Search results for: synthetic dataset
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2211

Search results for: synthetic dataset

1101 Breeding Biology and Induced Breeding Status of Freshwater Mud Eel, Monopterus cuchia

Authors: Faruque Miah, Hafij Ali, Enaya Jannat, Tanmoy Modok Shuvra, M. Niamul Naser

Abstract:

In this study, breeding biology and induced breeding of freshwater mud eel, Monopterus cuchia was observed during the experimental period from February to June, 2013. Breeding biology of freshwater mud eel, Monopterus cuchia was considered in terms of gonadosomatic index, length-weight relationship of gonad, ova diameter and fecundity. The ova diameter was recorded from 0.3 mm to 4.30 mm and the individual fecundity was recorded from 155 to 1495 while relative fecundity was found from 2.64 to 12.45. The fecundity related to body weight and length of fish was also discussed. A peak of GSI was observed 2.14±0.2 in male and 5.1 ±1.09 in female. Induced breeding of freshwater mud eel, Monopterus cuchia was also practiced with different doses of different inducing agents like pituitary gland (PG), human chorionic gonadotropin (HCG), Gonadotropin releasing hormone (GnRH) and Ovuline-a synthetic hormone in different environmental conditions. However, it was observed that the artificial breeding of freshwater mud eel, Monopterus cuchia was not yet succeeded through inducing agents in captive conditions, rather the inducing agent showed negative impacts on fecundity and ovarian tissues. It was seen that mature eggs in the oviduct were reduced, absorbed and some eggs were found in spoiled condition.

Keywords: breeding biology, induced breeding, Monopterus cuchia, human chorionic gonadotropin

Procedia PDF Downloads 774
1100 Good Banks, Bad Banks, and Public Scrutiny: The Determinants of Corporate Social Responsibility in Times of Financial Volatility

Authors: A. W. Chalmers, O. M. van den Broek

Abstract:

This article examines the relationship between the global financial crisis and corporate social responsibility activities of financial services firms. It challenges the general consensus in existing studies that firms, when faced with economic hardship, tend to jettison CSR commitments. Instead, and building on recent insights into the institutional determinants of CSR, it is argued that firms are constrained in their ability to abandon CSR by the extent to which they are subject to intense public scrutiny by regulators and the news media. This argument is tested in the context of the European sovereign debt crisis drawing on a unique dataset of 170 firms in 15 different countries over a six-year period. Controlling for a battery of alternative explanations and comparing financial service providers to firms operating in other economic sectors, results indicate considerable evidence supporting the main argument. Rather than abandoning CSR during times of economic hardship, financial industry firms ramp up their CSR commitments in order to manage their public image and foster public trust in light of intense public scrutiny.

Keywords: corporate social responsibility (CSR), public scrutiny, global financial crisis, financial services firms

Procedia PDF Downloads 306
1099 Mesoporous Nanocomposites for Sustained Release Applications

Authors: Daniela Istrati, Alina Morosan, Maria Stanca, Bogdan Purcareanu, Adrian Fudulu, Laura Olariu, Alice Buteica, Ion Mindrila, Rodica Cristescu, Dan Eduard Mihaiescu

Abstract:

Our present work is related to the synthesis, characterization and applications of new nanocomposite materials based on silica mesoporous nanocompozites systems. The nanocomposite support was obtained by using a specific step–by–step multilayer structure buildup synthetic route, characterized by XRD (X-Ray Difraction), TEM (Transmission Electron Microscopy), FT-IR (Fourier Transform-Infra Red Spectrometry), BET (Brunauer–Emmett–Teller method) and loaded with Salvia officinalis plant extract obtained by a hydro-alcoholic extraction route. The sustained release of the target compounds was studied by a modified LC method, proving low release profiles, as expected for the high specific surface area support. The obtained results were further correlated with the in vitro / in vivo behavior of the nanocomposite material and recommending the silica mesoporous nanocomposites as good candidates for biomedical applications. Acknowledgements: This study has been funded by the Research Project PN-III-P2-2.1-PTE-2016-0160, 49-PTE / 2016 (PROZECHIMED) and Project Number PN-III-P4-ID-PCE-2016-0884 / 2017.

Keywords: biomedical, mesoporous, nanocomposites, natural products, sustained release

Procedia PDF Downloads 217
1098 Identification of Thermally Critical Zones Based on Inter Seasonal Variation in Temperature

Authors: Sakti Mandal

Abstract:

Varying distribution of land surface temperature in an urbanized environment is a globally addressed phenomenon. Usually has been noticed that criticality of surface temperature increases from the periphery to the urban centre. As the centre experiences maximum severity of heat throughout the year, it also represents most critical zone in terms of thermal condition. In this present study, an attempt has been taken to propose a quantitative approach of thermal critical zonation (TCZ) on the basis of seasonal temperature variation. Here the zonation is done by calculating thermal critical value (TCV). From the Landsat 8 thermal digital data of summer and winter seasons for the year 2014, the land surface temperature maps and thermally critical zonation has been prepared, and corresponding dataset has been computed to conduct the overall study of that particular study area. It is shown that TCZ can be clearly identified and analyzed by the help of inter-seasonal temperature range. The results of this study can be utilized effectively in future urban development and planning projects as well as a framework for implementing rules and regulations by the authorities for a sustainable urban development through an environmentally affable approach.

Keywords: thermal critical values (TCV), thermally critical zonation (TCZ), land surface temperature (LST), Landsat 8, Kolkata Municipal Corporation (KMC)

Procedia PDF Downloads 197
1097 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering

Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal

Abstract:

The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.

Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease

Procedia PDF Downloads 203
1096 Understanding the Influence on Drivers’ Recommendation and Review-Writing Behavior in the P2P Taxi Service

Authors: Liwen Hou

Abstract:

The booming mobile business has been penetrating the taxi industry worldwide with P2P (peer to peer) taxi services, as an emerging business model, transforming the industry. Parallel with other mobile businesses, member recommendations and online reviews are believed to be very effective with regard to acquiring new users for P2P taxi services. Based on an empirical dataset of the taxi industry in China, this study aims to reveal which factors influence users’ recommendations and review-writing behaviors. Differing from the existing literature, this paper takes the taxi driver’s perspective into consideration and hence selects a group of variables related to the drivers. We built two models to reflect the factors that influence the number of recommendations and reviews posted on the platform (i.e., the app). Our models show that all factors, except the driver’s score, significantly influence the recommendation behavior. Likewise, only one factor, passengers’ bad reviews, is insignificant in generating more drivers’ reviews. In the conclusion, we summarize the findings and limitations of the research.

Keywords: online recommendation, P2P taxi service, review-writing, word of mouth

Procedia PDF Downloads 306
1095 Study of the Removal of a Red Dye Acid and Sodium Bentonite Raw

Authors: N. Ouslimani, M. T. Abadlia

Abstract:

Wastewater from manufacturing industries are responsible for many organic micropollutants such as some detergents and dyes. It is estimated that 10-15 % of these chemical compounds in the effluents are discharged. In the method of dyeing the dyes are often used in excess to improve the dye and thereby the waste water are highly concentrated dye. The treatment of effluents containing dye has become a necessity given its negative repercussions on ecosystems mainly due to the pollutant nature of synthetic dyes and particularly soluble dyes such as acid dyes. Technology adsorptive separation is now a separation technologies of the most important treatments. The choice led to the use of bentonite occurs in order to use an equally effective and less costly than replacing charcoal. This choice is also justified by the importance of the material developed by, the possibility of cation exchange and high availability in our country surface. During this study, therefore, we test the clay, the main constituent is montmorillonite, whose most remarkable properties are its swelling resulting from the presence of water in the space between the sheets and the fiber structure to the adsorption of acid dye "red Bemacid. "The study of various parameters i.e. time, temperature, and pH showed that the adsorption is more favorable to the temperature of 19 °C for 240 minutes at a Ph equal to 2.More styles and Langmuir adsorption Freundlich were applied to describe the isotherms. The results show that sodium bentonite seems to affect the ability and effectiveness to adsorb colorant.Les ultimate quantities are respectively 0.629 mg/g and 0.589 mg/g for sodium bentonite and bentonite gross.

Keywords: Bentonite, treatment of polluted water, acid dyes, adsorption

Procedia PDF Downloads 263
1094 4(3H)-Quinazolinone Derivatives' Synthesis and Evaluation as Antimalarial and Anti-Leishmanial Agents

Authors: Alemu Tadesse Feroche

Abstract:

In this study, some 2, 3 distributed quinazoline -4 (3H) - one derivative were synthesized using a three-step synthetic route. They were obtained in a good yield (59.5-85%) by applying different chemical reactions like cyclization and condensation reactions. The chemical structure of the final compounds was also verified by spectroscopic methods (IR, ¹HNMR) and elemental microanalysis. The in vivo antimalarial activity of these compounds on P. berghei infected mice was found to be moderate to high at an oral dose of 0.04846 mmol/kg /day. This is equal to 25 mg/kg of chloroquine phosphate, which causes 100% inhibition of the parasite. It is worth mentioning that most active compounds (E) -3 Phenyl -2- [2- (pyridine -4- yl) vinyl] -4 (3H) -quinazolinone IVa (64.02%, (E)-2-[2-(4 - Hydroxy-3 - methoxystyryl) - vinyl) -3 - phenyl -4 (3H ) - quinazolinone IVc (77.25%) and (E)-2 –[2 –(Pyridin -4-yl) –vinyl] -3 phenenylamine -4(3H) quinazolinone IVe (73.54%) showed a dose-dependent increase in present suppression in antimalarial activities. Furthermore, the synthesized compounds were screened for their in vitro antileishmanial activity against L. aethiopica isolate (CL/039/09). All tested compounds (IVa (0.03766 ug/ml), IVb (0.00538 ug/ml, IVc (0.00412 ug/ml, IVd (0.00110 ug/ml), IVe (0.03017 ug/ml) and IVf (0.03894 ug/ml)) showed excellent potency that is much better than amphotericin B (IC50 = 0,04359 ug/ml). The results of acute toxicity indicated that all test compounds (IVa –IVf) proved to be nontoxic and well tolerated by the experimental animals up to 300 mg/kg in oral and 140 mg/kg in parental studies.

Keywords: 4(3H)-quinazolinone, in vivo antimalarial activity, in vitro antileishmanial activity, acute toxicity

Procedia PDF Downloads 100
1093 The Correlation of Total Phenol Content with Free Radicals Scavenging Activity and Effect of Ethanol Concentration in Extraction Process of Mangosteen Rind (Garcinia mangostana)

Authors: Ririn Lestari Sri Rahayu, Mustofa Ahda

Abstract:

The use of synthetic antioxidants often causes a negative effect on health and increases the incidence of carcinogenesis. Development of the natural antioxidants should be investigated. However, natural antioxidants have a low toxicity and are safe for human consumption. Ethanol extract of mangosteen rind (Garcinia mangostana) contains natural antioxidant compounds that have various pharmacological activities. Antioxidants from the ethanol extract of mangosteen rind have free radicals scavenging activities. The scavenging activity of ethanol extract of mangosteen rind was determined by DPPH method. The phenolic compound from the ethanol extract of mangosteen rind is determined with Folin-Ciocalteu method. The results showed that the absolute ethanol extract of mangosteen rind has IC50 of 40.072 ug/mL. The correlation of total phenols content with free radical scavenging activity has an equation y: 5.207x + 205.51 and determination value (R2) of 0.9329. Total phenols content from the ethanol extract of mangosteen rind has a good correlation with free radicals scavenging activity of DPPH.

Keywords: Antioxidant, Garcinia mangostana, Inhibition concentration 50%, Phenolic.

Procedia PDF Downloads 361
1092 Challenges to Developing a Trans-European Programme for Health Professionals to Recognize and Respond to Survivors of Domestic Violence and Abuse

Authors: June Keeling, Christina Athanasiades, Vaiva Hendrixson, Delyth Wyndham

Abstract:

Recognition and education in violence, abuse, and neglect for medical and healthcare practitioners (REVAMP) is a trans-European project aiming to introduce a training programme that has been specifically developed by partners across seven European countries to meet the needs of medical and healthcare practitioners. Amalgamating the knowledge and experience of clinicians, researchers, and educators from interdisciplinary and multi-professional backgrounds, REVAMP has tackled the under-resourced and underdeveloped area of domestic violence and abuse. The team designed an online training programme to support medical and healthcare practitioners to recognise and respond appropriately to survivors of domestic violence and abuse at their point of contact with a health provider. The REVAMP partner countries include Europe: France, Lithuania, Germany, Greece, Iceland, Norway, and the UK. The training is delivered through a series of interactive online modules, adapting evidence-based pedagogical approaches to learning. Capturing and addressing the complexities of the project impacted the methodological decisions and approaches to evaluation. The challenge was to find an evaluation methodology that captured valid data across all partner languages to demonstrate the extent of the change in knowledge and understanding. Co-development by all team members was a lengthy iterative process, challenged by a lack of consistency in terminology. A mixed methods approach enabled both qualitative and quantitative data to be collected, at the start, during, and at the conclusion of the training for the purposes of evaluation. The module content and evaluation instrument were accessible in each partner country's language. Collecting both types of data provided a high-level snapshot of attainment via the quantitative dataset and an in-depth understanding of the impact of the training from the qualitative dataset. The analysis was mixed methods, with integration at multiple interfaces. The primary focus of the analysis was to support the overall project evaluation for the funding agency. A key project outcome was identifying that the trans-European approach posed several challenges. Firstly, the project partners did not share a first language or a legal or professional approach to domestic abuse and neglect. This was negotiated through complex, systematic, and iterative interaction between team members so that consensus could be achieved. Secondly, the context of the data collection in several different cultural, educational, and healthcare systems across Europe challenged the development of a robust evaluation. The participants in the pilot evaluation shared that the training was contemporary, well-designed, and of great relevance to inform practice. Initial results from the evaluation indicated that the participants were drawn from more than eight partner countries due to the online nature of the training. The primary results indicated a high level of engagement with the content and achievement through the online assessment. The main finding was that the participants perceived the impact of domestic abuse and neglect in very different ways in their individual professional contexts. Most significantly, the participants recognised the need for the training and the gap that existed previously. It is notable that a mixed-methods evaluation of a trans-European project is unusual at this scale.

Keywords: domestic violence, e-learning, health professionals, trans-European

Procedia PDF Downloads 83
1091 Deepnic, A Method to Transform Each Variable into Image for Deep Learning

Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.

Abstract:

Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.

Keywords: tabular data, deep learning, perfect trees, NICS

Procedia PDF Downloads 90
1090 Theoretical Study of Acetylation of P-Methylaniline Catalyzed by Cu²⁺ Ions

Authors: Silvana Caglieri

Abstract:

Theoretical study of acetylation of p-methylaniline catalyzed by Cu2+ ions from the analysis of intermediate of the reaction was carried out. The study of acetylation of amines is of great interest by the utility of its products of reaction and is one of the most frequently used transformations in organic synthesis as it provides an efficient and inexpensive means for protecting amino groups in a multistep synthetic process. Acetylation of amine is a nucleophilic substitution reaction. This reaction can be catalyzed by Lewis acid, metallic ion. In reaction mechanism, the metallic ion formed a complex with the oxygen of the acetic anhydride carbonyl, facilitating the polarization of the same and the successive addition of amine at the position to form a tetrahedral intermediate, determining step of the rate of the reaction. Experimental work agreed that this reaction takes place with the formation of a tetrahedral intermediate. In the present theoretical work were investigated the structure and energy of the tetrahedral intermediate of the reaction catalyzed by Cu2+ ions. Geometries of all species involved in the acetylation were made and identified. All of the geometry optimizations were performed by the method at the DFT/B3LYP level of theory and the method MP2. Were adopted the 6-31+G* basis sets. Energies were calculated using the Mechanics-UFF method. Following the same procedure it was identified the geometric parameters and energy of reaction intermediate. The calculations show 61.35 kcal/mol of energy for the tetrahedral intermediate and the energy of activation for the reaction was 15.55 kcal/mol.

Keywords: amides, amines, DFT, MP2

Procedia PDF Downloads 282
1089 Online Yoga Asana Trainer Using Deep Learning

Authors: Venkata Narayana Chejarla, Nafisa Parvez Shaik, Gopi Vara Prasad Marabathula, Deva Kumar Bejjam

Abstract:

Yoga is an advanced, well-recognized method with roots in Indian philosophy. Yoga benefits both the body and the psyche. Yoga is a regular exercise that helps people relax and sleep better while also enhancing their balance, endurance, and concentration. Yoga can be learned in a variety of settings, including at home with the aid of books and the internet as well as in yoga studios with the guidance of an instructor. Self-learning does not teach the proper yoga poses, and doing them without the right instruction could result in significant injuries. We developed "Online Yoga Asana Trainer using Deep Learning" so that people could practice yoga without a teacher. Our project is developed using Tensorflow, Movenet, and Keras models. The system makes use of data from Kaggle that includes 25 different yoga poses. The first part of the process involves applying the movement model for extracting the 17 key points of the body from the dataset, and the next part involves preprocessing, which includes building a pose classification model using neural networks. The system scores a 98.3% accuracy rate. The system is developed to work with live videos.

Keywords: yoga, deep learning, movenet, tensorflow, keras, CNN

Procedia PDF Downloads 240
1088 Evaluating Contextually Targeted Advertising with Attention Measurement

Authors: John Hawkins, Graham Burton

Abstract:

Contextual targeting is a common strategy for advertising that places marketing messages in media locations that are expected to be aligned with the target audience. There are multiple major challenges to contextual targeting: the ideal categorisation scheme needs to be known, as well as the most appropriate subsections of that scheme for a given campaign or creative. In addition, the campaign reach is typically limited when targeting becomes narrow, so a balance must be struck between requirements. Finally, refinement of the process is limited by the use of evaluation methods that are either rapid but non-specific (click through rates), or reliable but slow and costly (conversions or brand recall studies). In this study we evaluate the use of attention measurement as a technique for understanding the performance of targeting on the basis of specific contextual topics. We perform the analysis using a large scale dataset of impressions categorised using the iAB V2.0 taxonomy. We evaluate multiple levels of the categorisation hierarchy, using categories at different positions within an initial creative specific ranking. The results illustrate that measuring attention time is an affective signal for the performance of a specific creative within a specific context. Performance is sustained across a ranking of categories from one period to another.

Keywords: contextual targeting, digital advertising, attention measurement, marketing performance

Procedia PDF Downloads 104
1087 The Synthesis and Characterization of Highly Water-Soluble Silane Coupling Agents for Increasing Silica Filler Content in Styrene-Butadiene Rubber

Authors: Jun Choi, Bo Ram Lee, Ji Hye Choi, Jung Soo Kim, No-Hyung Park, Dong Hyun Kim

Abstract:

The synthetic rubber compound, which is widely used as the core material for automobile tire industry, is manufactured by mixing styrene-butadiene rubber (SBR) and organic/inorganic fillers. It is known that the most important factor for the physical properties of rubber compound is the interaction between the filler and the rubber, which affects the rotational, braking and abrasion resistance. Silica filler has hydrophilic groups such as a silanol group on their surface which has a low affinity with hydrophobic rubbers. In order to solve this problem, researches on an efficient silane coupling agent (SCA) has been continuously carried out. In this study, highly water-soluble SCAs which are expected to show higher hydrolysis efficiency were synthesized. The hydrophobization process of the silica with the prepared SCAs was economical and environment-friendly. The SCAs structures were analysed by gas chromatography-mass spectrometry (GC/MS) and nuclear magnetic resonance (1H-NMR) spectroscopy. In addition, their hydrolysis efficiency and condensation side reaction in SBR wet master batch were examined by Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC), respectively.

Keywords: rubber, silane coupling agent, synthesis, water-soluble

Procedia PDF Downloads 293
1086 Shifted Window Based Self-Attention via Swin Transformer for Zero-Shot Learning

Authors: Yasaswi Palagummi, Sareh Rowlands

Abstract:

Generalised Zero-Shot Learning, often known as GZSL, is an advanced variant of zero-shot learning in which the samples in the unseen category may be either seen or unseen. GZSL methods typically have a bias towards the seen classes because they learn a model to perform recognition for both the seen and unseen classes using data samples from the seen classes. This frequently leads to the misclassification of data from the unseen classes into the seen classes, making the task of GZSL more challenging. In this work of ours, to solve the GZSL problem, we propose an approach leveraging the Shifted Window based Self-Attention in the Swin Transformer (Swin-GZSL) to work in the inductive GSZL problem setting. We run experiments on three popular benchmark datasets: CUB, SUN, and AWA2, which are specifically used for ZSL and its other variants. The results show that our model based on Swin Transformer has achieved state-of-the-art harmonic mean for two datasets -AWA2 and SUN and near-state-of-the-art for the other dataset - CUB. More importantly, this technique has a linear computational complexity, which reduces training time significantly. We have also observed less bias than most of the existing GZSL models.

Keywords: generalised, zero-shot learning, inductive learning, shifted-window attention, Swin transformer, vision transformer

Procedia PDF Downloads 71
1085 Development of Calcium Carbonate Molecular Sheets via Wet Chemical Route

Authors: Sudhir Kumar Sharma, Ramesh Jagannathan

Abstract:

The interaction of organic and inorganic matrices of biological origin resulting in self-assembled structures with unique properties is well established. The development of such self-assembled nanostructures by synthetic and bio-inspired techniques is an established field of active research. Among bio-materials, nacre, a laminar stack of calcium carbonate nanosheets, which are interleaved with organic material, has long been focused research due to its unique mechanical properties. In this paper, we present the development of nacre-like lamellar structures made up of calcium carbonate via a wet chemical route. We used the binding affinity of carboxylate anions and calcium cations using poly (acrylic) acid (PAA) to lead CaCO₃ crystallization. In these experiments, we selected calcium acetate as the precursor molecule along with PAA (Mw ~ 8000 Da). We found that Ca⁺²/COO⁻ ratio provided a tunable control for the morphology and growth of CaCO₃ nanostructures. Drop casting one such formulation on a silicon substrate followed by calcination resulted in co-planner, molecular sheets of CaCO₃, separated by a spacer layer of carbon. The scope of our process could be expanded to produce unit cell thick molecular sheets of other important inorganic materials.

Keywords: self-assembled structures, bio-inspired materials, calcium carbonate, wet chemical route

Procedia PDF Downloads 136
1084 Risk Screening in Digital Insurance Distribution: Evidence and Explanations

Authors: Finbarr Murphy, Wei Xu, Xian Xu

Abstract:

The embedding of digital technologies in the global economy has attracted increasing attention from economists. With a large and detailed dataset, this study examines the specific case where consumers have a choice between offline and digital channels in the context of insurance purchases. We find that digital channels screen consumers with lower unobserved risk. For the term life, endowment, and disease insurance products, the average risk of the policies purchased through digital channels was 75%, 21%, and 31%, respectively, lower than those purchased offline. As a consequence, the lower unobserved risk leads to weaker information asymmetry and higher profitability of digital channels. We highlight three mechanisms of the risk screening effect: heterogeneous marginal influence of channel features on insurance demand, the channel features directly related to risk control, and the link between the digital divide and risk. We also find that the risk screening effect mainly comes from the extensive margin, i.e., from new consumers. This paper contributes to three connected areas in the insurance context: the heterogeneous economic impacts of digital technology adoption, insurer-side risk selection, and insurance marketing.

Keywords: digital economy, information asymmetry, insurance, mobile application, risk screening

Procedia PDF Downloads 73
1083 Dynamic Interaction between Renwable Energy Consumption and Sustainable Development: Evidence from Ecowas Region

Authors: Maman Ali M. Moustapha, Qian Yu, Benjamin Adjei Danquah

Abstract:

This paper investigates the dynamic interaction between renewable energy consumption (REC) and economic growth using dataset from the Economic Community of West African States (ECOWAS) from 2002 to 2016. For this study the Autoregressive Distributed Lag- Bounds test approach (ARDL) was used to examine the long run relationship between real gross domestic product and REC, while VECM based on Granger causality has been used to examine the direction of Granger causality. Our empirical findings indicate that REC has significant and positive impact on real gross domestic product. In addition, we found that REC and the percentage of access to electricity had unidirectional Granger causality to economic growth while carbon dioxide emission has bidirectional Granger causality to economic growth. Our findings indicate also that 1 per cent increase in the REC leads to an increase in Real GDP by 0.009 in long run. Thus, REC can be a means to ensure sustainable economic growth in the ECOWAS sub-region. However, it is necessary to increase further support and investments on renewable energy production in order to speed up sustainable economic development throughout the region

Keywords: Economic Growth, Renewable Energy, Sustainable Development, Sustainable Energy

Procedia PDF Downloads 209
1082 Synthesis and Characterization of Functionalized Carbon Nanorods/Polystyrene Nanocomposites

Authors: M. A. Karakassides, M. Baikousi, A. Kouloumpis, D. Gournis

Abstract:

Nanocomposites of Carbon Nanorods (CNRs) with Polystyrene (PS), have been synthesized successfully by means of in situ polymerization process and characterized. Firstly, carbon nanorods with graphitic structure were prepared by the standard synthetic procedure of CMK-3 using MCM-41 as template, instead of SBA-15, and sucrose as carbon source. In order to create an organophilic surface on CNRs, two parts of modification were realized: surface chemical oxidation (CNRs-ox) according to the Staudenmaier’s method and the attachment of octadecylamine molecules on the functional groups of CNRs-ox (CNRs-ODA The nanocomposite materials of polystyrene with CNRs-ODA, were prepared by a solution-precipitation method at three nanoadditive to polymer loadings (1, 3 and 5 wt. %). The as derived nanocomposites were studied with a combination of characterization and analytical techniques. Especially, Fourier-transform infrared (FT-IR) and Raman spectroscopies were used for the chemical and structural characterization of the pristine materials and the derived nanocomposites while the morphology of nanocomposites and the dispersion of the carbon nanorods were analyzed by atomic force and scanning electron microscopy techniques. Tensile testing and thermogravimetric analysis (TGA) along with differential scanning calorimetry (DSC) were also used to examine the mechanical properties and thermal stability -glass transition temperature of PS after the incorporation of CNRs-ODA nanorods. The results showed that the thermal and mechanical properties of the PS/ CNRs-ODA nanocomposites gradually improved with increasing of CNRs-ODA loading.

Keywords: nanocomposites, polystyrene, carbon, nanorods

Procedia PDF Downloads 352
1081 Advancing in Cricket Analytics: Novel Approaches for Pitch and Ball Detection Employing OpenCV and YOLOV8

Authors: Pratham Madnur, Prathamkumar Shetty, Sneha Varur, Gouri Parashetti

Abstract:

In order to overcome conventional obstacles, this research paper investigates novel approaches for cricket pitch and ball detection that make use of cutting-edge technologies. The research integrates OpenCV for pitch inspection and modifies the YOLOv8 model for cricket ball detection in order to overcome the shortcomings of manual pitch assessment and traditional ball detection techniques. To ensure flexibility in a range of pitch environments, the pitch detection method leverages OpenCV’s color space transformation, contour extraction, and accurate color range defining features. Regarding ball detection, the YOLOv8 model emphasizes the preservation of minor object details to improve accuracy and is specifically trained to the unique properties of cricket balls. The methods are more reliable because of the careful preparation of the datasets, which include novel ball and pitch information. These cutting-edge methods not only improve cricket analytics but also set the stage for flexible methods in more general sports technology applications.

Keywords: OpenCV, YOLOv8, cricket, custom dataset, computer vision, sports

Procedia PDF Downloads 80
1080 Ontology Mapping with R-GNN for IT Infrastructure: Enhancing Ontology Construction and Knowledge Graph Expansion

Authors: Andrey Khalov

Abstract:

The rapid growth of unstructured data necessitates advanced methods for transforming raw information into structured knowledge, particularly in domain-specific contexts such as IT service management and outsourcing. This paper presents a methodology for automatically constructing domain ontologies using the DOLCE framework as the base ontology. The research focuses on expanding ITIL-based ontologies by integrating concepts from ITSMO, followed by the extraction of entities and relationships from domain-specific texts through transformers and statistical methods like formal concept analysis (FCA). In particular, this work introduces an R-GNN-based approach for ontology mapping, enabling more efficient entity extraction and ontology alignment with existing knowledge bases. Additionally, the research explores transfer learning techniques using pre-trained transformer models (e.g., DeBERTa-v3-large) fine-tuned on synthetic datasets generated via large language models such as LLaMA. The resulting ontology, termed IT Ontology (ITO), is evaluated against existing methodologies, highlighting significant improvements in precision and recall. This study advances the field of ontology engineering by automating the extraction, expansion, and refinement of ontologies tailored to the IT domain, thus bridging the gap between unstructured data and actionable knowledge.

Keywords: ontology mapping, knowledge graphs, R-GNN, ITIL, NER

Procedia PDF Downloads 15
1079 Hyperspectral Image Classification Using Tree Search Algorithm

Authors: Shreya Pare, Parvin Akhter

Abstract:

Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.

Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm

Procedia PDF Downloads 177
1078 Internationalization Strategies and Firm Productivity: Manufacturing Firm-Level Evidence from Ethiopia

Authors: Soressa Tolcha Jarra

Abstract:

Looking into firm-level internationalization strategies and their effects on firms' productivity is needed in order to understand the role of firms’ participation in trading activities on the one hand and the effects of firms’ internalization strategies on firm-level productivity on the other. Thus, this study aims to investigate firms' imports of intermediates and export strategies and their impact on firm productivity using an establishment-level panel dataset from Ethiopian manufacturing firms over the period 2011–2020. Methodologically, the joint firm’s decision to import intermediates and estimate exports is undertaken by system GMM using Wooldridge's approach. The translog-production function is used to estimate firm-level productivity by considering a general Markov process. The size of the firm is used in a mediating role. The result indicates evidence of the self-selection of more productive firms into exporting and importing intermediates, which is indicative of sizable export and import market entry costs. Furthermore, there is evidence in favor of learning by exporting (LBE) and learning by importing (LBI) hypotheses for smaller and medium Ethiopian manufacturing firms. However, for large firms, there is only evidence in support of the learning by exporting (LBE) hypothesis.

Keywords: Ethiopia, export, firm productivity, intermediate imports

Procedia PDF Downloads 35
1077 Drinking Water Quality Assessment Using Fuzzy Inference System Method: A Case Study of Rome, Italy

Authors: Yas Barzegar, Atrin Barzegar

Abstract:

Drinking water quality assessment is a major issue today; technology and practices are continuously improving; Artificial Intelligence (AI) methods prove their efficiency in this domain. The current research seeks a hierarchical fuzzy model for predicting drinking water quality in Rome (Italy). The Mamdani fuzzy inference system (FIS) is applied with different defuzzification methods. The Proposed Model includes three fuzzy intermediate models and one fuzzy final model. Each fuzzy model consists of three input parameters and 27 fuzzy rules. The model is developed for water quality assessment with a dataset considering nine parameters (Alkalinity, Hardness, pH, Ca, Mg, Fluoride, Sulphate, Nitrates, and Iron). Fuzzy-logic-based methods have been demonstrated to be appropriate to address uncertainty and subjectivity in drinking water quality assessment; it is an effective method for managing complicated, uncertain water systems and predicting drinking water quality. The FIS method can provide an effective solution to complex systems; this method can be modified easily to improve performance.

Keywords: water quality, fuzzy logic, smart cities, water attribute, fuzzy inference system, membership function

Procedia PDF Downloads 75
1076 Developing a Web GIS Tool for the Evaluation of Soil Erosion of a Watershed

Authors: Y. Fekir, K. Mederbal, M. A. Hamadouche, D. Anteur

Abstract:

The soil erosion by water has become one of the biggest problems of the environment in the world, threatening the majority of countries. There are several models to evaluate erosion. These models are still a simplified representation of reality. They permit the analysis of complex systems, measurements are complementary to allow an extrapolation in time and space and may combine different factors. The empirical model of soil loss proposed by Wischmeier and Smith (Universal Soil Loss Equation), is widely used in many countries. He considers that erosion is a multiplicative function of five factors: rainfall erosivity (the R factor) the soil erodibility factor (K), topography (LS), the erosion control practices (P) and vegetation cover and agricultural practices (C). In this work, we tried to develop a tool based on Web GIS functionality to evaluate soil losses caused by erosion taking into account five factors. This tool allows the user to integrate all the data needed for the evaluation (DEM, Land use, rainfall ...) in the form of digital layers to calculate the five factors taken into account in the USLE equation (R, K, C, P, LS). Accordingly, and after treatment of the integrated data set, a map of the soil losses will be achieved as a result. We tested the proposed tool on a watershed basin located in the weste of Algeria where a dataset was collected and prepared.

Keywords: USLE, erosion, web gis, Algeria

Procedia PDF Downloads 330
1075 A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures

Authors: Adriano Z. Zambom, Preethi Ravikumar

Abstract:

One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified.

Keywords: additive model, nonparametric regression, variable selection, Akaike Information Criteria

Procedia PDF Downloads 264
1074 Evaluation of Collagen Synthesis in Macrophages/Fibroblasts Co-Culture Using Polylactic Acid Particles as Stimulants

Authors: Feng Ju Chuang, Yu Wen Wang, Tai Jung Hsieh, Shyh Ming Kuo

Abstract:

Polylactic acid is a synthetic polymer with good biocompatibility and degradability, is widely used in clinical applications. In this study, we utilized Polylactic acid particles as stimulants for macrophages and the collagen synthesis of co-cultured fibroblasts was evaluated. The results indicated that Polylactic acid particles were nontoxic to cells from 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. No obvious inflammation effect was observed (under the PLLA concentration of 1 mg/mL) after 24-h co-culture of Raw264.7 and NIH3T3 cells (from TNF-α assay). The addition of PLLA particles to the Raw264.7 and NIH3T3 co-cultures increased the synthesis of collagen, the highest collagen synthesis from the fibroblast was the 0.2 mg/mL (approximately 60% increased as compared with without addition Polylactic acid particles). Moreover, a co-axial atomization delivery device was used to percutaneously introduce Polylactic acid particles into the dermis layer and stimulating macrophages to secrete growth factors promoting fibroblasts to produce collagen. The preliminary results demonstrated the synthesis of collagen was increased mildly after the introduction of Polylactic acid particles for 28-d post implantation. The Polylactic acid particles could be successfully introduced into the dermis layer from H&E staining examination, however, the optimum concentration of Polylactic acid particles and the time-period for collagen synthesis still need to be evaluated.

Keywords: collagen synthesis, macrophage, NIH3T3 cells, polylactic acid particles

Procedia PDF Downloads 113
1073 Synthesis, Characterization, and Quantum Investigations on [3+2] Cycloaddition Reaction of Nitrile Oxide with 1,5-Benzodiazepine

Authors: Samir Hmaimou, Marouane Ait Lahcen, Mohamed Adardour, Mohamed Maatallah, Abdesselam Baouid

Abstract:

Due to (3 + 2) cycloaddition and condensation reaction, a wide range of synthetic routes can be used to obtain biologically active heterocyclic compounds. Condensation and (3+2) cycloaddition reactions in heterocyclic syntheses are versatile due to the wide variety of possible combinations of several atoms of the reactants. In this article, we first outline the synthesis of benzodiazepine 4 with two dipolarophilic centers (C=C and C=N) by condensation reaction. Then, we use it for cycloaddition reactions (3+2) with nitrile oxides to prepare oxadiazole-benzodiazepines and pyrazole-benzodiazepine compounds. ¹H and ¹³C NMR are used to establish all the structures of the synthesized products. These condensation and cycloaddition reactions were then analyzed using density functional theory (DFT) calculations at the B3LYP/6-311G(d,p) theoretical level. In this study, the mechanism of the one-step cycloaddition reaction was investigated. Molecular electrostatic potential (MEP) was used to identify the electrophilic and nucleophilic attack sites of the molecules studied. Additionally, Fukui investigations (electrophilic f- and nucleophilic f+) in the various reaction centers of the reactants demonstrate that, whether in the condensation reaction or cycloaddition, the reaction proceeds through the atomic centers with the most important Fukui functions, which is in full agreement with experimental observations. In the condensation reaction, thermodynamic control of regio, chemo, and stereoselectivity is observed, while those of cycloaddition are subject to kinetic control.

Keywords: cycloaddition reaction, regioselectivity, mechanism reaction, NMR analysis

Procedia PDF Downloads 17
1072 Heterocyclic Ring Extension of Estrone: Synthesis and Cytotoxicity of Fused Pyrin, Pyrimidine and Thiazole Derivatives

Authors: Rafat M. Mohareb

Abstract:

Several D-ring alkylated estrone analogues display exceptionally high affinity for estrogen receptors. In particular, compounds in which an E-ring is formed are known to be involved in the inhibition of steroidogenic enzymes. Such compounds also have an effect on steroid dehydrogenase activity and the ability to inhibit the detrimental action of the steroid sulfatase enzyme. Generally, E-ring extended steroids have been accessed by modification of the C17-ketone in the D-ring by either arylimine or oximino formation, addition of a carbon nucleophile or hydrazone formation. Other approaches have included ketone reduction, silyl enol ether formation or ring-closing metathesis (giving five- or six-membered E-rings). Chemical modification of the steroid D-ring provides a way to alter the functional groups, sizes and stereochemistry of the D-ring, and numerous structure-activity relationships have been established by such synthetic alterations. Steroids bearing heterocycles fused to the D-ring of the steroid nucleus have been of pharmaceutical interest. In the present paper, we report on the efficient synthesis of estrone possessing pyran, pyrimidine and thiazole ring systems. This study focused on the synthesis and biochemical evaluation of newly synthesized heterocyclic compounds which were then subjected through inhibitory evaluations towards human cancer and normal cell lines.

Keywords: estrone, heterocyclization, cytotoxicity, biomedicine

Procedia PDF Downloads 295