by analysing the graphic representations and specific characteristics depicted by participants. Preliminary findings highlight significant discrepancies between public perceptions and empirical profiles of sex offenders, shedding light on the misunderstandings surrounding this heterogeneous group. By employing visual data, this research contributes to a deeper understanding of the complex interplay between societal perceptions and the realities of sex offenders.

Keywords: emotions, figural drawings, public perception, sex offenders

Procedia PDF Downloads 69
1297 Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures

Authors: Tamanna Goyal, Divya Bansal, Sanjeev Sofat

Abstract:

In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results.

Keywords: association rules, clustering, similarity measure, statistical approaches

Procedia PDF Downloads 320
1296 The Diversity of Black Flies in Peninsular Malaysia

Authors: C. D. Chen, H. Takaoka, Z. Ya’cob, V. L. Low, K. W. Lau, M. Sofian-Azirun

Abstract:

Adult black flies (Diptera: Simuliidae) are small (1.5-6.0 mm long), two-winged insects, and are well known as one of the biting flies of medical and veterinary importance. Female of certain species, when they bite and take blood, not only cause severe skin diseases to human and cattle but also play a role as vectors of viral, protozoan and filarial diseases in humans and animals. Black flies also attract environmental biologist and ecologist because their immature states breed only in clean running fresh waters, and larvae are one of the principal processors of plant debris in streams. All these researches on medical and ecological aspects of black flies could not be reliably proceeded without sufficient basic knowledge of the fauna of black flies established by traditional but still important morphotaxonomy. Previously, only 39 species of black flies were recorded from Peninsular Malaysia, all of which are classified into four subgenus (Daviesellum, Gomphostilbia, Nevermannia and Simulium) of the genus Simulium. We carried out faunal surveys and taxonomic works of black flies in Peninsular Malaysia since November 2010. A total of 17 new species and 4 newly recorded species were collected. This increased the number of the described species of black flies in Peninsular Malaysia from 39 to 60. Our results suggest that a much higher diverse nature of black flies in Peninsular Malaysia will be clarified by further extensive surveys.

Keywords: black flies, Simulium, Nevermannia, feuerborni species-group

Procedia PDF Downloads 469
1295 Tapping into Debt: The Effect of Contactless Payment Methods on Overdraft Fee Occurrence

Authors: Merle Van Den Akker, Neil Stewart, Andrea Isoni

Abstract:

Contactless methods of payment referred to as tap&go, have become increasingly popular globally. However, little is known about the consequences of this payment method on spending, spending habits, personal finance management, and debt accumulation. The literature on other payment methods such as credit cards suggests that, through increased ease and reduced friction, the pain of paying in these methods is reduced, leading to higher and more frequent spending, resulting in higher debt accumulation. Within this research, we use a dataset of 300 million transactions of 165.000 individuals to see whether the onset of using contactless methods of payment increases the occurrence of overdraft fees. Using the R package MatchIt, we find, when matching people on initial overdraft occurrence and salary, that people who do start using contactless incur a significantly higher number of overdraft fees, as compared to those who do not start using contactless in the same year. Having accounted for income, opting-in, and time-of-year effects, these results show that contactless methods of payment fall within the scope of earlier theories on credit cards, such as the pain of paying, meaning that this payment method leads to increasing difficulties managing personal finance.

Keywords: contactless, debt accumulation, overdraft fees, payment methods, spending

Procedia PDF Downloads 123
1294 Orthodontic Treatment Using CAD/CAM System

Authors: Cristiane C. B. Alves, Livia Eisler, Gustavo Mota, Kurt Faltin Jr., Cristina L. F. Ortolani

Abstract:

The correct positioning of the brackets is essential for the success of orthodontic treatment. Indirect bracket placing technique has the main objective of eliminating the positioning errors, which commonly occur in the technique of direct system of brackets. The objective of this study is to demonstrate that the exact positioning of the brackets is of extreme relevance for the success of the treatment. The present work shows a case report of an adult female patient who attended the clinic with the complaint of being in orthodontic treatment for more than 5 years without noticing any progress. As a result of the intra-oral clinical examination and documentation analysis, a class III malocclusion, an anterior open bite, and absence of all third molars and first upper and lower bilateral premolars were observed. For the treatment, the indirect bonding technique with self-ligating ceramic braces was applied. The preparation of the trays was done after the intraoral digital scanning and printing of models with a 3D printer. Brackets were positioned virtually, using a specialized software. After twelve months of treatment, correction of the malocclusion was observed, as well as the closing of the anterior open bite. It is concluded that the adequate and precise positioning of brackets is necessary for a successful treatment.

Keywords: anterior open-bite, CAD/CAM, orthodontics, malocclusion, angle class III

Procedia PDF Downloads 194
1293 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network

Authors: Yuntao Liu, Lei Wang, Haoran Xia

Abstract:

Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.

Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability

Procedia PDF Downloads 67
1292 Population Ecology of the House Rat (Rattus rattus) in Rural Human Dwelling of Pothwar Plateau, Pakistan

Authors: Surrya Khanam

Abstract:

Understanding the population characteristics of pest species is crucial to develop suitable management plans. The present study was aimed to determine the population ecology of House rat (Rattus rattus) in rural human dwellings of Pothwar, Pakistan. Seasonal rodent trapping was conducted in four villages of Pothwar area from March 2012 to February 2014. A total of 217 individuals of R.rattus were captured from houses, shops, and farm houses. There was no significant difference in the abundance of species across different trapping seasons. The species sex ratio was unbiased and did not differ significantly from 1:1 at all the sites and across all the trapping seasons. The population of R. Rattus had individuals of different age groups, viz., juvenile, sub adults and adults. Overall, more adult individuals were captured in spring and summer season. Breeding activity was continuous throughout the year and reproductively active individuals relatively outnumbered inactive individuals. The results showed that village indoor habitats provided a suitable habitat for rat populations all the year round. The information obtained from this study will be helpful in the development of control strategies for R. rattus populations in commensal habitats.

Keywords: ecology, indoor pests, Rattus rattus, population characteristics

Procedia PDF Downloads 154