Search results for: 3D models
5622 Line Heating Forming: Methodology and Application Using Kriging and Fifth Order Spline Formulations
Authors: Henri Champliaud, Zhengkun Feng, Ngan Van Lê, Javad Gholipour
Abstract:
In this article, a method is presented to effectively estimate the deformed shape of a thick plate due to line heating. The method uses a fifth order spline interpolation, with up to C3 continuity at specific points to compute the shape of the deformed geometry. First and second order derivatives over a surface are the resulting parameters of a given heating line on a plate. These parameters are determined through experiments and/or finite element simulations. Very accurate kriging models are fitted to real or virtual surfaces to build-up a database of maps. Maps of first and second order derivatives are then applied on numerical plate models to evaluate their evolving shapes through a sequence of heating lines. Adding an optimization process to this approach would allow determining the trajectories of heating lines needed to shape complex geometries, such as Francis turbine blades.Keywords: deformation, kriging, fifth order spline interpolation, first, second and third order derivatives, C3 continuity, line heating, plate forming, thermal forming
Procedia PDF Downloads 4565621 Hydraulic Analysis of Irrigation Approach Channel Using HEC-RAS Model
Authors: Muluegziabher Semagne Mekonnen
Abstract:
This study was intended to show the irrigation water requirements and evaluation of canal hydraulics steady state conditions to improve on scheme performance of the Meki-Ziway irrigation project. The methodology used was the CROPWAT 8.0 model to estimate the irrigation water requirements of five major crops irrigated in the study area. The results showed that for the whole existing and potential irrigation development area of 2000 ha and 2599 ha, crop water requirements were 3,339,200 and 4,339,090.4 m³, respectively. Hydraulic simulation models are fundamental tools for understanding the hydraulic flow characteristics of irrigation systems. Hydraulic simulation models are fundamental tools for understanding the hydraulic flow characteristics of irrigation systems. In this study Hydraulic Analysis of Irrigation Canals Using HEC-RAS Model was conducted in Meki-Ziway Irrigation Scheme. The HEC-RAS model was tested in terms of error estimation and used to determine canal capacity potential.Keywords: HEC-RAS, irrigation, hydraulic. canal reach, capacity
Procedia PDF Downloads 605620 Prospects of Acellular Organ Scaffolds for Drug Discovery
Authors: Inna Kornienko, Svetlana Guryeva, Natalia Danilova, Elena Petersen
Abstract:
Drug toxicity often goes undetected until clinical trials, the most expensive and dangerous phase of drug development. Both human cell culture and animal studies have limitations that cannot be overcome by improvements in drug testing protocols. Tissue engineering is an emerging alternative approach to creating models of human malignant tumors for experimental oncology, personalized medicine, and drug discovery studies. This new generation of bioengineered tumors provides an opportunity to control and explore the role of every component of the model system including cell populations, supportive scaffolds, and signaling molecules. An area that could greatly benefit from these models is cancer research. Recent advances in tissue engineering demonstrated that decellularized tissue is an excellent scaffold for tissue engineering. Decellularization of donor organs such as heart, liver, and lung can provide an acellular, naturally occurring three-dimensional biologic scaffold material that can then be seeded with selected cell populations. Preliminary studies in animal models have provided encouraging results for the proof of concept. Decellularized Organs preserve organ microenvironment, which is critical for cancer metastasis. Utilizing 3D tumor models results greater proximity of cell culture morphological characteristics in a model to its in vivo counterpart, allows more accurate simulation of the processes within a functioning tumor and its pathogenesis. 3D models allow study of migration processes and cell proliferation with higher reliability as well. Moreover, cancer cells in a 3D model bear closer resemblance to living conditions in terms of gene expression, cell surface receptor expression, and signaling. 2D cell monolayers do not provide the geometrical and mechanical cues of tissues in vivo and are, therefore, not suitable to accurately predict the responses of living organisms. 3D models can provide several levels of complexity from simple monocultures of cancer cell lines in liquid environment comprised of oxygen and nutrient gradients and cell-cell interaction to more advanced models, which include co-culturing with other cell types, such as endothelial and immune cells. Following this reasoning, spheroids cultivated from one or multiple patient-derived cell lines can be utilized to seed the matrix rather than monolayer cells. This approach furthers the progress towards personalized medicine. As an initial step to create a new ex vivo tissue engineered model of a cancer tumor, optimized protocols have been designed to obtain organ-specific acellular matrices and evaluate their potential as tissue engineered scaffolds for cultures of normal and tumor cells. Decellularized biomatrix was prepared from animals’ kidneys, urethra, lungs, heart, and liver by two decellularization methods: perfusion in a bioreactor system and immersion-agitation on an orbital shaker with the use of various detergents (SDS, Triton X-100) in different concentrations and freezing. Acellular scaffolds and tissue engineered constructs have been characterized and compared using morphological methods. Models using decellularized matrix have certain advantages, such as maintaining native extracellular matrix properties and biomimetic microenvironment for cancer cells; compatibility with multiple cell types for cell culture and drug screening; utilization to culture patient-derived cells in vitro to evaluate different anticancer therapeutics for developing personalized medicines.Keywords: 3D models, decellularization, drug discovery, drug toxicity, scaffolds, spheroids, tissue engineering
Procedia PDF Downloads 3015619 A New Approach to Interval Matrices and Applications
Authors: Obaid Algahtani
Abstract:
An interval may be defined as a convex combination as follows: I=[a,b]={x_α=(1-α)a+αb: α∈[0,1]}. Consequently, we may adopt interval operations by applying the scalar operation point-wise to the corresponding interval points: I ∙J={x_α∙y_α ∶ αϵ[0,1],x_α ϵI ,y_α ϵJ}, With the usual restriction 0∉J if ∙ = ÷. These operations are associative: I+( J+K)=(I+J)+ K, I*( J*K)=( I*J )* K. These two properties, which are missing in the usual interval operations, will enable the extension of the usual linear system concepts to the interval setting in a seamless manner. The arithmetic introduced here avoids such vague terms as ”interval extension”, ”inclusion function”, determinants which we encounter in the engineering literature that deal with interval linear systems. On the other hand, these definitions were motivated by our attempt to arrive at a definition of interval random variables and investigate the corresponding statistical properties. We feel that they are the natural ones to handle interval systems. We will enable the extension of many results from usual state space models to interval state space models. The interval state space model we will consider here is one of the form X_((t+1) )=AX_t+ W_t, Y_t=HX_t+ V_t, t≥0, where A∈ 〖IR〗^(k×k), H ∈ 〖IR〗^(p×k) are interval matrices and 〖W 〗_t ∈ 〖IR〗^k,V_t ∈〖IR〗^p are zero – mean Gaussian white-noise interval processes. This feeling is reassured by the numerical results we obtained in a simulation examples.Keywords: interval analysis, interval matrices, state space model, Kalman Filter
Procedia PDF Downloads 4255618 Intellectual Property and SMEs in the Baltic Sea Region: A Comparative Study on the Use of the Utility Model Protection
Authors: Christina Wainikka, Besrat Tesfaye
Abstract:
Several of the countries in the Baltic Sea region are ranked high in international innovations rankings, such as the Global Innovation Index and European Innovation Scoreboard. There are however some concerns in the performance of different countries. For example, there is a widely spread notion about “The Swedish Paradox”. Sweden is ranked high due to investments in R&D and patent activity, but the outcome is not as high as could be expected. SMEs in Sweden are also below EU average when it comes to registering intellectual property rights such as patents and trademarks. This study is concentrating on the protection of utility model. This intellectual property right does not exist in Sweden, but in for example Finland and Germany. The utility model protection is sometimes referred to as a “patent light” since it is easier to obtain than the patent protection but at the same time does cover technical solutions. In examining statistics on patent activities and activities in registering utility models it is clear that utility model protection is scarcely used in the countries that have the protection. In Germany 10 577 applications were made in 2021. In Finland there were 259 applications made in 2021. This can be compared with patent applications that were 58 568 in Germany in 2021 and 1 662 in Finland in 2021. In Sweden there has never been a protection for utility models. The only protection for technical solutions is patents and business secrets. The threshold for obtaining a patent is high, due to the legal requirements and the costs. The patent protection is there for often not chosen by SMEs in Sweden. This study examines whether the protection of utility models in other countries in the Baltic region provide SMEs in these countries with better options to protect their innovations. The legal methodology is comparative law. In order to study the effects of the legal differences statistics are examined and interviews done with SMEs from different industries.Keywords: baltic sea region, comparative law, SME, utility model
Procedia PDF Downloads 1145617 [Keynote Talk]: Software Reliability Assessment and Fault Tolerance: Issues and Challenges
Authors: T. Gayen
Abstract:
Although, there are several software reliability models existing today there does not exist any versatile model even today which can be used for the reliability assessment of software. Complex software has a large number of states (unlike the hardware) so it becomes practically difficult to completely test the software. Irrespective of the amount of testing one does, sometimes it becomes extremely difficult to assure that the final software product is fault free. The Black Box Software Reliability models are found be quite uncertain for the reliability assessment of various systems. As mission critical applications need to be highly reliable and since it is not always possible to ensure the development of highly reliable system. Hence, in order to achieve fault-free operation of software one develops some mechanism to handle faults remaining in the system even after the development. Although, several such techniques are currently in use to achieve fault tolerance, yet these mechanisms may not always be very suitable for various systems. Hence, this discussion is focused on analyzing the issues and challenges faced with the existing techniques for reliability assessment and fault tolerance of various software systems.Keywords: black box, fault tolerance, failure, software reliability
Procedia PDF Downloads 4265616 Application of MALDI-MS to Differentiate SARS-CoV-2 and Non-SARS-CoV-2 Symptomatic Infections in the Early and Late Phases of the Pandemic
Authors: Dmitriy Babenko, Sergey Yegorov, Ilya Korshukov, Aidana Sultanbekova, Valentina Barkhanskaya, Tatiana Bashirova, Yerzhan Zhunusov, Yevgeniya Li, Viktoriya Parakhina, Svetlana Kolesnichenko, Yeldar Baiken, Aruzhan Pralieva, Zhibek Zhumadilova, Matthew S. Miller, Gonzalo H. Hortelano, Anar Turmuhambetova, Antonella E. Chesca, Irina Kadyrova
Abstract:
Introduction: The rapidly evolving COVID-19 pandemic, along with the re-emergence of pathogens causing acute respiratory infections (ARI), has necessitated the development of novel diagnostic tools to differentiate various causes of ARI. MALDI-MS, due to its wide usage and affordability, has been proposed as a potential instrument for diagnosing SARS-CoV-2 versus non-SARS-CoV-2 ARI. The aim of this study was to investigate the potential of MALDI-MS in conjunction with a machine learning model to accurately distinguish between symptomatic infections caused by SARS-CoV-2 and non-SARS-CoV-2 during both the early and later phases of the pandemic. Furthermore, this study aimed to analyze mass spectrometry (MS) data obtained from nasal swabs of healthy individuals. Methods: We gathered mass spectra from 252 samples, comprising 108 SARS-CoV-2-positive samples obtained in 2020 (Covid 2020), 7 SARS-CoV- 2-positive samples obtained in 2023 (Covid 2023), 71 samples from symptomatic individuals without SARS-CoV-2 (Control non-Covid ARVI), and 66 samples from healthy individuals (Control healthy). All the samples were subjected to RT-PCR testing. For data analysis, we employed the caret R package to train and test seven machine-learning algorithms: C5.0, KNN, NB, RF, SVM-L, SVM-R, and XGBoost. We conducted a training process using a five-fold (outer) nested repeated (five times) ten-fold (inner) cross-validation with a randomized stratified splitting approach. Results: In this study, we utilized the Covid 2020 dataset as a case group and the non-Covid ARVI dataset as a control group to train and test various machine learning (ML) models. Among these models, XGBoost and SVM-R demonstrated the highest performance, with accuracy values of 0.97 [0.93, 0.97] and 0.95 [0.95; 0.97], specificity values of 0.86 [0.71; 0.93] and 0.86 [0.79; 0.87], and sensitivity values of 0.984 [0.984; 1.000] and 1.000 [0.968; 1.000], respectively. When examining the Covid 2023 dataset, the Naive Bayes model achieved the highest classification accuracy of 43%, while XGBoost and SVM-R achieved accuracies of 14%. For the healthy control dataset, the accuracy of the models ranged from 0.27 [0.24; 0.32] for k-nearest neighbors to 0.44 [0.41; 0.45] for the Support Vector Machine with a radial basis function kernel. Conclusion: Therefore, ML models trained on MALDI MS of nasopharyngeal swabs obtained from patients with Covid during the initial phase of the pandemic, as well as symptomatic non-Covid individuals, showed excellent classification performance, which aligns with the results of previous studies. However, when applied to swabs from healthy individuals and a limited sample of patients with Covid in the late phase of the pandemic, ML models exhibited lower classification accuracy.Keywords: SARS-CoV-2, MALDI-TOF MS, ML models, nasopharyngeal swabs, classification
Procedia PDF Downloads 1085615 Russian Spatial Impersonal Sentence Models in Translation Perspective
Authors: Marina Fomina
Abstract:
The paper focuses on the category of semantic subject within the framework of a functional approach to linguistics. The semantic subject is related to similar notions such as the grammatical subject and the bearer of predicative feature. It is the multifaceted nature of the category of subject that 1) triggers a number of issues that, syntax-wise, remain to be dealt with (cf. semantic vs. syntactic functions / sentence parts vs. parts of speech issues, etc.); 2) results in a variety of approaches to the category of subject, such as formal grammatical, semantic/syntactic (functional), communicative approaches, etc. Many linguists consider the prototypical approach to the category of subject to be the most instrumental as it reveals the integrity of denotative and linguistic components of the conceptual category. This approach relates to subject as a source of non-passive predicative feature, an element of subject-predicate-object situation that can take on a variety of semantic roles, cf.: 1) an agent (He carefully surveyed the valley stretching before him), 2) an experiencer (I feel very bitter about this), 3) a recipient (I received this book as a gift), 4) a causee (The plane broke into three pieces), 5) a patient (This stove cleans easily), etc. It is believed that the variety of roles stems from the radial (prototypical) structure of the category with some members more central than others. Translation-wise, the most “treacherous” subject types are the peripheral ones. The paper 1) features a peripheral status of spatial impersonal sentence models such as U menia v ukhe zvenit (lit. I-Gen. in ear buzzes) within the category of semantic subject, 2) makes a structural and semantic analysis of the models, 3) focuses on their Russian-English translation patterns, 4) reveals non-prototypical features of subjects in the English equivalents.Keywords: bearer of predicative feature, grammatical subject, impersonal sentence model, semantic subject
Procedia PDF Downloads 3705614 Deep Learning Strategies for Mapping Complex Vegetation Patterns in Mediterranean Environments Undergoing Climate Change
Authors: Matan Cohen, Maxim Shoshany
Abstract:
Climatic, topographic and geological diversity, together with frequent disturbance and recovery cycles, produce highly complex spatial patterns of trees, shrubs, dwarf shrubs and bare ground patches. Assessment of spatial and temporal variations of these life-forms patterns under climate change is of high ecological priority. Here we report on one of the first attempts to discriminate between images of three Mediterranean life-forms patterns at three densities. The development of an extensive database of orthophoto images representing these 9 pattern categories was instrumental for training and testing pre-trained and newly-trained DL models utilizing DenseNet architecture. Both models demonstrated the advantages of using Deep Learning approaches over existing spectral and spatial (pattern or texture) algorithmic methods in differentiation 9 life-form spatial mixtures categories.Keywords: texture classification, deep learning, desert fringe ecosystems, climate change
Procedia PDF Downloads 885613 Quantification of Dispersion Effects in Arterial Spin Labelling Perfusion MRI
Authors: Rutej R. Mehta, Michael A. Chappell
Abstract:
Introduction: Arterial spin labelling (ASL) is an increasingly popular perfusion MRI technique, in which arterial blood water is magnetically labelled in the neck before flowing into the brain, providing a non-invasive measure of cerebral blood flow (CBF). The accuracy of ASL CBF measurements, however, is hampered by dispersion effects; the distortion of the ASL labelled bolus during its transit through the vasculature. In spite of this, the current recommended implementation of ASL – the white paper (Alsop et al., MRM, 73.1 (2015): 102-116) – does not account for dispersion, which leads to the introduction of errors in CBF. Given that the transport time from the labelling region to the tissue – the arterial transit time (ATT) – depends on the region of the brain and the condition of the patient, it is likely that these errors will also vary with the ATT. In this study, various dispersion models are assessed in comparison with the white paper (WP) formula for CBF quantification, enabling the errors introduced by the WP to be quantified. Additionally, this study examines the relationship between the errors associated with the WP and the ATT – and how this is influenced by dispersion. Methods: Data were simulated using the standard model for pseudo-continuous ASL, along with various dispersion models, and then quantified using the formula in the WP. The ATT was varied from 0.5s-1.3s, and the errors associated with noise artefacts were computed in order to define the concept of significant error. The instantaneous slope of the error was also computed as an indicator of the sensitivity of the error with fluctuations in ATT. Finally, a regression analysis was performed to obtain the mean error against ATT. Results: An error of 20.9% was found to be comparable to that introduced by typical measurement noise. The WP formula was shown to introduce errors exceeding 20.9% for ATTs beyond 1.25s even when dispersion effects were ignored. Using a Gaussian dispersion model, a mean error of 16% was introduced by using the WP, and a dispersion threshold of σ=0.6 was determined, beyond which the error was found to increase considerably with ATT. The mean error ranged from 44.5% to 73.5% when other physiologically plausible dispersion models were implemented, and the instantaneous slope varied from 35 to 75 as dispersion levels were varied. Conclusion: It has been shown that the WP quantification formula holds only within an ATT window of 0.5 to 1.25s, and that this window gets narrower as dispersion occurs. Provided that the dispersion levels fall below the threshold evaluated in this study, however, the WP can measure CBF with reasonable accuracy if dispersion is correctly modelled by the Gaussian model. However, substantial errors were observed with other common models for dispersion with dispersion levels similar to those that have been observed in literature.Keywords: arterial spin labelling, dispersion, MRI, perfusion
Procedia PDF Downloads 3725612 Assessment of the Impact of Traffic Safety Policy in Barcelona, 2010-2019
Authors: Lluís Bermúdez, Isabel Morillo
Abstract:
Road safety involves carrying out a determined and explicit policy to reduce accidents. In the city of Barcelona, through the Local Road Safety Plan 2013-2018, in line with the framework that has been established at the European and state level, a series of preventive, corrective and technical measures are specified, with the priority objective of reducing the number of serious injuries and fatalities. In this work, based on the data from the accidents managed by the local police during the period 2010-2019, an analysis is carried out to verify whether the measures established in the Plan to reduce the accident rate have had an effect or not and to what extent. The analysis focuses on the type of accident and the type of vehicles involved. Different count regression models have been fitted, from which it can be deduced that the number of serious and fatal victims of the accidents that have occurred in the city of Barcelona has been reduced as the measures approved by the authorities.Keywords: accident reduction, count regression models, road safety, urban traffic
Procedia PDF Downloads 1335611 Reading and Writing Memories in Artificial and Human Reasoning
Authors: Ian O'Loughlin
Abstract:
Memory networks aim to integrate some of the recent successes in machine learning with a dynamic memory base that can be updated and deployed in artificial reasoning tasks. These models involve training networks to identify, update, and operate over stored elements in a large memory array in order, for example, to ably perform question and answer tasks parsing real-world and simulated discourses. This family of approaches still faces numerous challenges: the performance of these network models in simulated domains remains considerably better than in open, real-world domains, wide-context cues remain elusive in parsing words and sentences, and even moderately complex sentence structures remain problematic. This innovation, employing an array of stored and updatable ‘memory’ elements over which the system operates as it parses text input and develops responses to questions, is a compelling one for at least two reasons: first, it addresses one of the difficulties that standard machine learning techniques face, by providing a way to store a large bank of facts, offering a way forward for the kinds of long-term reasoning that, for example, recurrent neural networks trained on a corpus have difficulty performing. Second, the addition of a stored long-term memory component in artificial reasoning seems psychologically plausible; human reasoning appears replete with invocations of long-term memory, and the stored but dynamic elements in the arrays of memory networks are deeply reminiscent of the way that human memory is readily and often characterized. However, this apparent psychological plausibility is belied by a recent turn in the study of human memory in cognitive science. In recent years, the very notion that there is a stored element which enables remembering, however dynamic or reconstructive it may be, has come under deep suspicion. In the wake of constructive memory studies, amnesia and impairment studies, and studies of implicit memory—as well as following considerations from the cognitive neuroscience of memory and conceptual analyses from the philosophy of mind and cognitive science—researchers are now rejecting storage and retrieval, even in principle, and instead seeking and developing models of human memory wherein plasticity and dynamics are the rule rather than the exception. In these models, storage is entirely avoided by modeling memory using a recurrent neural network designed to fit a preconceived energy function that attains zero values only for desired memory patterns, so that these patterns are the sole stable equilibrium points in the attractor network. So although the array of long-term memory elements in memory networks seem psychologically appropriate for reasoning systems, they may actually be incurring difficulties that are theoretically analogous to those that older, storage-based models of human memory have demonstrated. The kind of emergent stability found in the attractor network models more closely fits our best understanding of human long-term memory than do the memory network arrays, despite appearances to the contrary.Keywords: artificial reasoning, human memory, machine learning, neural networks
Procedia PDF Downloads 2715610 UPPAAL-based Design and Analysis of Intelligent Parking System
Authors: Abobaker Mohammed Qasem Farhan, Olof M. A. Saif
Abstract:
The demand for parking spaces in urban areas, particularly in developing countries, has led to a significant issue in the absence of sufficient parking spaces in crowded areas, which results in daily traffic congestion as drivers search for parking. This not only affects the appearance of the city but also has indirect impacts on the economy, society, and environment. In response to these challenges, researchers from various countries have sought technical and intelligent solutions to mitigate the problem through the development of smart parking systems. This paper aims to analyze and design three models of parking lots, with a focus on parking time and security. The study used computer software and Uppaal tools to simulate the models and determine the best among them. The results and suggestions provided in the paper aim to reduce the parking problems and improve the overall efficiency and safety of the parking process. The conclusion of the study highlights the importance of utilizing advanced technology to address the pressing issue of insufficient parking spaces in urban areas.Keywords: preliminaries, system requirements, timed Au- tomata, Uppaal
Procedia PDF Downloads 1475609 Convectory Policing-Reconciling Historic and Contemporary Models of Police Service Delivery
Authors: Mark Jackson
Abstract:
Description: This paper is based on an theoretical analysis of the efficacy of the dominant model of policing in western jurisdictions. Those results are then compared with a similar analysis of a traditional reactive model. It is found that neither model provides for optimal delivery of services. Instead optimal service can be achieved by a synchronous hybrid model, termed the Convectory Policing approach. Methodology and Findings: For over three decades problem oriented policing (PO) has been the dominant model for western police agencies. Initially based on the work of Goldstein during the 1970s the problem oriented framework has spawned endless variants and approaches, most of which embrace a problem solving rather than a reactive approach to policing. This has included the Area Policing Concept (APC) applied in many smaller jurisdictions in the USA, the Scaled Response Policing Model (SRPM) currently under trial in Western Australia and the Proactive Pre-Response Approach (PPRA) which has also seen some success. All of these, in some way or another, are largely based on a model that eschews a traditional reactive model of policing. Convectory Policing (CP) is an alternative model which challenges the underpinning assumptions which have seen proliferation of the PO approach in the last three decades and commences by questioning the economics on which PO is based. It is argued that in essence, the PO relies on an unstated, and often unrecognised assumption that resources will be available to meet demand for policing services, while at the same time maintaining the capacity to deploy staff to develop solutions to the problems which were ultimately manifested in those same calls for service. The CP model relies on the observations from a numerous western jurisdictions to challenge the validity of that underpinning assumption, particularly in fiscally tight environment. In deploying staff to pursue and develop solutions to underpinning problems, there is clearly an opportunity cost. Those same staff cannot be allocated to alternative duties while engaged in a problem solution role. At the same time, resources in use responding to calls for service are unavailable, while committed to that role, to pursue solutions to the problems giving rise to those same calls for service. The two approaches, reactive and PO are therefore dichotomous. One cannot be optimised while the other is being pursued. Convectory Policing is a pragmatic response to the schism between the competing traditional and contemporary models. If it is not possible to serve either model with any real rigour, it becomes necessary to taper an approach to deliver specific outcomes against which success or otherwise might be measured. CP proposes that a structured roster-driven approach to calls for service, combined with the application of what is termed a resource-effect response capacity has the potential to resolve the inherent conflict between traditional and models of policing and the expectations of the community in terms of community policing based problem solving models.Keywords: policing, reactive, proactive, models, efficacy
Procedia PDF Downloads 4845608 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management
Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro
Abstract:
This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization
Procedia PDF Downloads 505607 Fast Bayesian Inference of Multivariate Block-Nearest Neighbor Gaussian Process (NNGP) Models for Large Data
Authors: Carlos Gonzales, Zaida Quiroz, Marcos Prates
Abstract:
Several spatial variables collected at the same location that share a common spatial distribution can be modeled simultaneously through a multivariate geostatistical model that takes into account the correlation between these variables and the spatial autocorrelation. The main goal of this model is to perform spatial prediction of these variables in the region of study. Here we focus on a geostatistical multivariate formulation that relies on sharing common spatial random effect terms. In particular, the first response variable can be modeled by a mean that incorporates a shared random spatial effect, while the other response variables depend on this shared spatial term, in addition to specific random spatial effects. Each spatial random effect is defined through a Gaussian process with a valid covariance function, but in order to improve the computational efficiency when the data are large, each Gaussian process is approximated to a Gaussian random Markov field (GRMF), specifically to the block nearest neighbor Gaussian process (Block-NNGP). This approach involves dividing the spatial domain into several dependent blocks under certain constraints, where the cross blocks allow capturing the spatial dependence on a large scale, while each individual block captures the spatial dependence on a smaller scale. The multivariate geostatistical model belongs to the class of Latent Gaussian Models; thus, to achieve fast Bayesian inference, it is used the integrated nested Laplace approximation (INLA) method. The good performance of the proposed model is shown through simulations and applications for massive data.Keywords: Block-NNGP, geostatistics, gaussian process, GRMF, INLA, multivariate models.
Procedia PDF Downloads 975606 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey
Authors: Hayriye Anıl, Görkem Kar
Abstract:
In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting
Procedia PDF Downloads 1105605 The Influence of Infiltration and Exfiltration Processes on Maximum Wave Run-Up: A Field Study on Trinidad Beaches
Authors: Shani Brathwaite, Deborah Villarroel-Lamb
Abstract:
Wave run-up may be defined as the time-varying position of the landward extent of the water’s edge, measured vertically from the mean water level position. The hydrodynamics of the swash zone and the accurate prediction of maximum wave run-up, play a critical role in the study of coastal engineering. The understanding of these processes is necessary for the modeling of sediment transport, beach recovery and the design and maintenance of coastal engineering structures. However, due to the complex nature of the swash zone, there remains a lack of detailed knowledge in this area. Particularly, there has been found to be insufficient consideration of bed porosity and ultimately infiltration/exfiltration processes, in the development of wave run-up models. Theoretically, there should be an inverse relationship between maximum wave run-up and beach porosity. The greater the rate of infiltration during an event, associated with a larger bed porosity, the lower the magnitude of the maximum wave run-up. Additionally, most models have been developed using data collected on North American or Australian beaches and may have limitations when used for operational forecasting in Trinidad. This paper aims to assess the influence and significance of infiltration and exfiltration processes on wave run-up magnitudes within the swash zone. It also seeks to pay particular attention to how well various empirical formulae can predict maximum run-up on contrasting beaches in Trinidad. Traditional surveying techniques will be used to collect wave run-up and cross-sectional data on various beaches. Wave data from wave gauges and wave models will be used as well as porosity measurements collected using a double ring infiltrometer. The relationship between maximum wave run-up and differing physical parameters will be investigated using correlation analyses. These physical parameters comprise wave and beach characteristics such as wave height, wave direction, period, beach slope, the magnitude of wave setup, and beach porosity. Most parameterizations to determine the maximum wave run-up are described using differing parameters and do not always have a good predictive capability. This study seeks to improve the formulation of wave run-up by using the aforementioned parameters to generate a formulation with a special focus on the influence of infiltration/exfiltration processes. This will further contribute to the improvement of the prediction of sediment transport, beach recovery and design of coastal engineering structures in Trinidad.Keywords: beach porosity, empirical models, infiltration, swash, wave run-up
Procedia PDF Downloads 3575604 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images
Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu
Abstract:
Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning
Procedia PDF Downloads 1875603 Transport Related Air Pollution Modeling Using Artificial Neural Network
Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar
Abstract:
Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling
Procedia PDF Downloads 5245602 Understanding Cyber Kill Chains: Optimal Allocation of Monitoring Resources Using Cooperative Game Theory
Authors: Roy. H. A. Lindelauf
Abstract:
Cyberattacks are complex processes consisting of multiple interwoven tasks conducted by a set of agents. Interdictions and defenses against such attacks often rely on cyber kill chain (CKC) models. A CKC is a framework that tries to capture the actions taken by a cyber attacker. There exists a growing body of literature on CKCs. Most of this work either a) describes the CKC with respect to one or more specific cyberattacks or b) discusses the tools and technologies used by the attacker at each stage of the CKC. Defenders, facing scarce resources, have to decide where to allocate their resources given the CKC and partial knowledge on the tools and techniques attackers use. In this presentation CKCs are analyzed through the lens of covert projects, i.e., interrelated tasks that have to be conducted by agents (human and/or computer) with the aim of going undetected. Various aspects of covert project models have been studied abundantly in the operations research and game theory domain, think of resource-limited interdiction actions that maximally delay completion times of a weapons project for instance. This presentation has investigated both cooperative and non-cooperative game theoretic covert project models and elucidated their relation to CKC modelling. To view a CKC as a covert project each step in the CKC is broken down into tasks and there are players of which each one is capable of executing a subset of the tasks. Additionally, task inter-dependencies are represented by a schedule. Using multi-glove cooperative games it is shown how a defender can optimize the allocation of his scarce resources (what, where and how to monitor) against an attacker scheduling a CKC. This study presents and compares several cooperative game theoretic solution concepts as metrics for assigning resources to the monitoring of agents.Keywords: cyber defense, cyber kill chain, game theory, information warfare techniques
Procedia PDF Downloads 1405601 Regression Analysis in Estimating Stream-Flow and the Effect of Hierarchical Clustering Analysis: A Case Study in Euphrates-Tigris Basin
Authors: Goksel Ezgi Guzey, Bihrat Onoz
Abstract:
The scarcity of streamflow gauging stations and the increasing effects of global warming cause designing water management systems to be very difficult. This study is a significant contribution to assessing regional regression models for estimating streamflow. In this study, simulated meteorological data was related to the observed streamflow data from 1971 to 2020 for 33 stream gauging stations of the Euphrates-Tigris Basin. Ordinary least squares regression was used to predict flow for 2020-2100 with the simulated meteorological data. CORDEX- EURO and CORDEX-MENA domains were used with 0.11 and 0.22 grids, respectively, to estimate climate conditions under certain climate scenarios. Twelve meteorological variables simulated by two regional climate models, RCA4 and RegCM4, were used as independent variables in the ordinary least squares regression, where the observed streamflow was the dependent variable. The variability of streamflow was then calculated with 5-6 meteorological variables and watershed characteristics such as area and height prior to the application. Of the regression analysis of 31 stream gauging stations' data, the stations were subjected to a clustering analysis, which grouped the stations in two clusters in terms of their hydrometeorological properties. Two streamflow equations were found for the two clusters of stream gauging stations for every domain and every regional climate model, which increased the efficiency of streamflow estimation by a range of 10-15% for all the models. This study underlines the importance of homogeneity of a region in estimating streamflow not only in terms of the geographical location but also in terms of the meteorological characteristics of that region.Keywords: hydrology, streamflow estimation, climate change, hydrologic modeling, HBV, hydropower
Procedia PDF Downloads 1295600 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment
Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova
Abstract:
Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper
Procedia PDF Downloads 455599 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting
Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey
Abstract:
Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method
Procedia PDF Downloads 785598 Strategic Tools for Entrepreneurship: Model Proposal for Manufacturing Companies
Authors: Chiara Mansanta, Daniela Sani
Abstract:
The present paper presents the further development of the application of a standard methodology to boost innovation inside real case studies of manufacturing companies. The proposed methodology provides a viable solution for manufacturing companies that have to evaluate new business ideas. The study underlined the concept of entrepreneurship and how a manager can use it to promote innovation inside their companies. Starting from a literature study on entrepreneurship, this paper examines the role of the manager in supporting a company’s development. The empirical part of the study is based on two manufacturing companies that used the proposed methodology to favour entrepreneurship through an alternative approach. The research demonstrated the need for companies to have a structured and well-defined methodology to achieve their goals. The purpose of this article is to understand the significance of business models inside companies and explore how they affect business strategy and innovation management. The idea is to use business models to support entrepreneurs in their decision-making processes, reducing risks and avoiding errors.Keywords: entrepreneurship, manufacturing companies, solution validation, strategic management
Procedia PDF Downloads 955597 Large-Scale Electroencephalogram Biometrics through Contrastive Learning
Authors: Mostafa ‘Neo’ Mohsenvand, Mohammad Rasool Izadi, Pattie Maes
Abstract:
EEG-based biometrics (user identification) has been explored on small datasets of no more than 157 subjects. Here we show that the accuracy of modern supervised methods falls rapidly as the number of users increases to a few thousand. Moreover, supervised methods require a large amount of labeled data for training which limits their applications in real-world scenarios where acquiring data for training should not take more than a few minutes. We show that using contrastive learning for pre-training, it is possible to maintain high accuracy on a dataset of 2130 subjects while only using a fraction of labels. We compare 5 different self-supervised tasks for pre-training of the encoder where our proposed method achieves the accuracy of 96.4%, improving the baseline supervised models by 22.75% and the competing self-supervised model by 3.93%. We also study the effects of the length of the signal and the number of channels on the accuracy of the user-identification models. Our results reveal that signals from temporal and frontal channels contain more identifying features compared to other channels.Keywords: brainprint, contrastive learning, electroencephalo-gram, self-supervised learning, user identification
Procedia PDF Downloads 1575596 Simulation of Red Blood Cells in Complex Micro-Tubes
Authors: Ting Ye, Nhan Phan-Thien, Chwee Teck Lim, Lina Peng, Huixin Shi
Abstract:
In biofluid flow systems, often the flow problems of fluids of complex structures, such as the flow of red blood cells (RBCs) through complex capillary vessels, need to be considered. In this paper, we aim to apply a particle-based method, Smoothed Dissipative Particle Dynamics (SDPD), to simulate the motion and deformation of RBCs in complex micro-tubes. We first present the theoretical models, including SDPD model, RBC-fluid interaction model, RBC deformation model, RBC aggregation model, and boundary treatment model. After that, we show the verification and validation of these models, by comparing our numerical results with the theoretical, experimental and previously-published numerical results. Finally, we provide some simulation cases, such as the motion and deformation of RBCs in rectangular, cylinder, curved, bifurcated, and constricted micro-tubes, respectively.Keywords: aggregation, deformation, red blood cell, smoothed dissipative particle dynamics
Procedia PDF Downloads 1745595 Analysis of Financial Time Series by Using Ornstein-Uhlenbeck Type Models
Authors: Md Al Masum Bhuiyan, Maria C. Mariani, Osei K. Tweneboah
Abstract:
In the present work, we develop a technique for estimating the volatility of financial time series by using stochastic differential equation. Taking the daily closing prices from developed and emergent stock markets as the basis, we argue that the incorporation of stochastic volatility into the time-varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. While using the technique, we see the long-memory behavior of data sets and one-step-ahead-predicted log-volatility with ±2 standard errors despite the variation of the observed noise from a Normal mixture distribution, because the financial data studied is not fully Gaussian. Also, the Ornstein-Uhlenbeck process followed in this work simulates well the financial time series, which aligns our estimation algorithm with large data sets due to the fact that this algorithm has good convergence properties.Keywords: financial time series, maximum likelihood estimation, Ornstein-Uhlenbeck type models, stochastic volatility model
Procedia PDF Downloads 2425594 Using Structural Equation Modeling to Analyze the Impact of Remote Work on Job Satisfaction
Authors: Florian Pfeffel, Valentin Nickolai, Christian Louis Kühner
Abstract:
Digitalization has disrupted the traditional workplace environment by allowing many employees to work from anywhere at any time. This trend of working from home was further accelerated due to the COVID-19 crisis, which forced companies to rethink their workplace models. While in many companies, this shift happened out of pure necessity; many employees were left more satisfied with their job due to the opportunity to work from home. This study focuses on employees’ job satisfaction in the service sector in dependence on the different work models, which are defined as a “work from home” model, the traditional “work in office” model, and a hybrid model. Using structural equation modeling (SEM), these three work models have been analyzed based on 13 influencing factors on job satisfaction that have been further summarized in the three groups “classic influencing factors”, “influencing factors changed by remote working”, and “new remote working influencing factors”. Based on the influencing factors on job satisfaction, a survey has been conducted with n = 684 employees in the service sector. Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). The SEM-analysis has shown that the most significant influencing factor on job satisfaction is “identification with the work” with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis shows that the identification with the work is the most significant factor in all three work models and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees who work entirely remotely or have a hybrid work model are significantly more satisfied with their job, with a job satisfaction score of 5.0 respectively on a scale from 1 (very dissatisfied) to 7 (very satisfied), than employees do not have the option to work from home with a score of 4.6. This comes as a result of the lower identification with the work in the model without any remote working. Furthermore, the responses indicate that it is important to consider the individual preferences of each employee when it comes to the work model to achieve overall higher job satisfaction. Thus, it can be argued that companies can profit off of more motivation and higher productivity by considering the individual work model preferences, therefore, increasing the identification with the respective work.Keywords: home-office, identification with work, job satisfaction, new work, remote work, structural equation modeling
Procedia PDF Downloads 835593 Estimation of the Drought Index Based on the Climatic Projections of Precipitation of the Uruguay River Basin
Authors: José Leandro Melgar Néris, Claudinéia Brazil, Luciane Teresa Salvi, Isabel Cristina Damin
Abstract:
The impact the climate change is not recent, the main variable in the hydrological cycle is the sequence and shortage of a drought, which has a significant impact on the socioeconomic, agricultural and environmental spheres. This study aims to characterize and quantify, based on precipitation climatic projections, the rainy and dry events in the region of the Uruguay River Basin, through the Standardized Precipitation Index (SPI). The database is the image that is part of the Intercomparison of Model Models, Phase 5 (CMIP5), which provides condition prediction models, organized according to the Representative Routes of Concentration (CPR). Compared to the normal set of climates in the Uruguay River Watershed through precipitation projections, seasonal precipitation increases for all proposed scenarios, with a low climate trend. From the data of this research, the idea is that this article can be used to support research and the responsible bodies can use it as a subsidy for mitigation measures in other hydrographic basins.Keywords: climate change, climatic model, dry events, precipitation projections
Procedia PDF Downloads 144