Search results for: top and seat angle connection
1632 Airplane Stability during Climb/Descend Phase Using a Flight Dynamics Simulation
Authors: Niloufar Ghoreishi, Ali Nekouzadeh
Abstract:
The stability of the flight during maneuvering and in response to probable perturbations is one of the most essential features of an aircraft that should be analyzed and designed for. In this study, we derived the non-linear governing equations of aircraft dynamics during the climb/descend phase and simulated a model aircraft. The corresponding force and moment dimensionless coefficients of the model and their variations with elevator angle and other relevant aerodynamic parameters were measured experimentally. The short-period mode and phugoid mode response were simulated by solving the governing equations numerically and then compared with the desired stability parameters for the particular level, category, and class of the aircraft model. To meet the target stability, a controller was designed and used. This resulted in significant improvement in the stability parameters of the flight.Keywords: flight stability, phugoid mode, short period mode, climb phase, damping coefficient
Procedia PDF Downloads 1711631 Soil Reinforcement by Fibers Using Triaxial Compression Test
Authors: Negadi Kheira, Arab Ahmed, Kamal Elbokl Mohamed, Setti Fatima
Abstract:
In order to evaluate influences of roots on soil shear strength, monotonic drained and undrained triaxial laboratory tests were carried out on reconstituted specimens at various confining pressure (σc’=50, 100, 200, 300, 400 kPa) and a constant relative density (Dr = 50%). Reinforcement of soil by fibrous roots is crucial for preventing soil erosion and degradation. Therefore, we investigated soil reinforcement by roots of acacia planted in the area of Chlef where shallow landslides and slope instability are frequent. These roots were distributed in soil in two forms: vertically and horizontally. The monotonic test results showed that roots have more impacts on the soil shear strength than the friction angle, and the presence of roots in soil substantially increased the soil shear strength. Also, the results showed that the contribution of roots on the shear strength mobilized increases with increase in the confining pressure.Keywords: soil, monotonic, triaxial test, root fiber, undrained
Procedia PDF Downloads 4151630 Understanding Attitude about Landscape Preservation in Context of Place Attachment
Authors: Baiju Soren
Abstract:
This research investigates village residents' feelings about rural landscapes and their attitudes toward preserving them, as well as the impact of attachment on participation in preserving those environments. To understand these relationships, 100 respondents from Bandudumha village : a tribal village, Mayurbhanj district of Odisha, were interviewed with a set of questionnaires and photographs. This framework is based on the idea that establishing environmental oversight and desire to cooperate in the development and preservation process can help to establish community values and meaning tied to places. As a result, a personal connection to the rural environment will be explored through an examination of place attachment, landscape choice, and the possible conservation value of landscapes to the people who live there. The findings suggest that commitment to a place can lead to unique ideas on collaborative preservation and the creation of truly relevant, socially inclusive landscapes. Furthermore, the data show how emotional ties to locations provide social support and provide insight into people–place relationships.Keywords: participation in preservation, place attachment, preservation, rural landscape, sense of place
Procedia PDF Downloads 1211629 Seismic Inversion to Improve the Reservoir Characterization: Case Study in Central Blue Nile Basin, Sudan
Authors: Safwat E. Musa, Nuha E. Mohamed, Nuha A. Bagi
Abstract:
In this study, several crossplots of the P-impedance with the lithology logs (gamma ray, neutron porosity, deep resistivity, water saturation and Vp/Vs curves) were made in three available wells, which were drilled in central part of the Blue Nile basin in depths varies from 1460 m to 1600 m. These crossplots were successful to discriminate between sand and shale when using P-Impedance values, and between the wet sand and the pay sand when using both P-impedance and Vp/Vs together. Also, some impedance sections were converted to porosity sections using linear formula to characterize the reservoir in terms of porosity. The used crossplots were created on log resolution, while the seismic resolution can identify only the reservoir, unless a 3D seismic angle stacks were available; then it would be easier to identify the pay sand with great confidence; through high resolution seismic inversion and geostatistical approach when using P-impedance and Vp/Vs volumes.Keywords: basin, Blue Nile, inversion, seismic
Procedia PDF Downloads 4311628 Optimization of Copper-Water Negative Inclination Heat Pipe with Internal Composite Wick Structure
Authors: I. Brandys, M. Levy, K. Harush, Y. Haim, M. Korngold
Abstract:
Theoretical optimization of a copper-water negative inclination heat pipe with internal composite wick structure has been performed, regarding a new introduced parameter: the ratio between the coarse mesh wraps and the fine mesh wraps of the composite wick. Since in many cases, the design of a heat pipe matches specific thermal requirements and physical limitations, this work demonstrates the optimization of a 1 m length, 8 mm internal diameter heat pipe without an adiabatic section, at a negative inclination angle of -10º. The optimization is based on a new introduced parameter, LR: the ratio between the coarse mesh wraps and the fine mesh wraps.Keywords: heat pipe, inclination, optimization, ratio
Procedia PDF Downloads 3281627 A Multilevel-Synthesis Approach with Reduced Number of Switches for 99-Level Inverter
Authors: P. Satish Kumar, V. Ramu, K. Ramakrishna
Abstract:
In this paper, an efficient multilevel wave form synthesis technique is proposed and applied to a 99-level inverter. The basic principle of the proposed scheme is that the continuous output voltage levels can be synthesized by the addition or subtraction of the instantaneous voltages generated from different voltage levels. This synthesis technique can be realized by an array of switching devices composing full-bridge inverter modules and proper mixing of each bi-directional switch modules. The most different aspect, compared to the conventional approach, in the synthesis of the multilevel output waveform is the utilization of a combination of bidirectional switches and full bridge inverter modules with reduced number of components. A 99-level inverter consists of three full-bridge modules and six bi-directional switch modules. The validity of the proposed scheme is verified by the simulation.Keywords: cascaded connection, multilevel inverter, synthesis, total harmonic distortion
Procedia PDF Downloads 5321626 Predictive Analysis of Personnel Relationship in Graph Database
Authors: Kay Thi Yar, Khin Mar Lar Tun
Abstract:
Nowadays, social networks are so popular and widely used in all over the world. In addition, searching personal information of each person and searching connection between them (peoples’ relation in real world) becomes interesting issue in our society. In this paper, we propose a framework with three portions for exploring peoples’ relations from their connected information. The first portion focuses on the Graph database structure to store the connected data of peoples’ information. The second one proposes the graph database searching algorithm, the Modified-SoS-ACO (Sense of Smell-Ant Colony Optimization). The last portion proposes the Deductive Reasoning Algorithm to define two persons’ relationship. This study reveals the proper storage structure for connected information, graph searching algorithm and deductive reasoning algorithm to predict and analyze the personnel relationship from peoples’ relation in their connected information.Keywords: personnel information, graph storage structure, graph searching algorithm, deductive reasoning algorithm
Procedia PDF Downloads 4501625 Slurry Erosion Behaviour of Cryotreated SS316L Impeller Steel Used for Irrigation Pumps
Authors: Jagtar Singh, Kulwinder Singh
Abstract:
Slurry erosion is a type of erosion wherein material is removed from the target surface due to impingement of solid particles entrained in liquid medium. Slurry erosion performance of deep cryogenic treatment on impeller steel SS 316 L has been investigated. Slurry collected from an actual irrigation pump used as the abrasive media in an erosion test rig. An attempt has been made to study the effect of velocity of fluid and impingement angle by constant concentration (ppm) on the slurry erosion behavior of these cryotreated steels under different experimental conditions. The slurry erosion wear analysis of cryotreated and untreated steels was done. The slurry erosion performance of cryotreated SS 316L impeller steel has been found to superior to that of untreated steel. Metallurgical investigation, hardness as well as %age of carbide in both types of steel was also investigated.Keywords: deep cryogenic treatment, impeller, Irrigation pumps SS316L, slurry erosion
Procedia PDF Downloads 3921624 Quantitative Characterization of Single Orifice Hydraulic Flat Spray Nozzle
Authors: Y. C. Khoo, W. T. Lai
Abstract:
The single orifice hydraulic flat spray nozzle was evaluated with two global imaging techniques to characterize various aspects of the resulting spray. The two techniques were high resolution flow visualization and Particle Image Velocimetry (PIV). A CCD camera with 29 million pixels was used to capture shadowgraph images to realize ligament formation and collapse as well as droplet interaction. Quantitative analysis was performed to give the sizing information of the droplets and ligaments. This camera was then applied with a PIV system to evaluate the overall velocity field of the spray, from nozzle exit to droplet discharge. PIV images were further post-processed to determine the inclusion angle of the spray. The results from those investigations provided significant quantitative understanding of the spray structure. Based on the quantitative results, detailed understanding of the spray behavior was achieved.Keywords: spray, flow visualization, PIV, shadowgraph, quantitative sizing, velocity field
Procedia PDF Downloads 3821623 Ancelim: Health System Restoration Protocol for Cancer Patients
Authors: Mark Berry
Abstract:
A number of studies have identified several factors involved in the malignant progression of cancer cells. The Primary modulator in driving inflammation to these transformed cells has been identified as the transcription factor known as nuclear factor-κB. This essential regulator of inflammation and the development of cancer, combined with a microenvironment of inflammation and signaling molecules, plays a major role in the malignant progression of cancer, and this progression is the result of the mutagenic predisposition of persistent substances that combat infection at tumor sites and other areas of chronic inflammation. Inflammation-induced tumors, and their inflammatory cells and regulators may be the primary source of metastasis of tumor cells through angiogenesis. Previous research on cytokines and chemokines, including their downstream targets, has been the focus of the cancer/inflammation connection. The identification of the biological mechanisms of other proteins vital to the inflammation cascade and their interactions are crucial to novel and effective therapeutic protocols for the treatment of inflammation-induced cancers. The Ancelim HSRP Protocol is just such a therapeutic intervention.Keywords: ancelim, cancer, inflammation, tumor
Procedia PDF Downloads 5471622 Physical Activity Based on Daily Step-Count in Inpatient Setting in Stroke and Traumatic Brain Injury Patients in Subacute Stage Follow Up: A Cross-Sectional Observational Study
Authors: Brigitte Mischler, Marget Hund, Hilfiker Roger, Clare Maguire
Abstract:
Background: Brain injury is one of the main causes of permanent physical disability, and improving walking ability is one of the most important goals for patients. After inpatient rehabilitation, most do not receive long-term rehabilitation services. Physical activity is important for the health prevention of the musculoskeletal system, circulatory system and the psyche. Objective: This follow-up study measured physical activity in subacute patients after traumatic brain injury and stroke. The difference in the number of steps in the inpatient setting was compared to the number of steps 1 year after the event in the outpatient setting. Methods: This follow-up study is a cross-sectional observational study with 29 participants. The measurement of daily step count over a seven-day period one year after the event was evaluated with the StepWatch™ ankle sensor. The number of steps taken one year after the event in the outpatient setting was compared with the number of steps taken during the inpatient stay and evaluated if they reached the recommended target value. Correlations between steps-count and exit domain, FAC level, walking speed, light touch, joint position sense, cognition, and fear of falling were calculated. Results: The median (IQR) daily step count of all patients was 2512 (568.5, 4070.5). During follow-up, the number of steps improved to 3656(1710,5900). The average difference was 1159(-2825, 6840) steps per day. Participants who were unable to walk independently (FAC 1) improved from 336(5-705) to 1808(92, 5354) steps per day. Participants able to walk with assistance (FAC 2-3) walked 700(31-3080) and at follow-up 3528(243,6871). Independent walkers (FAC 4-5) walked 4093(2327-5868) and achieved 3878(777,7418) daily steps at follow-up. This value is significantly below the recommended guideline. Step-count at follow-up showed moderate to high and statistically significant correlations: positive for FAC score, positive for FIM total score, positive for walking speed, and negative for fear of falling. Conclusions: Only 17% of all participants achieved the recommended daily step count one year after the event. We need better inpatient and outpatient strategies to improve physical activity. In everyday clinical practice, pedometers and diaries with objectives should be used. A concrete weekly schedule should be drawn up together with the patient, relatives, or nursing staff after discharge. This should include daily self-training, which was instructed during the inpatient stay. A good connection to social life (professional connection or a daily task/activity) can be an important part of improving daily activity. Further research should evaluate strategies to increase daily step counts in inpatient settings as well as in outpatient settings.Keywords: neurorehabilitation, stroke, traumatic brain injury, steps, stepcount
Procedia PDF Downloads 161621 Funding of Public Service Broadcasting and Its Connection with Operating of Such Media
Authors: Roman Chrenčík
Abstract:
The expansion of convergent media, mostly in online forms, proposes a great challenge for all “traditional” media. Commercial companies in the media field have the potential to adapt to the current trends quite flexibly. Handling areas of public service media, on the other hand, are immensely limited. Therefore, there is a social discourse in many countries about their importance and function in the current era. The submitted article is a comparative case study regarding the economic officiating of public television broadcasters from Finland (Ylesradio Oy; abbrev. Yle), representing Northern Europe, Czech Republic (Czech Television, abbrev. ČT), representing Central Europe, and Serbia (Radio Television of Serbia, abbrev. RTS), representing Southern Europe. Thus, this study explains the type of funding (public fees, state subsidies, commercial activity, etc.) of each television broadcaster and the way their budgets relate to the operation and competitiveness of the company.Keywords: media, public service broadcasting, Ylesradio Oy, radio television of Serbia, Czech television
Procedia PDF Downloads 811620 Fuzzy Logic Control for Flexible Joint Manipulator: An Experimental Implementation
Authors: Sophia Fry, Mahir Irtiza, Alexa Hoffman, Yousef Sardahi
Abstract:
This study presents an intelligent control algorithm for a flexible robotic arm. Fuzzy control is used to control the motion of the arm to maintain the arm tip at the desired position while reducing vibration and increasing the system speed of response. The Fuzzy controller (FC) is based on adding the tip angular position to the arm deflection angle and using their sum as a feedback signal to the control algorithm. This reduces the complexity of the FC in terms of the input variables, number of membership functions, fuzzy rules, and control structure. Also, the design of the fuzzy controller is model-free and uses only our knowledge about the system. To show the efficacy of the FC, the control algorithm is implemented on the flexible joint manipulator (FJM) developed by Quanser. The results show that the proposed control method is effective in terms of response time, overshoot, and vibration amplitude.Keywords: fuzzy logic control, model-free control, flexible joint manipulators, nonlinear control
Procedia PDF Downloads 1181619 Influence of Flame-Holder on Existence Important Parameters in a Duct Combustion Simulator
Authors: Mohammad Mahdi Doustdar, Mohammad Mojtahedpoor
Abstract:
The effects of flame-holder position, the ratio of flame holder diameter to combustion chamber diameter and injection angle on fuel propulsive droplets sizing and effective mass fraction have been studied by a cold flow. We named the mass of fuel vapor inside the flammability limit as the effective mass fraction. An empty cylinder as well as a flame-holder which are as a simulator for duct combustion has been considered. The airflow comes into the cylinder from one side and injection operation will be done by four nozzles which are located on the entrance of cylinder. To fulfill the calculations a modified version of KIVA-3V code which is a transient, three-dimensional, multi phase, multi component code for the analysis of chemically reacting flows with sprays, is used.Keywords: KIVA-3V, flame-holder, duct combustion, effective mass fraction, mean diameter of droplets
Procedia PDF Downloads 6201618 Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems using a Doubly Fed Induction Generator
Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss
Abstract:
This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking
Procedia PDF Downloads 5641617 Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator with Active Disturbance Rejection Control
Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss
Abstract:
This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking
Procedia PDF Downloads 4991616 Scheduling Nodes Activity and Data Communication for Target Tracking in Wireless Sensor Networks
Authors: AmirHossein Mohajerzadeh, Mohammad Alishahi, Saeed Aslishahi, Mohsen Zabihi
Abstract:
In this paper, we consider sensor nodes with the capability of measuring the bearings (relative angle to the target). We use geometric methods to select a set of observer nodes which are responsible for collecting data from the target. Considering the characteristics of target tracking applications, it is clear that significant numbers of sensor nodes are usually inactive. Therefore, in order to minimize the total network energy consumption, a set of sensor nodes, called sentinel, is periodically selected for monitoring, controlling the environment and transmitting data through the network. The other nodes are inactive. Furthermore, the proposed algorithm provides a joint scheduling and routing algorithm to transmit data between network nodes and the fusion center (FC) in which not only provides an efficient way to estimate the target position but also provides an efficient target tracking. Performance evaluation confirms the superiority of the proposed algorithm.Keywords: coverage, routing, scheduling, target tracking, wireless sensor networks
Procedia PDF Downloads 3781615 Design and Biomechanical Analysis of a Transtibial Prosthesis for Cyclists of the Colombian Team Paralympic
Authors: Jhonnatan Eduardo Zamudio Palacios, Oscar Leonardo Mosquera Dussan, Daniel Guzman Perez, Daniel Alfonso Botero Rosas, Oscar Fabian Rubiano Espinosa, Jose Antonio Garcia Torres, Ivan Dario Chavarro, Ivan Ramiro Rodriguez Camacho, Jaime Orlando Rodriguez
Abstract:
The training of cilsitas with some type of disability finds in the technological development an indispensable ally, generating every day advances to contribute to the quality of life allowing to maximize the capacities of the athletes. The performance of a cyclist depends on physiological and biomechanical factors, such as aerodynamic profile, bicycle measurements, connecting rod length, pedaling systems, type of competition, among others. This study particularly focuses on the description of the dynamic model of a transtibial prosthesis for Paralympic cyclists. To make the model, two points are chosen: in the radius centers of rotation of the plate and pinion of the track bicycle. The parametric scheme of the track bike represents a model of 6 degrees of freedom due to the displacement in X - Y of each of the reference points of the angles of the curve profile β, cant of the velodrome α and the angle of rotation of the connecting rod φ. The force exerted on the crank of the bicycle varies according to the angles of the curve profile β, the velodrome cant of α and the angle of rotation of the crank φ. The behavior is analyzed through the Matlab R2015a software. The average strength that a cyclist exerts on the cranks of a bicycle is 1,607.1 N, the Paralympic cyclist must perform a force on each crank about 803.6 N. Once the maximum force associated with the movement has been determined, it is continued to the dynamic modeling of the transtibial prosthesis that represents a model of 6 degrees of freedom with displacement in X - Y in relation to the angles of rotation of the hip π, knee γ and ankle λ. Subsequently, an analysis of the kinematic behavior of the prosthesis was carried out by means of SolidWorks 2017 and Matlab R2015a, which was used to model and analyze the variation of the hip angles π, knee γ and ankle of the λ prosthesis. The reaction forces generated in the prosthesis were performed on the ankle of the prosthesis, performing the summation of forces on the X and Y axes. The same analysis was then applied to the tibia of the prosthesis and the socket. The reaction force of the parts of the prosthesis varies according to the hip angles π, knee γ and ankle of the prosthesis λ. Therefore, it can be deduced that the maximum forces experienced by the ankle of the prosthesis is 933.6 N on the X axis and 2.160.5 N on the Y axis. Finally, it is calculated that the maximum forces experienced by the tibia and the socket of the transtibial prosthesis in high performance competitions is 3.266 N on the X axis and 1.357 N on the Y axis. In conclusion, it can be said that the performance of the cyclist depends on several physiological factors, linked to biomechanics of training. The influence of biomechanical factors such as aerodynamics, bicycle measurements, connecting rod length, or non-circular pedaling systems on the cyclist performance.Keywords: biomechanics, dynamic model, paralympic cyclist, transtibial prosthesis
Procedia PDF Downloads 3421614 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays
Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev
Abstract:
In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.Keywords: antenna array, signal detection, ToA, AoA estimation
Procedia PDF Downloads 4991613 Study on Connecting Method of Box Pontoons
Authors: Young-Jun You, Youn-Ju Jeong, Min-Su Park, Du-Ho Lee
Abstract:
Due to a lot of limited conditions, a large box type floating structure is inevitably constructed by connecting many pontoons. When a floating structure is made with concrete, concrete shear key with saw-teeth shape is often used to carry shear force. Match casting for the shear key and precise construction on a sea are very important for making separated two pontoons as one body but those are not easy work and may increase construction time and cost. To solve this problem, one-way shear key is studied in this paper for a connected part where there is some difference between upward and downward shear force. It has only one inclined plane and can resist shear force in one direction. Big shear force is resisted by concrete which forms an inclined plane and small shear force is resisted by steel bar. This system can reduce manufacturing cost of individual pontoon and construction time and cost for constructing a floating structure on a sea. In this paper, the feasibility study about one-way shear key system is performed by comparing with design example.Keywords: connection, floating container terminal, pontoon, pre-stressing, shear key
Procedia PDF Downloads 3191612 Effects of Radiation on Mixed Convection in Power Law Fluids along Vertical Wedge Embedded in a Saturated Porous Medium under Prescribed Surface Heat Flux Condition
Authors: Qaisar Ali, Waqar A. Khan, Shafiq R. Qureshi
Abstract:
Heat transfer in Power Law Fluids across cylindrical surfaces has copious engineering applications. These applications comprises of areas such as underwater pollution, bio medical engineering, filtration systems, chemical, petroleum, polymer, food processing, recovery of geothermal energy, crude oil extraction, pharmaceutical and thermal energy storage. The quantum of research work with diversified conditions to study the effects of combined heat transfer and fluid flow across porous media has increased considerably over last few decades. The most non-Newtonian fluids of practical interest are highly viscous and therefore are often processed in the laminar flow regime. Several studies have been performed to investigate the effects of free and mixed convection in Newtonian fluids along vertical and horizontal cylinder embedded in a saturated porous medium, whereas very few analysis have been performed on Power law fluids along wedge. In this study, boundary layer analysis under the effects of radiation-mixed convection in power law fluids along vertical wedge in porous medium have been investigated using an implicit finite difference method (Keller box method). Steady, 2-D laminar flow has been considered under prescribed surface heat flux condition. Darcy, Boussinesq and Roseland approximations are assumed to be valid. Neglecting viscous dissipation effects and the radiate heat flux in the flow direction, the boundary layer equations governing mixed convection flow over a vertical wedge are transformed into dimensionless form. The single mathematical model represents the case for vertical wedge, cone and plate by introducing the geometry parameter. Both similar and Non- similar solutions have been obtained and results for Non similar case have been presented/ plotted. Effects of radiation parameter, variable heat flux parameter, wedge angle parameter ‘m’ and mixed convection parameter have been studied for both Newtonian and Non-Newtonian fluids. The results are also compared with the available data for the analysis of heat transfer in the prescribed range of parameters and found in good agreement. Results for the details of dimensionless local Nusselt number, temperature and velocity fields have also been presented for both Newtonian and Non-Newtonian fluids. Analysis of data revealed that as the radiation parameter or wedge angle is increased, the Nusselt number decreases whereas it increases with increase in the value of heat flux parameter at a given value of mixed convection parameter. Also, it is observed that as viscosity increases, the skin friction co-efficient increases which tends to reduce the velocity. Moreover, pseudo plastic fluids are more heat conductive than Newtonian and dilatant fluids respectively. All fluids behave identically in pure forced convection domain.Keywords: porous medium, power law fluids, surface heat flux, vertical wedge
Procedia PDF Downloads 3121611 Task Kicking Performance with Biomechanical Instrumentation
Authors: T. Hirata, M. G. Silva, L. M. Rosa
Abstract:
The balance ability during task kick in soccer is a determining factor in the execution of functional movements that require a high-performance motor coordination. The current experiment explored it during an instep soccer kick and functional task kicking. Their kicking performance was measured in terms of the sway characteristics using lateral and antero-posterior balance of the center of pressure (COP) for the supporting leg and the kinematic data, the supporting leg’s knee angle. The motion was realized with one-legged stance of five male indoor soccer players and using the trigger device ball controller. The results showed large balance in antero-posterior direction than in lateral direction. However, each player adopts a different way to kick the ball, and the media-lateral displacement of the COP showed no correlation with the balance skill.Keywords: kicking performance, center of pressure, one-legged stance, balance ability
Procedia PDF Downloads 6161610 Towards Interconnectedness: A Study of Collaborative School Culture and Principal Curriculum Leadership
Authors: Fan Chih-Wen
Abstract:
The Ministry of Education (2014) released the 12-year National Basic Education Curriculum Syllabus. Curriculum implementation has evolved from a loose connection of cooperation to a closely structured relationship of coordination and collaboration. Collaboration opens the door to teachers' culture of isolation and classrooms and allows them to discuss educational issues from multiple perspectives and achieve shared goals. The purpose of study is to investigate facilitating factors of collaborative school culture and implications for principal curriculum leadership. The development and implementation of the new curriculum involves collaborative governance across systems and levels, including cooperation between central governments and schools. First, it analyzes the connotation of the 12-year National Basic Education Curriculum; Second, it analyzes the meaning of collaborative culture; Third, it analyzes the motivating factors of collaborative culture. Finally, based on this, it puts forward relevant suggestions for principal curriculum leadership.Keywords: curriculum leadership, collaboration culture, tracher culture, school improvement
Procedia PDF Downloads 231609 Influence of Mandrel’s Surface on the Properties of Joints Produced by Magnetic Pulse Welding
Authors: Ines Oliveira, Ana Reis
Abstract:
Magnetic Pulse Welding (MPW) is a cold solid-state welding process, accomplished by the electromagnetically driven, high-speed and low-angle impact between two metallic surfaces. It has the same working principle of Explosive Welding (EXW), i.e. is based on the collision of two parts at high impact speed, in this case, propelled by electromagnetic force. Under proper conditions, i.e., flyer velocity and collision point angle, a permanent metallurgical bond can be achieved between widely dissimilar metals. MPW has been considered a promising alternative to the conventional welding processes and advantageous when compared to other impact processes. Nevertheless, MPW current applications are mostly academic. Despite the existing knowledge, the lack of consensus regarding several aspects of the process calls for further investigation. As a result, the mechanical resistance, morphology and structure of the weld interface in MPW of Al/Cu dissimilar pair were investigated. The effect of process parameters, namely gap, standoff distance and energy, were studied. It was shown that welding only takes place if the process parameters are within an optimal range. Additionally, the formation of intermetallic phases cannot be completely avoided in the weld of Al/Cu dissimilar pair by MPW. Depending on the process parameters, the intermetallic compounds can appear as continuous layer or small pockets. The thickness and the composition of the intermetallic layer depend on the processing parameters. Different intermetallic phases can be identified, meaning that different temperature-time regimes can occur during the process. It is also found that lower pulse energies are preferred. The relationship between energy increase and melting is possibly related to multiple sources of heating. Higher values of pulse energy are associated with higher induced currents in the part, meaning that more Joule heating will be generated. In addition, more energy means higher flyer velocity, the air existing in the gap between the parts to be welded is expelled, and this aerodynamic drag (fluid friction) is proportional to the square of the velocity, further contributing to the generation of heat. As the kinetic energy also increases with the square of velocity, the dissipation of this energy through plastic work and jet generation will also contribute to an increase in temperature. To reduce intermetallic phases, porosity, and melt pockets, pulse energy should be minimized. The bond formation is affected not only by the gap, standoff distance, and energy but also by the mandrel’s surface conditions. No correlation was clearly identified between surface roughness/scratch orientation and joint strength. Nevertheless, the aspect of the interface (thickness of the intermetallic layer, porosity, presence of macro/microcracks) is clearly affected by the surface topology. Welding was not established on oil contaminated surfaces, meaning that the jet action is not enough to completely clean the surface.Keywords: bonding mechanisms, impact welding, intermetallic compounds, magnetic pulse welding, wave formation
Procedia PDF Downloads 2111608 Effect of Runup over a Vertical Pile Supported Caisson Breakwater and Quarter Circle Pile Supported Caisson Breakwater
Authors: T. J. Jemi Jeya, V. Sriram
Abstract:
Pile Supported Caisson breakwater is an ecofriendly breakwater very useful in coastal zone protection. The model is developed by considering the advantages of both caisson breakwater and pile supported breakwater, where the top portion is a vertical or quarter circle caisson and the bottom portion consists of a pile supported breakwater defined as Vertical Pile Supported Breakwater (VPSCB) and Quarter-circle Pile Supported Breakwater (QPSCB). The study mainly focuses on comparison of run up over VPSCB and QPSCB under oblique waves. The experiments are carried out in a shallow wave basin under different water depths (d = 0.5 m & 0.55 m) and under different oblique regular waves (00, 150, 300). The run up over the surface is measured by placing two run up probes over the surface at 0.3 m on both sides from the centre of the model. The results show that the non-dimensional shoreward run up shows slight decrease with respect to increase in angle of wave attack.Keywords: Caisson breakwater, pile supported breakwater, quarter circle breakwater, vertical breakwater
Procedia PDF Downloads 1531607 Bending Behaviour of Fiber Reinforced Polymer Composite Stiffened Panel Subjected to Transverse Loading
Authors: S. Kumar, Rajesh Kumar, S. Mandal
Abstract:
Fiber Reinforced Polymer (FRP) is gaining popularity in many branch of engineering and various applications due to their light weight, specific strength per unit weight and high stiffness in particular direction. As the strength of material is high it can be used in thin walled structure as industrial roof sheds satisfying the strength constraint with comparatively lesser thickness. Analysis of bending behavior of FRP panel has been done here with variation in oriented angle of stiffener panels, fiber orientation, aspect ratio and boundary conditions subjected to transverse loading by using Finite Element Method. The effect of fiber orientation and thickness of ply has also been studied to determine the minimum thickness of ply for optimized section of stiffened FRP panel.Keywords: bending behavior, fiber reinforced polymer, finite element method, orientation of stiffeners
Procedia PDF Downloads 3921606 Static and Dynamic Behaviors of Sandwich Structures With Metallic Connections
Authors: Shidokht Rashiddadash, Mojtaba Sadighi, Soheil Dariushi
Abstract:
Since sandwich structures are used in many areas ranging from ships, trains, automobiles, aircrafts, bridge and building, connecting sandwich structures is necessary almost in all industries. So application of metallic joints between sandwich panels is increasing. Various joining methods are available such as mechanically fastened joints (riveting or bolting) or adhesively bonded joints and choosing one of them depends on the application. In this research, sandwich specimens were fabricated with two different types of metallic connections with dissimilar geometries. These specimens included beams and plates and were manufactured using glass-epoxy skins and aluminum honeycomb core. After construction of the specimens, bending and low velocity impact tests were executed on them and the behaviors of specimens were discussed. Numerical models were developed using LS-DYNA software and validated with test results. Finally, parametric studies were performed on the thicknesses and lengths of two connections by employing the numerical models.Keywords: connection, honeycomb, low velocity impact, sandwich panel, static test
Procedia PDF Downloads 561605 Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects
Authors: Defne Akay, Bekir S. Kandemir
Abstract:
In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime.Keywords: coulomb impurity, graphene cones, graphene quantum dots, topological defects
Procedia PDF Downloads 2951604 Performance Evaluation of Al Jame’s Roundabout Using SIDRA
Authors: D. Muley, H. S. Al-Mandhari
Abstract:
This paper evaluates the performance of a multi-lane four-legged modern roundabout operating in Muscat using SIDRA model. The performance measures include Degree of Saturation (DOS), average delay, and queue lengths. The geometric and traffic data were used for model preparation. Gap acceptance parameters, critical gap, and follow-up headway were used for calibration of SIDRA model. The results from the analysis showed that currently the roundabout is experiencing delays up to 610 seconds with DOS 1.67 during peak hour. Further, sensitivity analysis for general and roundabout parameters was performed, amongst lane width, cruise speed, inscribed diameter, entry radius, and entry angle showed that inscribed diameter is the most crucial factor affecting delay and DOS. Upgradation of the roundabout to the fully signalized junction was found as the suitable solution which will serve for future years with LOS C for design year having DOS of 0.9 with average control delay of 51.9 seconds per vehicle.Keywords: performance analysis, roundabout, sensitivity analysis, SIDRA
Procedia PDF Downloads 3821603 A Linear Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator
Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss
Abstract:
This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using MATLAB simulink.Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking
Procedia PDF Downloads 526