Search results for: 2D constitutive model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16858

Search results for: 2D constitutive model

15718 Estimation of Pressure Profile and Boundary Layer Characteristics over NACA 4412 Airfoil

Authors: Anwar Ul Haque, Waqar Asrar, Erwin Sulaeman, Jaffar S. M. Ali

Abstract:

Pressure distribution data of the standard airfoils is usually used for the calibration purposes in subsonic wind tunnels. Results of such experiments are quite old and obtained by using the model in the spanwise direction. In this manuscript, pressure distribution over NACA 4412 airfoil model was presented by placing the 3D model in the lateral direction. The model is made of metal with pressure ports distributed longitudinally as well as in the lateral direction. The pressure model was attached to the floor of the tunnel with the help of the base plate to give the specified angle of attack to the model. Before the start of the experiments, the pressure tubes of the respective ports of the 128 ports pressure scanner are checked for leakage, and the losses due to the length of the pipes were also incorporated in the results for the specified pressure range. Growth rate maps of the boundary layer thickness were also plotted. It was found that with the increase in the velocity, the dynamic pressure distribution was also increased for the alpha seep. Plots of pressure distribution so obtained were overlapped with those obtained by using XFLR software, a low fidelity tool. It was found that at moderate and high angles of attack, the distribution of the pressure coefficients obtained from the experiments is high when compared with the XFLR ® results obtained along with the span of the wing. This under-prediction by XFLR ® is more obvious on the windward than on the leeward side.

Keywords: subsonic flow, boundary layer, wind tunnel, pressure testing

Procedia PDF Downloads 320
15717 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water

Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri

Abstract:

In this research, the capability of neural networks in modeling and learning complicated and nonlinear relations has been used to develop a model for the prediction of changes in the diameter of bubbles in pool boiling distilled water. The input parameters used in the development of this network include element temperature, heat flux, and retention time of bubbles. The test data obtained from the experiment of the pool boiling of distilled water, and the measurement of the bubbles form on the cylindrical element. The model was developed based on training algorithm, which is typologically of back-propagation type. Considering the correlation coefficient obtained from this model is 0.9633. This shows that this model can be trusted for the simulation and modeling of the size of bubble and thermal transfer of boiling.

Keywords: bubble diameter, heat flux, neural network, training algorithm

Procedia PDF Downloads 443
15716 A Non-linear Damage Model For The Annulus Of the Intervertebral Disc Under Cyclic Loading, Including Recovery

Authors: Shruti Motiwale, Xianlin Zhou, Reuben H. Kraft

Abstract:

Military and sports personnel are often required to wear heavy helmets for extended periods of time. This leads to excessive cyclic loads on the neck and an increased chance of injury. Computational models offer one approach to understand and predict the time progression of disc degeneration under severe cyclic loading. In this paper, we have applied an analytic non-linear damage evolution model to estimate damage evolution in an intervertebral disc due to cyclic loads over decade-long time periods. We have also proposed a novel strategy for inclusion of recovery in the damage model. Our results show that damage only grows 20% in the initial 75% of the life, growing exponentially in the remaining 25% life. The analysis also shows that it is crucial to include recovery in a damage model.

Keywords: cervical spine, computational biomechanics, damage evolution, intervertebral disc, continuum damage mechanics

Procedia PDF Downloads 568
15715 Using an Empathy Intervention Model to Enhance Empathy and Socially Shared Regulation in Youth with Autism Spectrum Disorder

Authors: Yu-Chi Chou

Abstract:

The purpose of this study was to establish a logical path of an instructional model of empathy and social regulation, providing feasibility evidence on the model implementation in students with autism spectrum disorder (ASD). This newly developed Emotional Bug-Out Bag (BoB) curriculum was designed to enhance the empathy and socially shared regulation of students with ASD. The BoB model encompassed three instructional phases of basic theory lessons (BTL), action plan practices (APP), and final theory practices (FTP) during implementation. Besides, a learning flow (teacher-directed instruction, student self-directed problem-solving, group-based task completion, group-based reflection) was infused into the progress of instructional phases to deliberately promote the social regulatory process in group-working activities. A total of 23 junior high school students with ASD were implemented with the BoB curriculum. To examine the logical path for model implementation, data was collected from the participating students’ self-report scores on the learning nodes and understanding questions. Path analysis using structural equation modeling (SEM) was utilized for analyzing scores on 10 learning nodes and 41 understanding questions through the three phases of the BoB model. Results showed (a) all participants progressed throughout the implementation of the BoB model, and (b) the models of learning nodes and phases were positive and significant as expected, confirming the hypothesized logic path of this curriculum.

Keywords: autism spectrum disorder, empathy, regulation, socially shared regulation

Procedia PDF Downloads 66
15714 A Comprehensive Procedure of Spatial Panel Modelling with R, A Study of Agricultural Productivity Growth of the 38 East Java’s Regencies/Municipalities

Authors: Rahma Fitriani, Zerlita Fahdha Pusdiktasari, Herman Cahyo Diartho

Abstract:

Spatial panel model is commonly used to specify more complicated behavior of economic agent distributed in space at an individual-spatial unit level. There are several spatial panel models which can be adapted based on certain assumptions. A package called splm in R has several functions, ranging from the estimation procedure, specification tests, and model selection tests. In the absence of prior assumptions, a comprehensive procedure which utilizes the available functions in splm must be formed, which is the objective of this study. In this way, the best specification and model can be fitted based on data. The implementation of the procedure works well. It specifies SARAR-FE as the best model for agricultural productivity growth of the 38 East Java’s Regencies/Municipalities.

Keywords: spatial panel, specification, splm, agricultural productivity growth

Procedia PDF Downloads 171
15713 Numerical Simulation of Flow and Particle Motion in Liquid – Solid Hydrocyclone

Authors: Seyed Roozbeh Pishva, Alireza Aboudi Asl

Abstract:

In this investigation a hydrocyclone by using for separation particles from fluid in oil and gas, mining and other industries is simulated. Case study is cone – cylindrical and solid - liquid hydrocyclone. The fluid is water and the solid is a type of silis having diameters of 53, 75, 106, 150, 212, 250, and 300 micron. In this investigation CFD method used for analysis flow and movement of particles in hydrocyclone. In this modeling flow is three-dimention, turbulence and RSM model have been used for solving. Particles are three dimensional, spherical and non rotating and for tracking them Lagrangian model is used. The results of this study in addition to analyzing flowfield, obtaining efficiency of hydrocyclone in 5, 7, 12, and 15 percent concentrations and compare them with experimental result that both of them had suitable agreement with each other.

Keywords: hydrocyclone, RSM Model, CFD, copper industry

Procedia PDF Downloads 572
15712 Healthcare Social Entrepreneurship: A Positive Theory Applied to the Case of YOU Foundation in Nepal

Authors: Simone Rondelli, Damiano Rondelli, Bishesh Poudyal, Juan Jose Cabrera-Lazarini

Abstract:

One of the main obstacles for Social Entrepreneurship is to find a business model that is financially sustainable. In other words, the captured value generates enough cash flow to ensure business continuity and reinvestment for growth. Providing Health Services in poor countries for the uninsured population affected by a high-cost chronical disease is not the exception for this challenge. As a prime example, cancer has become a high impact on a global disease not only because of the high morbidity but also of the financial impact on both the patient family and health services in underdeveloped countries. Therefore, it is relevant to find a Social Entrepreneurship Model that provides affordable treatment for this disease while maintaining healthy finances not only for the patient but also for the organization providing the treatment. Using the methodology of Constructive Research, this paper applied a Positive Theory and four business models of Social Entrepreneurship to a case of a Private Foundation model whose mission is to address the challenge previously described. It was found that the Foundation analyzed, in this case, is organized as an Embedded Business Model and complies with the four propositions of the Positive Theory considered. It is recommended for this Private Foundation to explore implementing the Integrated Business Model to ensure more robust sustainability in the long term. It evolves as a scalable model that can attract investors interested in contributing to expanding this initiative globally.

Keywords: affordable treatment, global healthcare, social entrepreneurship theory, sustainable business model

Procedia PDF Downloads 144
15711 A Unified Theory of the Primary Psychological and Social Sciences

Authors: George McMillan

Abstract:

This paper introduces the methodology to create a baseline equation for the philosophical and social sciences in the behavioral-political-economic-demographic sequence. The two major ideological political-economic philosophies (Hume-Smith and Marx-Engels) are systematized into competing integrated three dimensional behavioral-political-economic models. The paper argues that Hume-Smith’s empathy-sympathy behavioral assumptions are a sufficient starting point to create the integrated causal model sought by Tooby and Cosmides. The author then shows that the prerequisite advances in psychology and demographic studies now exist to generate the universal economic theory sought by von Neumann-Morgenstern and the integrated behavioral-economic method of Gintis—a psychological (i.e., behavioral) socio-economic model. By updating Hume-Smith’s work with a modern understanding of psychology, as presented by Fromm and others, a new integrated societal model as postulated by Harsanyi can be created that intertwines the social and psychological sciences. The author argues that this fundamentally psychology-based model also can serve as a baseline equation for all social sciences as desired by Kant and Mach, as well as the ahistorical (psychological) philosophic model noted by Husserl, Heidegger, Tillich, and Strauss. The author concludes with a discussion of the necessary next steps to generating a detailed model that fuses these disciplines.

Keywords: Unified Social Theory

Procedia PDF Downloads 377
15710 Flange/Web Distortional Buckling of Cold-Formed Steel Beams with Web Holes under Pure Bending

Authors: Nan-Ting Yu, Boksun Kim, Long-Yuan Li

Abstract:

The cold-formed steel beams with web holes are widely used as the load-carrying members in structural engineering. The perforations can release the space of the building and let the pipes go through. However, the perforated cold-formed steel (PCFS) beams may fail by distortional buckling more easily than beams with plain web; this is because the rotational stiffness from the web decreases. It is well known that the distortional buckling can be described as the buckling of the compressed flange-lip system. In fact, near the ultimate failure, the flange/web corner would move laterally, which indicates the bending of the web should be taken account. The purpose of this study is to give a specific solution for the critical stress of flange/web distortional buckling of PCFS beams. The new model is deduced based on classical energy method, and the deflection of the web is represented by the shape function of the plane beam element. The finite element analyses have been performed to validate the accuracy of the proposed model. The comparison of the critical stress calculated from Hancock's model, FEA, and present model, shows that the present model can provide a splendid prediction for the flange/web distortional buckling of PCFS beams.

Keywords: cold-formed steel, beams, perforations, flange-web distortional buckling, finite element analysis

Procedia PDF Downloads 130
15709 Analysis of CO₂ Two-Phase Ejector with Taguchi and ANOVA Optimization and Refrigerant Selection with Enviro Economic Concerns by TOPSIS Analysis

Authors: Karima Megdouli, Bourhan tachtouch

Abstract:

Ejector refrigeration cycles offer an alternative to conventional systems for producing cold from low-temperature heat. In this article, a thermodynamic model is presented. This model has the advantage of simplifying the calculation algorithm and describes the complex double-throttling mechanism that occurs in the ejector. The model assumption and calculation algorithm are presented first. The impact of each efficiency is evaluated. Validation is performed on several data sets. The ejector model is then used to simulate a RES (refrigeration ejector system), to validate its robustness and suitability for use in predicting thermodynamic cycle performance. A Taguchi and ANOVA optimization is carried out on a RES. TOPSIS analysis was applied to decide the optimum refrigerants with cost, safety, environmental and enviro economic concerns along with thermophysical properties.

Keywords: ejector, velocity distribution, shock circle, Taguchi and ANOVA optimization, TOPSIS analysis

Procedia PDF Downloads 89
15708 Conceptual Model of a Residential Waste Collection System Using ARENA Software

Authors: Bruce G. Wilson

Abstract:

The collection of municipal solid waste at the curbside is a complex operation that is repeated daily under varying circumstances around the world. There have been several attempts to develop Monte Carlo simulation models of the waste collection process dating back almost 50 years. Despite this long history, the use of simulation modeling as a planning or optimization tool for waste collection is still extremely limited in practice. Historically, simulation modeling of waste collection systems has been hampered by the limitations of computer hardware and software and by the availability of representative input data. This paper outlines the development of a Monte Carlo simulation model that overcomes many of the limitations contained in previous models. The model uses a general purpose simulation software program that is easily capable of modeling an entire waste collection network. The model treats the stops on a waste collection route as a queue of work to be processed by a collection vehicle (or server). Input data can be collected from a variety of sources including municipal geographic information systems, global positioning system recorders on collection vehicles, and weigh scales at transfer stations or treatment facilities. The result is a flexible model that is sufficiently robust that it can model the collection activities in a large municipality, while providing the flexibility to adapt to changing conditions on the collection route.

Keywords: modeling, queues, residential waste collection, Monte Carlo simulation

Procedia PDF Downloads 400
15707 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objetives

Authors: Mingyu Xie, Mietek Brdys

Abstract:

The paper develops a non-linear model predictive control (NMPC) of water quality in drinking water distribution systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.

Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives

Procedia PDF Downloads 317
15706 Nonlinear Model Predictive Control for Biodiesel Production via Transesterification

Authors: Juliette Harper, Yu Yang

Abstract:

Biofuels have gained significant attention recently due to the new regulations and agreements regarding fossil fuels and greenhouse gases being made by countries around the globe. One of the most common types of biofuels is biodiesel, primarily made via the transesterification reaction. We model this nonlinear process in MATLAB using the standard kinetic equations. Then, a nonlinear Model predictive control (NMPC) was developed to regulate this process due to its capability to handle process constraints. The feeding flow uncertainty and kinetic disturbances are further incorporated in the model to capture the real-world operating conditions. The simulation results will show that the proposed NMPC can guarantee the final composition of fatty acid methyl esters (FAME) above the target threshold with a high chance by adjusting the process temperature and flowrate. This research will allow further understanding of NMPC under uncertainties and how to design the computational strategy for larger process with more variables.

Keywords: NMPC, biodiesel, uncertainties, nonlinear, MATLAB

Procedia PDF Downloads 97
15705 Mediation Models in Triadic Relationships: Illness Narratives and Medical Education

Authors: Yoko Yamada, Chizumi Yamada

Abstract:

Narrative psychology is based on the dialogical relationship between self and other. The dialogue can consist of divided, competitive, or opposite communication between self and other. We constructed models of coexistent dialogue in which self and other were positioned side by side and communicated sympathetically. We propose new mediation models for narrative relationships. The mediation models are based on triadic relationships that incorporate a medium or a mediator along with self and other. We constructed three types of mediation model. In the first type, called the “Joint Attention Model”, self and other are positioned side by side and share attention with the medium. In the second type, the “Triangle Model”, an agent mediates between self and other. In the third type, the “Caring Model”, a caregiver stands beside the communication between self and other. We apply the three models to the illness narratives of medical professionals and patients. As these groups have different views and experiences of disease or illness, triadic mediation facilitates the ability to see things from the other person’s perspective and to bridge differences in people’s experiences and feelings. These models would be useful for medical education in various situations, such as in considering the relationships between senior and junior doctors and between old and young patients.

Keywords: illness narrative, mediation, psychology, model, medical education

Procedia PDF Downloads 409
15704 Neural Network based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The educational system faces a significant concern with regards to Dyslexia and Dysgraphia, which are learning disabilities impacting reading and writing abilities. This is particularly challenging for children who speak the Sinhala language due to its complexity and uniqueness. Commonly used methods to detect the risk of Dyslexia and Dysgraphia rely on subjective assessments, leading to limited coverage and time-consuming processes. Consequently, delays in diagnoses and missed opportunities for early intervention can occur. To address this issue, the project developed a hybrid model that incorporates various deep learning techniques to detect the risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16, and YOLOv8 models were integrated to identify handwriting issues. The outputs of these models were then combined with other input data and fed into an MLP model. Hyperparameters of the MLP model were fine-tuned using Grid Search CV, enabling the identification of optimal values for the model. This approach proved to be highly effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention. The Resnet50 model exhibited a training accuracy of 0.9804 and a validation accuracy of 0.9653. The VGG16 model achieved a training accuracy of 0.9991 and a validation accuracy of 0.9891. The MLP model demonstrated impressive results with a training accuracy of 0.99918, a testing accuracy of 0.99223, and a loss of 0.01371. These outcomes showcase the high accuracy achieved by the proposed hybrid model in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, dyslexia, dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 64
15703 Performance Evaluation of Arrival Time Prediction Models

Authors: Bin Li, Mei Liu

Abstract:

Arrival time information is a crucial component of advanced public transport system (APTS). The advertisement of arrival time at stops can help reduce the waiting time and anxiety of passengers, and improve the quality of service. In this research, an experiment was conducted to compare the performance on prediction accuracy and precision between the link-based and the path-based historical travel time based model with the automatic vehicle location (AVL) data collected from an actual bus route. The research results show that the path-based model is superior to the link-based model, and achieves the best improvement on peak hours.

Keywords: bus transit, arrival time prediction, link-based, path-based

Procedia PDF Downloads 358
15702 Expectation-Confirmation Model of Information System Continuance: A Meta-Analysis

Authors: Hui-Min Lai, Chin-Pin Chen, Yung-Fu Chang

Abstract:

The expectation-confirmation model (ECM) is one of the most widely used models for evaluating information system continuance, and this model has been extended to other study backgrounds, or expanded with other theoretical perspectives. However, combining ECM with other theories or investigating the background problem may produce some disparities, thus generating inaccurate conclusions. Habit is considered to be an important factor that influences the user’s continuance behavior. This paper thus critically examines seven pairs of relationships from the original ECM and the habit variable. A meta-analysis was used to tackle the development of ECM research over the last 10 years from a range of journals and conference papers published in 2005–2014. Forty-six journal articles and 19 conference papers were selected for analysis. The results confirm our prediction that a high effect size for the seven pairs of relationships was obtained (ranging from r=0.386 to r=0.588). Furthermore, a meta-analytic structural equation modeling was performed to simultaneously test all relationships. The results show that habit had a significant positive effect on continuance intention at p<=0.05 and that the six other pairs of relationships were significant at p<0.10. Based on the findings, we refined our original research model and an alternative model was proposed for understanding and predicting information system continuance. Some theoretical implications are also discussed.

Keywords: Expectation-confirmation theory, Expectation-confirmation model, Meta-analysis, meta-analytic structural equation modeling.

Procedia PDF Downloads 306
15701 Characterization of Activated Tire Char (ATC) and Adsorptive Desulfurization of Tire Pyrolytic Oil (TPO) Using ATC

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng

Abstract:

The adsorptive ability of different carbon materials, tire char (TC), demineralized tire char (DTC), activated tire char (ATC) and Aldrich supplied commercial activated carbon (CAC) was studied for desulfurization of tire pyrolytic oil (TPO). TPO with an initial sulfur content of 7767.7 ppmw was used in this present study. Preparation of ATC was achieved by chemical treatment of raw TC using a potassium hydroxide (KOH) solution and subsequent activation at 800°C in the presence of nitrogen. The thermal behavior of TC, surface microstructure, and the surface functional groups of the carbon materials was investigated using TGA, SEM, and FTIR, respectively. Adsorptive desulfurization of TPO using the carbon materials was performed and they performed in the order of CAC>ATC>DTC>TC. Adsorption kinetics were studied, and pseudo-first order kinetic model displayed a better fit compared to pseudo-second order model. For isotherm studies, the Freundlich isotherm model fitted to the equilibrium data better than the Langmuir isotherm model.

Keywords: ATC, desulfurization, pyrolysis, tire, TPO

Procedia PDF Downloads 116
15700 The Developmental Model of Teaching and Learning Clinical Practicum at Postpartum Ward for Nursing Students by Using VARK Learning Styles

Authors: Wanwadee Neamsakul

Abstract:

VARK learning style is an effective method of learning that could enhance all skills of the students like visual (V), auditory (A), read/write (R), and kinesthetic (K). This learning style benefits the students in terms of professional competencies, critical thinking and lifelong learning which are the desirable characteristics of the nursing students. This study aimed to develop a model of teaching and learning clinical practicum at postpartum ward for nursing students by using VARK learning styles, and evaluate the nursing students’ opinions about the developmental model. A methodology used for this study was research and development (R&D). The model was developed by focus group discussion with five obstetric nursing instructors who have experiences teaching Maternal Newborn and Midwifery I subject. The activities related to practices in the postpartum (PP) ward including all skills of VARK were assigned into the matrix table. The researcher asked the experts to supervise the model and adjusted the model following the supervision. Subsequently, it was brought to be tried out with the nursing students who practiced on the PP ward. Thirty third year nursing students from one of the northern Nursing Colleges, Academic year 2015 were purposive sampling. The opinions about the satisfaction of the model were collected using a questionnaire which was tested for its validity and reliability. Data were analyzed using descriptive statistics. The developed model composed of 27 activities. Seven activities were developed as enhancement of visual skills for the nursing students (25.93%), five activities as auditory skills (18.52%), six activities as read and write skills (22.22%), and nine activities as kinesthetic skills (33.33%). Overall opinions about the model were reported at the highest level of average satisfaction (mean=4.63, S.D=0.45). In the aspects of visual skill (mean=4.80, S.D=0.45) was reported at the highest level of average satisfaction followed by auditory skill (mean=4.62, S.D=0.43), read and write skill (mean=4.57, S.D=0.46), and kinesthetic skill (mean=4.53, S.D=0.45) which were reported at the highest level of average satisfaction, respectively. The nursing students reported that the model could help them employ all of their skills during practicing and taking care of the postpartum women and newborn babies. They could establish self-confidence while providing care and felt proud of themselves by the benefits of the model. It can be said that using VARK learning style to develop the model could enhance both nursing students’ competencies and positive attitude towards the nursing profession. Consequently, they could provide quality care for postpartum women and newborn babies effectively in the long run.

Keywords: model, nursing students, postpartum ward, teaching and learning clinical practicum

Procedia PDF Downloads 150
15699 Hydrodynamic and Morphological Simulation of Karnafuli River Using CCHE2D Model

Authors: Shah Md. Imran Kabir, Md. Mostafa Ali

Abstract:

Karnafuli is one of the most important rivers of Bangladesh which is playing a vital role in our national economy. The major sea port of Bangladesh is the Chittagong port located on the right bank of Karnafuli River Bangladesh. Karnafuli river port is considered as the lifeline of the economic activities of the country. Therefore, it is always necessary to keep the river active and live in terms of its navigability. Due to man-made intervention, the river flow becomes interrupted and thereby may cause the change in the river morphology. The specific objective of this study is the application of 2D model to assess different hydrodynamic and morphological characteristics of the river due to normal flow condition and sea level rise condition. The model has been set with the recent bathymetry data collected from CPA hydrography division. For model setup, the river reach is selected between Kalurghat and Khal no-18. Time series discharge and water level data are used as boundary condition at upstream and downstream. Calibration and validation have been carried out with the recent water level data at Khal no-10 and Sadarghat. The total reach length of the river has been divided into four parts to determine different hydrodynamic and morphological assessments like variation of velocity, sediment erosion and deposition and bed level changes also have been studied. This model has been used for the assessment of river response due sediment transport and sea level rise. Model result shows slight increase in velocity. It also changes the rate of erosion and deposition at some location of the selected reach. It is hoped that the result of the model simulation will be helpful to suggest the effect of possible future development work to be implemented on this river.

Keywords: CCHE 2D, hydrodynamic, morphology, sea level rise

Procedia PDF Downloads 379
15698 Two-Phase Sampling for Estimating a Finite Population Total in Presence of Missing Values

Authors: Daniel Fundi Murithi

Abstract:

Missing data is a real bane in many surveys. To overcome the problems caused by missing data, partial deletion, and single imputation methods, among others, have been proposed. However, problems such as discarding usable data and inaccuracy in reproducing known population parameters and standard errors are associated with them. For regression and stochastic imputation, it is assumed that there is a variable with complete cases to be used as a predictor in estimating missing values in the other variable, and the relationship between the two variables is linear, which might not be realistic in practice. In this project, we estimate population total in presence of missing values in two-phase sampling. Instead of regression or stochastic models, non-parametric model based regression model is used in imputing missing values. Empirical study showed that nonparametric model-based regression imputation is better in reproducing variance of population total estimate obtained when there were no missing values compared to mean, median, regression, and stochastic imputation methods. Although regression and stochastic imputation were better than nonparametric model-based imputation in reproducing population total estimates obtained when there were no missing values in one of the sample sizes considered, nonparametric model-based imputation may be used when the relationship between outcome and predictor variables is not linear.

Keywords: finite population total, missing data, model-based imputation, two-phase sampling

Procedia PDF Downloads 130
15697 Optimization of a Combined Ejector-Vapor Compression Refrigeration Systems with R134a

Authors: Ilhem Ouelhazi, Mouna Elakhdar, Lakdar Kairouani

Abstract:

A computer simulation model for a combined ejector-vapor compression cycle that uses working fluid R134a. A refrigeration system was developed which combines a basic vapor compression refrigeration cycle with an ejector cooling cycle. A one-dimensional mathematical model was developed using the equations governing the flow and thermodynamics based on the constant area ejector flow model. The effects of the operating parameters on the cooling capacity, the performance coefficient, and the entrainment ratio are studied. The current model is based on the NIST-REFPROP database for refrigerants properties calculations. The simulated performance is compared with the available experimental data from the literature for validation.

Keywords: combined refrigeration cycle, constant area ejector, R134a, ejector-cooling cycle, performance, mathematical simulation, vapor compression cycle

Procedia PDF Downloads 226
15696 Neutral Heavy Scalar Searches via Standard Model Gauge Boson Decays at the Large Hadron Electron Collider with Multivariate Techniques

Authors: Luigi Delle Rose, Oliver Fischer, Ahmed Hammad

Abstract:

In this article, we study the prospects of the proposed Large Hadron electron Collider (LHeC) in the search for heavy neutral scalar particles. We consider a minimal model with one additional complex scalar singlet that interacts with the Standard Model (SM) via mixing with the Higgs doublet, giving rise to an SM-like Higgs boson and a heavy scalar particle. Both scalar particles are produced via vector boson fusion and can be tested via their decays into pairs of SM particles, analogously to the SM Higgs boson. Using multivariate techniques, we show that the LHeC is sensitive to heavy scalars with masses between 200 and 800 GeV down to scalar mixing of order 0.01.

Keywords: beyond the standard model, large hadron electron collider, multivariate analysis, scalar singlet

Procedia PDF Downloads 137
15695 Experimental and Computational Investigation of Flow Field and Thermal Behavior of a Mechanical Seal

Authors: Hossein Shokouhmand, Masoomeh Shadab, Rohallah Torabi

Abstract:

Turbulent flow inside the seal chamber of a pump operating at nearly high Reynolds number is investigated. A comparison of a 3-D computational model for flow and thermal analysis of a mechanical seal with experimental thermal results is presented. The computational model adequately predicts the flow field in the seal chamber and thermal characteristics with the rotating and stationary rings and the twister flow around the seal parts by solving N-S and energy equations in ANSYS-CFX software. The Reynolds stress model (RSM) is applied as a turbulence model for this purpose. Experimental work is discussed which quantifies the temperature of five different points of the working fluid in chamber, mass flow at inlet and the fluid pressure at inlet and outlet. Experimental measurements are combined with computational modeling to obtain local and average heat transfer characteristics. Numerical results of three cases including different flush rates are reported.

Keywords: mechanical seal, CFD_CFX, reynolds stress model, flow field, heat transfer analysis, stream line, heat transfer coefficient, heat flux, nusselt

Procedia PDF Downloads 440
15694 Using TRACE, PARCS, and SNAP Codes to Analyze the Load Rejection Transient of ABWR

Authors: J. R. Wang, H. C. Chang, A. L. Ho, J. H. Yang, S. W. Chen, C. Shih

Abstract:

The purpose of the study is to analyze the load rejection transient of ABWR by using TRACE, PARCS, and SNAP codes. This study has some steps. First, using TRACE, PARCS, and SNAP codes establish the model of ABWR. Second, the key parameters are identified to refine the TRACE/PARCS/SNAP model further in the frame of a steady state analysis. Third, the TRACE/PARCS/SNAP model is used to perform the load rejection transient analysis. Finally, the FSAR data are used to compare with the analysis results. The results of TRACE/PARCS are consistent with the FSAR data for the important parameters. It indicates that the TRACE/PARCS/SNAP model of ABWR has a good accuracy in the load rejection transient.

Keywords: ABWR, TRACE, PARCS, SNAP

Procedia PDF Downloads 197
15693 A Dynamic Model for Assessing the Advanced Glycation End Product Formation in Diabetes

Authors: Victor Arokia Doss, Kuberapandian Dharaniyambigai, K. Julia Rose Mary

Abstract:

Advanced Glycation End (AGE) products are the end products due to the reaction between excess reducing sugar present in diabetes and free amino group in protein lipids and nucleic acids. Thus, non-enzymic glycation of molecules such as hemoglobin, collagen, and other structurally and functionally important proteins add to the pathogenic complications such as diabetic retinopathy, neuropathy, nephropathy, vascular changes, atherosclerosis, Alzheimer's disease, rheumatoid arthritis, and chronic heart failure. The most common non-cross linking AGE, carboxymethyl lysine (CML) is formed by the oxidative breakdown of fructosyllysine, which is a product of glucose and lysine. CML is formed in a wide variety of tissues and is an index to assess the extent of glycoxidative damage. Thus we have constructed a mathematical and computational model that predicts the effect of temperature differences in vivo, on the formation of CML, which is now being considered as an important intracellular milieu. This hybrid model that had been tested for its parameter fitting and its sensitivity with available experimental data paves the way for designing novel laboratory experiments that would throw more light on the pathological formation of AGE adducts and in the pathophysiology of diabetic complications.

Keywords: advanced glycation end-products, CML, mathematical model, computational model

Procedia PDF Downloads 129
15692 Measuring Banking Risk

Authors: Mike Tsionas

Abstract:

The paper develops new indices of financial stability based on an explicit model of expected utility maximization by financial institutions subject to the classical technology restrictions of neoclassical production theory. The model can be estimated using standard econometric techniques, like GMM for dynamic panel data and latent factor analysis for the estimation of co-variance matrices. An explicit functional form for the utility function is not needed and we show how measures of risk aversion and prudence (downside risk aversion) can be derived and estimated from the model. The model is estimated using data for Eurozone countries and we focus particularly on (i) the use of the modeling approach as an “early warning mechanism”, (ii) the bank- and country-specific estimates of risk aversion and prudence (downside risk aversion), and (iii) the derivation of a generalized measure of risk that relies on loan-price uncertainty.

Keywords: financial stability, banking, expected utility maximization, sub-prime crisis, financial crisis, eurozone, PIIGS

Procedia PDF Downloads 348
15691 The Application of the Biopsychosocial-Spiritual Model to the Quality of Life of People Living with Sickle Cell Disease

Authors: Anita Paddy, Millicent Obodai, Lebbaeus Asamani

Abstract:

The management of sickle cell disease requires a multidisciplinary team for better outcomes. Thus, literature on the application of the biopsychosocial model for the management and explanation of chronic pain in sickle cell disease (SCD) and other chronic diseases abound. However, there is limited research on the use of the biopsychosocial model, together with a spiritual component (biopsychosocial-spiritual model). The study investigated the extent to which healthcare providers utilized the biopsychosocial-spiritual model in the management of chronic pain to improve the quality of life (QoL) of patients with SCD. This study employed the descriptive survey design involving a consecutive sampling of 261 patients with SCD who were between the ages of 18 to 79 years and were accessing hematological services at the Clinical Genetics Department of the Korle Bu Teaching Hospital. These patients willingly consented to participate in the study by appending their signatures. The theory of integrated quality of life, the gate control theory of pain and the biopsychosocial(spiritual) model were tested. An instrument for the biopsychosocial-spiritual model was developed, with a basis from the literature reviewed, while the World Health Organisation Quality of Life BREF (WHOQoLBref) and the spirituality rating scale were adapted and used for data collection. Data were analyzed using descriptive statistics (means, standard deviations, frequencies, and percentages) and partial least square structural equation modeling. The study revealed that healthcare providers had a great leaning toward the biological domain of the model compared to the other domains. Hence, participants’ QoL was not fully improved as suggested by the biopsychosocial(spiritual) model. Again, the QoL and spirituality of patients with SCD were quite high. A significant negative impact of spirituality on QoL was also found. Finally, the biosocial domain of the biopsychosocial-spiritual model was the most significant predictor of QoL. It was recommended that policymakers train healthcare providers to integrate the psychosocial-spiritual component in health services. Also, education on SCD and its resultant impact from the domains of the model should be intensified while health practitioners consider utilizing these components fully in the management of the condition.

Keywords: biopsychosocial (spritual), sickle cell disease, quality of life, healthcare, accra

Procedia PDF Downloads 73
15690 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 114
15689 Modeling of the Attitude Control Reaction Wheels of a Spacecraft in Software in the Loop Test Bed

Authors: Amr AbdelAzim Ali, G. A. Elsheikh, Moutaz M. Hegazy

Abstract:

Reaction wheels (RWs) are generally used as main actuator in the attitude control system (ACS) of spacecraft (SC) for fast orientation and high pointing accuracy. In order to achieve the required accuracy for the RWs model, the main characteristics of the RWs that necessitate analysis during the ACS design phase include: technical features, sequence of operating and RW control logic are included in function (behavior) model. A mathematical model is developed including the various errors source. The errors in control torque including relative, absolute, and error due to time delay. While the errors in angular velocity due to differences between average and real speed, resolution error, loose in installation of angular sensor, and synchronization errors. The friction torque is presented in the model include the different feature of friction phenomena: steady velocity friction, static friction and break-away torque, and frictional lag. The model response is compared with the experimental torque and frequency-response characteristics of tested RWs. Based on the created RW model, some criteria of optimization based control torque allocation problem can be recommended like: avoiding the zero speed crossing, bias angular velocity, or preventing wheel from running on the same angular velocity.

Keywords: friction torque, reaction wheels modeling, software in the loop, spacecraft attitude control

Procedia PDF Downloads 266