Search results for: 99.95% IoT data transmission savings
25683 Ethically Integrating Robots to Assist Elders and Patients with Dementia
Authors: Suresh Lokiah
Abstract:
The emerging trend of integrating robots into elderly care, particularly for assisting patients with dementia, holds the potential to greatly transform the sector. Assisted living facilities, which house a significant number of elderly individuals and dementia patients, constantly strive to engage their residents in stimulating activities. However, due to staffing shortages, they often rely on volunteers to introduce new activities. Despite the availability of social interaction, these residents, frequently overlooked in society, are in desperate need of additional support. Robots designed for elder care are categorized based on their design and functionality. These categories include companion robots, telepresence robots, health monitoring robots, and rehab robots. However, the integration of such robots raises significant ethical concerns, notably regarding privacy, autonomy, and the risk of dehumanization. Privacy issues arise as these robots may need to continually monitor patient activities. There is also a risk of patients becoming overly dependent on these robots, potentially undermining their autonomy. Furthermore, the replacement of human touch with robotic interaction may lead to the dehumanization of care. This paper delves into the ethical considerations of incorporating robotic assistance in eldercare. It proposes a series of guidelines and strategies to ensure the ethical deployment of these robots. These guidelines suggest involving patients in the design and development process of the robots and emphasize the critical need for human oversight to respect the dignity and rights of the elderly and dementia patients. The paper also recommends implementing robust privacy measures, including secure data transmission and data anonymization. In conclusion, this paper offers a thorough examination of the ethical implications of using robotic assistance in elder care. It provides a strategic roadmap to ensure this technology is utilized ethically, thereby maximizing its potential benefits and minimizing any potential harm.Keywords: human-robot interaction, robots for eldercare, ethics, health, dementia
Procedia PDF Downloads 9925682 Optimal Pressure Control and Burst Detection for Sustainable Water Management
Authors: G. K. Viswanadh, B. Rajasekhar, G. Venkata Ramana
Abstract:
Water distribution networks play a vital role in ensuring a reliable supply of clean water to urban areas. However, they face several challenges, including pressure control, pump speed optimization, and burst event detection. This paper combines insights from two studies to address these critical issues in Water distribution networks, focusing on the specific context of Kapra Municipality, India. The first part of this research concentrates on optimizing pressure control and pump speed in complex Water distribution networks. It utilizes the EPANET- MATLAB Toolkit to integrate EPANET functionalities into the MATLAB environment, offering a comprehensive approach to network analysis. By optimizing Pressure Reduce Valves (PRVs) and variable speed pumps (VSPs), this study achieves remarkable results. In the Benchmark Water Distribution System (WDS), the proposed PRV optimization algorithm reduces average leakage by 20.64%, surpassing the previous achievement of 16.07%. When applied to the South-Central and East zone WDS of Kapra Municipality, it identifies PRV locations that were previously missed by existing algorithms, resulting in average leakage reductions of 22.04% and 10.47%. These reductions translate to significant daily Water savings, enhancing Water supply reliability and reducing energy consumption. The second part of this research addresses the pressing issue of burst event detection and localization within the Water Distribution System. Burst events are a major contributor to Water losses and repair expenses. The study employs wireless sensor technology to monitor pressure and flow rate in real time, enabling the detection of pipeline abnormalities, particularly burst events. The methodology relies on transient analysis of pressure signals, utilizing Cumulative Sum and Wavelet analysis techniques to robustly identify burst occurrences. To enhance precision, burst event localization is achieved through meticulous analysis of time differentials in the arrival of negative pressure waveforms across distinct pressure sensing points, aided by nodal matrix analysis. To evaluate the effectiveness of this methodology, a PVC Water pipeline test bed is employed, demonstrating the algorithm's success in detecting pipeline burst events at flow rates of 2-3 l/s. Remarkably, the algorithm achieves a localization error of merely 3 meters, outperforming previously established algorithms. This research presents a significant advancement in efficient burst event detection and localization within Water pipelines, holding the potential to markedly curtail Water losses and the concomitant financial implications. In conclusion, this combined research addresses critical challenges in Water distribution networks, offering solutions for optimizing pressure control, pump speed, burst event detection, and localization. These findings contribute to the enhancement of Water Distribution System, resulting in improved Water supply reliability, reduced Water losses, and substantial cost savings. The integrated approach presented in this paper holds promise for municipalities and utilities seeking to improve the efficiency and sustainability of their Water distribution networks.Keywords: pressure reduce valve, complex networks, variable speed pump, wavelet transform, burst detection, CUSUM (Cumulative Sum), water pipeline monitoring
Procedia PDF Downloads 8725681 The Term Spread Impact on Economic Activity for Transition Economies: Case of Georgia
Authors: L. Totladze
Abstract:
The role of financial sector in supporting economic growth and development is well acknowledged. The term spread (the difference between the yields on long-term and short-term Treasury securities) has been found useful for predicting economic variables as output growth, inflation, industrial production, consumption. The temp spread is one of the leading economic indicators according to NBER methodology. Leading economic indicators are widely used in forecasting of economic activity. Many empirical studies find that the term spread predicts future economic activity. The article shortly explains how the term spread might predict future economic activity. This paper analyses the dynamics of the spread between short and long-term interest rates in countries with transition economies. The research paper analyses term spread dynamics in Georgia and compare it with post-communist countries and transition economies spread dynamics. In Georgia, the banking sector plays an important and dominant role in the financial sector, especially with respect to the mobilization of savings and provision of credit and may impact on economic activity. For this purpose, we study the impact of the term spread on economic growth in Georgia.Keywords: forecasting, leading economic indicators, term spread, transition economies
Procedia PDF Downloads 17625680 Interplay of Power Management at Core and Server Level
Authors: Jörg Lenhardt, Wolfram Schiffmann, Jörg Keller
Abstract:
While the feature sizes of recent Complementary Metal Oxid Semiconductor (CMOS) devices decrease the influence of static power prevails their energy consumption. Thus, power savings that benefit from Dynamic Frequency and Voltage Scaling (DVFS) are diminishing and temporal shutdown of cores or other microchip components become more worthwhile. A consequence of powering off unused parts of a chip is that the relative difference between idle and fully loaded power consumption is increased. That means, future chips and whole server systems gain more power saving potential through power-aware load balancing, whereas in former times this power saving approach had only limited effect, and thus, was not widely adopted. While powering off complete servers was used to save energy, it will be superfluous in many cases when cores can be powered down. An important advantage that comes with that is a largely reduced time to respond to increased computational demand. We include the above developments in a server power model and quantify the advantage. Our conclusion is that strategies from datacenters when to power off server systems might be used in the future on core level, while load balancing mechanisms previously used at core level might be used in the future at server level.Keywords: power efficiency, static power consumption, dynamic power consumption, CMOS
Procedia PDF Downloads 22125679 Association of Social Data as a Tool to Support Government Decision Making
Authors: Diego Rodrigues, Marcelo Lisboa, Elismar Batista, Marcos Dias
Abstract:
Based on data on child labor, this work arises questions about how to understand and locate the factors that make up the child labor rates, and which properties are important to analyze these cases. Using data mining techniques to discover valid patterns on Brazilian social databases were evaluated data of child labor in the State of Tocantins (located north of Brazil with a territory of 277000 km2 and comprises 139 counties). This work aims to detect factors that are deterministic for the practice of child labor and their relationships with financial indicators, educational, regional and social, generating information that is not explicit in the government database, thus enabling better monitoring and updating policies for this purpose.Keywords: social data, government decision making, association of social data, data mining
Procedia PDF Downloads 36925678 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation
Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang
Abstract:
Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven
Procedia PDF Downloads 1325677 Prevalence of Seropositivity for Cytomegalovirus in Patients with Hereditary Bleeding Diseases in West Azerbaijan of Iran
Authors: Zakieh Rostamzadeh, Zahra Shirmohammadi
Abstract:
Human cytomegalovirus is a species of the cytomegalovirus family of viruses, which in turn is a member of the viral family known as herpesviridae or herpesviruses. Although they may be found throughout the body, HCMV infections are frequently associated with the salivary glands. HCMV infection is typically unnoticed in healthy people, but can be life-threatening for the immunocompromised such as HIV-infected persons, organ transplant recipients, or newborn infants. After infection, HCMV has an ability to remain latent within the body over long periods. Cytomegalovirus (CMV) causes infection in immunocompromised, hemophilia patients and those who received blood transfusion frequently. This study aimed at determining the prevalence of cytomegalovirus (CMV) antibodies in hemophilia patients. Materials and Methods: A retrospective observational study was carried out in Urmia, North West of Iran. The study population comprised a sample of 50 hemophilic patients born after 1985 and have received blood factors in West Azerbaijan. The exclusion criteria include: drug abusing, high risk sexual contacts, vertical transmission of mother to fetus and suspicious needling. All samples were evaluated with the method of ELISA, with a certain kind of kit and by a certain laboratory. Results: Fifty hemophiliacs from 250 patients registered with Urmia Hemophilia Society were enrolled in the study including 43 (86%) male, and 7 (14%) female. The mean age of patients was 10.3 years, range 3 to 25 years. None of patients had risk factors mentioned above. Among our studied population, 34(68%) had hemophilia A, 1 (2%) hemophilia B, 8 (16%) VWF, 3(6%) factor VII deficiency, 1 (2%) factor V deficiency, 1 (2%) factor X deficiency, 1 (2%). Sera of 50 Hemodialysis patients were investigated for CMV-specific immunoglobulin G (IgG) and IgM. % 91.89 patients were anti-CMV IgG positive and %40.54 was seropositive for anti-CMV IgM. 37.8% patient had serological evidence of reactivation and 2.7% of patients had the primary infection. Discussion: There was no relationship between the antibody titer and: drug abusing, high risk sexual contacts, vertical transmission of mother to fetus and suspicious needling.Keywords: bioinformatics, biomedicine, cytomegalovirus, immunocompromise
Procedia PDF Downloads 35725676 Outlier Detection in Stock Market Data using Tukey Method and Wavelet Transform
Authors: Sadam Alwadi
Abstract:
Outlier values become a problem that frequently occurs in the data observation or recording process. Thus, the need for data imputation has become an essential matter. In this work, it will make use of the methods described in the prior work to detect the outlier values based on a collection of stock market data. In order to implement the detection and find some solutions that maybe helpful for investors, real closed price data were obtained from the Amman Stock Exchange (ASE). Tukey and Maximum Overlapping Discrete Wavelet Transform (MODWT) methods will be used to impute the detect the outlier values.Keywords: outlier values, imputation, stock market data, detecting, estimation
Procedia PDF Downloads 8125675 PEINS: A Generic Compression Scheme Using Probabilistic Encoding and Irrational Number Storage
Authors: P. Jayashree, S. Rajkumar
Abstract:
With social networks and smart devices generating a multitude of data, effective data management is the need of the hour for networks and cloud applications. Some applications need effective storage while some other applications need effective communication over networks and data reduction comes as a handy solution to meet out both requirements. Most of the data compression techniques are based on data statistics and may result in either lossy or lossless data reductions. Though lossy reductions produce better compression ratios compared to lossless methods, many applications require data accuracy and miniature details to be preserved. A variety of data compression algorithms does exist in the literature for different forms of data like text, image, and multimedia data. In the proposed work, a generic progressive compression algorithm, based on probabilistic encoding, called PEINS is projected as an enhancement over irrational number stored coding technique to cater to storage issues of increasing data volumes as a cost effective solution, which also offers data security as a secondary outcome to some extent. The proposed work reveals cost effectiveness in terms of better compression ratio with no deterioration in compression time.Keywords: compression ratio, generic compression, irrational number storage, probabilistic encoding
Procedia PDF Downloads 29425674 Iot Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework
Authors: Femi Elegbeleye, Omobayo Esan, Muienge Mbodila, Patrick Bowe
Abstract:
This paper focused on cost effective storage architecture using fog and cloud data storage gateway and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. The several results obtained from this study on data privacy model shows that when two or more data privacy model is combined we tend to have a more stronger privacy to our data, and when fog storage gateway have several advantages over using the traditional cloud storage, from our result shows fog has reduced latency/delay, low bandwidth consumption, and energy usage when been compare with cloud storage, therefore, fog storage will help to lessen excessive cost. This paper dwelt more on the system descriptions, the researchers focused on the research design and framework design for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, its structure, and its interrelationships.Keywords: IoT, fog, cloud, data analysis, data privacy
Procedia PDF Downloads 9925673 Analyzing the Perception of Identity in Bilingual Communities: Case Study of Eritrean Immigrants in Switzerland
Authors: Warsa Melles
Abstract:
This study examines the way second-generation Eritrean immigrants living in the French-speaking part of Switzerland behave linguistically and culturally. The aim of this research is to demonstrate how the participants deal with their bilingualism (Tigrinya and French). More precisely, how does their language use correlates with their socio-cultural attitudes and how do these aspects (re)construct their identity? Data for this research was collected via, questionnaires and semi-structured interviews. Participants were asked to answer questions regarding their linguistic habits, their perception on being bilingual and their cultural identity. The major findings demonstrate that generation 2 relates more with the host country’s language since French is used as the main language in their daily interactions. On the other hand, due to the fact that they have never lived in Eritrea yet were raised by Eritrean born parents in a foreign country, it is more difficult for them to unanimously identify with just one culture. In that sense, intergenerational transmission plays a major role in the perception of identity. All the participants have at least a basic knowledge of Tigrinya, but the use of languages varies according to the purpose. Proficiency in the native language and sense of belonging can be correlated with the frequency of visits to Eritrea. In conclusion, the question of identity in the second-generation Eritrean community cannot be given a categorical and clear-cut answer instead, the new-self image that this social group aims to build is shaped by different factors that are essential to take into consideration.Keywords: biculturalism, identity, language, migration
Procedia PDF Downloads 24525672 Investigation of Existing Guidelines for Four-Legged Angular Telecommunication Tower
Authors: Sankara Ganesh Dhoopam, Phaneendra Aduri
Abstract:
Lattice towers are light weight structures which are primarily governed by the effects of wind loading. Ensuring a precise assessment of wind loads on the tower structure, antennas, and associated equipment is vital for the safety and efficiency of tower design. Earlier, the Indian standards are not available for design of telecom towers. Instead, the industry conventionally relied on the general building wind loading standard for calculating loads on tower components and the transmission line tower design standard for designing the angular members of the towers. Subsequently, the Bureau of Indian Standards (BIS) revised these standards and angular member design standard. While the transmission line towers are designed using the above standard, a full-scale model test will be done to prove the design. Telecom angular towers are also designed using the same with overload factor/factor of safety without full scale tower model testing. General construction in steel design code is available with limit state design approach and is applicable to the design of general structures involving angles and tubes but not used for angle member design of towers. Recently, in response to the evolving industry needs, the Bureau of Indian Standards (BIS) introduced a new standard titled “Isolated Towers, Masts, and Poles using structural steel -Code of practice” for the design of telecom towers. This study focuses on a 40m four legged angular tower to compare loading calculations and member designs between old and new standards. Additionally, a comparative analysis aligning with the new code provisions with international loading and design standards with a specific focus on American standards has been carried out. This paper elaborates code-based provisions used for load and member design calculations, including the influence of "ka" area averaging factor introduced in new wind load case.Keywords: telecom, angular tower, PLS tower, GSM antenna, microwave antenna, IS 875(Part-3):2015, IS 802(Part-1/sec-2):2016, IS 800:2007, IS 17740:2022, ANSI/TIA-222G, ANSI/TIA-222H.
Procedia PDF Downloads 8325671 Comparison of Selected Pier-Scour Equations for Wide Piers Using Field Data
Authors: Nordila Ahmad, Thamer Mohammad, Bruce W. Melville, Zuliziana Suif
Abstract:
Current methods for predicting local scour at wide bridge piers, were developed on the basis of laboratory studies and very limited scour prediction were tested with field data. Laboratory wide pier scour equation from previous findings with field data were presented. A wide range of field data were used and it consists of both live-bed and clear-water scour. A method for assessing the quality of the data was developed and applied to the data set. Three other wide pier-scour equations from the literature were used to compare the performance of each predictive method. The best-performing scour equation were analyzed using statistical analysis. Comparisons of computed and observed scour depths indicate that the equation from the previous publication produced the smallest discrepancy ratio and RMSE value when compared with the large amount of laboratory and field data.Keywords: field data, local scour, scour equation, wide piers
Procedia PDF Downloads 41325670 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal
Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan
Abstract:
This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal
Procedia PDF Downloads 11325669 Efficient HVAC System in Green Building Design
Authors: Omid Khabiri, Maryam Ghavami
Abstract:
Buildings designed and built as high performance, sustainable or green are the vanguard in a movement to make buildings more energy efficient and less environmentally harmful. Although Heating, Ventilating, and Air Conditioning (HVAC) systems offer many opportunities for recovery and re-use of thermal energy; however, the amount of energy used annually by these systems typically ranges from 40 to 60 percent of the overall energy consumption in a building, depending on the building design, function, condition, climate, and the use of renewable energy strategies. HVAC systems may also damage the environment by unnecessary use of non-renewable energy sources, which contribute to environmental pollution, and by creating noise and discharge of contaminated water and air containing chemicals, lubricating oils, refrigerants, heat transfer fluids, and particulate (gases matter). In fact, HVAC systems will significantly impact how “green” a building is, where an efficient HVAC system design can result in considerable energy, emissions and cost savings as well as providing increased user thermal comfort. This paper presents the basic concepts of green building design and discusses the role of efficient HVAC system and practical strategies for ensuring high performance sustainable buildings in design and operation.Keywords: green building, hvac system, design strategies, high-performance equipment, efficient technologies
Procedia PDF Downloads 57725668 The Maximum Throughput Analysis of UAV Datalink 802.11b Protocol
Authors: Inkyu Kim, SangMan Moon
Abstract:
This IEEE 802.11b protocol provides up to 11Mbps data rate, whereas aerospace industry wants to seek higher data rate COTS data link system in the UAV. The Total Maximum Throughput (TMT) and delay time are studied on many researchers in the past years This paper provides theoretical data throughput performance of UAV formation flight data link using the existing 802.11b performance theory. We operate the UAV formation flight with more than 30 quad copters with 802.11b protocol. We may be predicting that UAV formation flight numbers have to bound data link protocol performance limitations.Keywords: UAV datalink, UAV formation flight datalink, UAV WLAN datalink application, UAV IEEE 802.11b datalink application
Procedia PDF Downloads 39225667 Methods for Distinction of Cattle Using Supervised Learning
Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl
Abstract:
Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning
Procedia PDF Downloads 55025666 Router 1X3 - RTL Design and Verification
Authors: Nidhi Gopal
Abstract:
Routing is the process of moving a packet of data from source to destination and enables messages to pass from one computer to another and eventually reach the target machine. A router is a networking device that forwards data packets between computer networks. It is connected to two or more data lines from different networks (as opposed to a network switch, which connects data lines from one single network). This paper mainly emphasizes upon the study of router device, its top level architecture, and how various sub-modules of router i.e. Register, FIFO, FSM and Synchronizer are synthesized, and simulated and finally connected to its top module.Keywords: data packets, networking, router, routing
Procedia PDF Downloads 81325665 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests
Authors: Julius Onyancha, Valentina Plekhanova
Abstract:
One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.Keywords: web log data, web user profile, user interest, noise web data learning, machine learning
Procedia PDF Downloads 26525664 An Improved Approach for Hybrid Rocket Injection System Design
Authors: M. Invigorito, G. Elia, M. Panelli
Abstract:
Hybrid propulsion combines beneficial properties of both solid and liquid rockets, such as multiple restarts, throttability as well as simplicity and reduced costs. A nitrous oxide (N2O)/paraffin-based hybrid rocket engine demonstrator is currently under development at the Italian Aerospace Research Center (CIRA) within the national research program HYPROB, funded by the Italian Ministry of Research. Nitrous oxide belongs to the class of self-pressurizing propellants that exhibit a high vapor pressure at standard ambient temperature. This peculiar feature makes those fluids very attractive for space rocket applications because it avoids the use of complex pressurization systems, leading to great benefits in terms of weight savings and reliability. To avoid feed-system-coupled instabilities, the phase change is required to occur through the injectors. In this regard, the oxidizer is stored in liquid condition while target chamber pressures are designed to lie below vapor pressure. The consequent cavitation and flash vaporization constitute a remarkably complex phenomenology that arises great modelling challenges. Thus, it is clear that the design of the injection system is fundamental for the full exploitation of hybrid rocket engine throttability. The Analytical Hierarchy Process has been used to select the injection architecture as best compromise among different design criteria such as functionality, technology innovation and cost. The impossibility to use engineering simplified relations for the dimensioning of the injectors led to the needs of applying a numerical approach based on OpenFOAM®. The numerical tool has been validated with selected experimental data from literature. Quantitative, as well as qualitative comparisons are performed in terms of mass flow rate and pressure drop across the injector for several operating conditions. The results show satisfactory agreement with the experimental data. Modeling assumptions, together with their impact on numerical predictions are discussed in the paper. Once assessed the reliability of the numerical tool, the injection plate has been designed and sized to guarantee the required amount of oxidizer in the combustion chamber and therefore to assure high combustion efficiency. To this purpose, the plate has been designed with multiple injectors whose number and diameter have been selected in order to reach the requested mass flow rate for the two operating conditions of maximum and minimum thrust. The overall design has been finally verified through three-dimensional computations in cavitating non-reacting conditions and it has been verified that the proposed design solution is able to guarantee the requested values of mass flow rates.Keywords: hybrid rocket, injection system design, OpenFOAM®, cavitation
Procedia PDF Downloads 21625663 Data Mining and Knowledge Management Application to Enhance Business Operations: An Exploratory Study
Authors: Zeba Mahmood
Abstract:
The modern business organizations are adopting technological advancement to achieve competitive edge and satisfy their consumer. The development in the field of Information technology systems has changed the way of conducting business today. Business operations today rely more on the data they obtained and this data is continuously increasing in volume. The data stored in different locations is difficult to find and use without the effective implementation of Data mining and Knowledge management techniques. Organizations who smartly identify, obtain and then convert data in useful formats for their decision making and operational improvements create additional value for their customers and enhance their operational capabilities. Marketers and Customer relationship departments of firm use Data mining techniques to make relevant decisions, this paper emphasizes on the identification of different data mining and Knowledge management techniques that are applied to different business industries. The challenges and issues of execution of these techniques are also discussed and critically analyzed in this paper.Keywords: knowledge, knowledge management, knowledge discovery in databases, business, operational, information, data mining
Procedia PDF Downloads 53825662 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data
Authors: Adarsh Shroff
Abstract:
Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.Keywords: big data, map reduce, incremental processing, iterative computation
Procedia PDF Downloads 35025661 Analyzing Large Scale Recurrent Event Data with a Divide-And-Conquer Approach
Authors: Jerry Q. Cheng
Abstract:
Currently, in analyzing large-scale recurrent event data, there are many challenges such as memory limitations, unscalable computing time, etc. In this research, a divide-and-conquer method is proposed using parametric frailty models. Specifically, the data is randomly divided into many subsets, and the maximum likelihood estimator from each individual data set is obtained. Then a weighted method is proposed to combine these individual estimators as the final estimator. It is shown that this divide-and-conquer estimator is asymptotically equivalent to the estimator based on the full data. Simulation studies are conducted to demonstrate the performance of this proposed method. This approach is applied to a large real dataset of repeated heart failure hospitalizations.Keywords: big data analytics, divide-and-conquer, recurrent event data, statistical computing
Procedia PDF Downloads 16525660 Scanning Transmission Electron Microscopic Analysis of Gamma Ray Exposed Perovskite Solar Cells
Authors: Aleksandra Boldyreva, Alexander Golubnichiy, Artem Abakumov
Abstract:
Various perovskite materials have surprisingly high resistance towards high-energy electrons, protons, and hard ionization, such as X-rays and gamma-rays. Superior radiation hardness makes a family of perovskite semiconductors an attractive candidate for single- and multijunction solar cells for the space environment and as X-ray and gamma-ray detectors. One of the methods to study the radiation hardness of different materials is by exposing them to gamma photons with high energies (above 500 keV) Herein, we have explored the recombination dynamics and defect concentration of a mixed cation mixed halide perovskite Cs0.17FA0.83PbI1.8Br1.2 with 1.74 eV bandgap after exposure to a gamma-ray source (2.5 Gy/min). We performed an advanced STEM EDX analysis to reveal different types of defects formed during gamma exposure. It was found that 10 kGy dose results in significant improvement of perovskite crystallinity and homogeneous distribution of I ions. While the absorber layer withstood gamma exposure, the hole transport layer (PTAA) as well as indium tin oxide (ITO) were significantly damaged, which increased the interface recombination rate and reduction of fill factor in solar cells. Thus, STEM analysis is a powerful technique that can reveal defects formed by gamma exposure in perovskite solar cells. Methods: Data will be collected from perovskite solar cells (PSCs) and thin films exposed to gamma ionisator. For thin films 50 μL of the Cs0.17FA0.83PbI1.8Br1.2 solution in DMF was deposited (dynamically) at 3000 rpm followed by quenching with 100 μL of ethyl acetate (dropped 10 sec after perovskite precursor) applied at the same spin-coating frequency. The deposited Cs0.17FA0.83PbI1.8Br1.2 films were annealed for 10 min at 100 °C, which led to the development of a dark brown color. For the solar cells, 10% suspension of SnO2 nanoparticles (Alfa Aesar) was deposited at 4000 rpm, followed by annealing on air at 170 ˚C for 20 min. Next, samples were introduced into a nitrogen glovebox for the deposition of all remaining layers. Perovskite film was applied in the same way as in thin films described earlier. Solution of poly-triaryl amine PTAA (Sigma Aldrich) (4 mg in chlorobenzene) was applied at 1000 rpm atop of perovskite layer. Next, 30 nm of VOx was deposited atop the PTAA layer on the whole sample surface using the physical vapor deposition (PVD) technique. Silver electrodes (100 nm) were evaporated in a high vacuum (10-6 mbar) through a shadow mask, defining the active area of each device as ~0.16 cm2. The prepared samples (thin films and solar cells) were packed in Al lamination foil inside the argon glove box. The set of samples consisted of 6 thin films and 6 solar cells, which were exposed to 6, 10, and 21 kGy (2 samples per dose) with 137Cs gamma-ray source (E = 662 keV) with a dose rate of 2.5 Gy/min. The exposed samples will be studied on a focused ion beam (FIB) on a dual-beam scanning electron microscope from ThermoFisher, the Helios G4 Plasma FIB Uxe, operating with a xenon plasma.Keywords: perovskite solar cells, transmission electron microscopy, radiation hardness, gamma irradiation
Procedia PDF Downloads 2425659 Knowledge regarding Sexual and Reproductive Health among Adolescents in Higher Secondary School
Authors: Kopila Shrestha
Abstract:
Adolescent sexual reproductive health is one of the most important issues in the world. Reproductive ability is taking place at an earlier age and adolescents are indulging in risk taking behaviors day by day. A descriptive cross-sectional study was conducted in Kathmandu valley to assess the knowledge regarding sexual and reproductive health among adolescent. Total of 200 respondents were selected through non-probability convenient sampling technique. Self-administered written questionnaires using semi-structured questions were used. The collected data were analyzed by using descriptive statistics such as frequency, percentage, mean, standard deviation and inferential statistics such as Chi-square test. The findings revealed that most of the respondents had adequate knowledge regarding transmission and protection of HIV/AIDs and STIs but still some respondents had a misconception regarding it. Few respondents had knowledge regarding legal age for marriage and the minimum age for first child bearing. The statistical analysis revealed that the total mean knowledge score with standard deviation was 45.02±8.674. Nearly half of the respondents (49.5%) had a moderate level of knowledge, followed by an inadequate level of knowledge 29.5% and adequate level of knowledge 21.0% regarding sexual and reproductive health. There was significant association of level of knowledge with area of residence (p-value .002) but no association with age (p-value .067), sex (p-value .999), religion (p-value .082) and ethnicity (p-value .114). Nearly half of the participants possess some knowledge about sexual and reproductive health but still effective educational intervention is required in higher secondary school to encourage more sensible and healthy behaviour.Keywords: adolescents, higher secondary school, knowledge, sexual and reproductive health
Procedia PDF Downloads 28325658 Lean Manufacturing: Systematic Layout Planning Application to an Assembly Line Layout of a Welding Industry
Authors: Fernando Augusto Ullmann Tobe, Moacyr Amaral Domingues, Figueiredo, Stephany Rie Yamamoto Gushiken
Abstract:
The purpose of this paper is to present the process of elaborating the layout of an assembly line of a welding industry using the principles of lean manufacturing as the main driver. The objective of this paper is relevant since the current layout of the assembly line causes non-productive times for operators, being related to the lean waste of unnecessary movements. The methodology used for the project development was Project-based Learning (PBL), which is an active way of learning focused on real problems. The process of selecting the methodology for layout planning was developed considering three criteria to evaluate the most relevant one for this paper's goal. As a result of this evaluation, Systematic Layout Planning was selected, and three steps were added to it – Value Stream Mapping for the current situation and after layout changed and the definition of lean tools and layout type. This inclusion was to consider lean manufacturing in the layout redesign of the industry. The layout change resulted in an increase in the value-adding time of operations carried out in the sector, reduction in movement times between previous and final assemblies, and in cost savings regarding the man-hour value of the employees, which can be invested in productive hours instead of movement times.Keywords: assembly line, layout, lean manufacturing, systematic layout planning
Procedia PDF Downloads 22625657 Potential of Visualization and Information Modeling on Productivity Improvement and Cost Saving: A Case Study of a Multi-Residential Construction Project
Authors: Sara Rankohi, Lloyd Waugh
Abstract:
Construction sites are information saturated. Digitalization is hitting construction sites to meet the incredible demand of knowledge sharing and information documentations. From flying drones, 3D Lasers scanners, pocket mobile applications, to augmented reality glasses and smart helmet, visualization technologies help real-time information imposed straight onto construction professional’s field of vision. Although these technologies are very applicable and can have the direct impact on project cost and productivity, experience shows that only a minority of construction professionals quickly adapt themselves to benefit from them in practice. The majority of construction managers still tend to apply traditional construction management methods. This paper investigates a) current applications of visualization technologies in construction projects management, b) the direct effect of these technologies on productivity improvement and cost saving of a multi-residential building project via a case study on Mac Taggart Senior Care project located in Edmonton, Alberta. The research shows the imaged based technologies have a direct impact on improving project productivity and cost savings.Keywords: image-based technologies, project management, cost, productivity improvement
Procedia PDF Downloads 36025656 Adoption of Big Data by Global Chemical Industries
Authors: Ashiff Khan, A. Seetharaman, Abhijit Dasgupta
Abstract:
The new era of big data (BD) is influencing chemical industries tremendously, providing several opportunities to reshape the way they operate and help them shift towards intelligent manufacturing. Given the availability of free software and the large amount of real-time data generated and stored in process plants, chemical industries are still in the early stages of big data adoption. The industry is just starting to realize the importance of the large amount of data it owns to make the right decisions and support its strategies. This article explores the importance of professional competencies and data science that influence BD in chemical industries to help it move towards intelligent manufacturing fast and reliable. This article utilizes a literature review and identifies potential applications in the chemical industry to move from conventional methods to a data-driven approach. The scope of this document is limited to the adoption of BD in chemical industries and the variables identified in this article. To achieve this objective, government, academia, and industry must work together to overcome all present and future challenges.Keywords: chemical engineering, big data analytics, industrial revolution, professional competence, data science
Procedia PDF Downloads 8525655 Defining a Pathway to Zero Energy Building: A Case Study on Retrofitting an Old Office Building into a Net Zero Energy Building for Hot-Humid Climate
Authors: Kwame B. O. Amoah
Abstract:
This paper focuses on retrofitting an old existing office building to a net-zero energy building (NZEB). An existing small office building in Melbourne, Florida, was chosen as a case study to integrate state-of-the-art design strategies and energy-efficient building systems to improve building performance and reduce energy consumption. The study aimed to explore possible ways to maximize energy savings and renewable energy generation sources to cover the building's remaining energy needs necessary to achieve net-zero energy goals. A series of retrofit options were reviewed and adopted with some significant additional decision considerations. Detailed processes and considerations leading to zero energy are well documented in this study, with lessons learned adequately outlined. Based on building energy simulations, multiple design considerations were investigated, such as emerging state-of-the-art technologies, material selection, improvements to the building envelope, optimization of the HVAC, lighting systems, and occupancy loads analysis, as well as the application of renewable energy sources. The comparative analysis of simulation results was used to determine how specific techniques led to energy saving and cost reductions. The research results indicate this small office building can meet net-zero energy use after appropriate design manipulations and renewable energy sources.Keywords: energy consumption, building energy analysis, energy retrofits, energy-efficiency
Procedia PDF Downloads 22325654 The Ontological Memory in Bergson as a Conceptual Tool for the Analysis of the Digital Conjuncture
Authors: Douglas Rossi Ramos
Abstract:
The current digital conjuncture, called by some authors as 'Internet of Things' (IoT), 'Web 2.0' or even 'Web 3.0', consists of a network that encompasses any communication of objects and entities, such as data, information, technologies, and people. At this juncture, especially characterized by an "object socialization," communication can no longer be represented as a simple informational flow of messages from a sender, crossing a channel or medium, reaching a receiver. The idea of communication must, therefore, be thought of more broadly in which it is possible to analyze the process communicative from interactions between humans and nonhumans. To think about this complexity, a communicative process that encompasses both humans and other beings or entities communicating (objects and things), it is necessary to constitute a new epistemology of communication to rethink concepts and notions commonly attributed to humans such as 'memory.' This research aims to contribute to this epistemological constitution from the discussion about the notion of memory according to the complex ontology of Henri Bergson. Among the results (the notion of memory in Bergson presents itself as a conceptual tool for the analysis of posthumanism and the anthropomorphic conjuncture of the new advent of digital), there was the need to think about an ontological memory, analyzed as a being itself (being itself of memory), as a strategy for understanding the forms of interaction and communication that constitute the new digital conjuncture, in which communicating beings or entities tend to interact with each other. Rethinking the idea of communication beyond the dimension of transmission in informative sequences paves the way for an ecological perspective of the digital dwelling condition.Keywords: communication, digital, Henri Bergson, memory
Procedia PDF Downloads 164