Search results for: support vector machines (SVM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8245

Search results for: support vector machines (SVM)

7135 Modelling Dengue Disease With Climate Variables Using Geospatial Data For Mekong River Delta Region of Vietnam

Authors: Thi Thanh Nga Pham, Damien Philippon, Alexis Drogoul, Thi Thu Thuy Nguyen, Tien Cong Nguyen

Abstract:

Mekong River Delta region of Vietnam is recognized as one of the most vulnerable to climate change due to flooding and seawater rise and therefore an increased burden of climate change-related diseases. Changes in temperature and precipitation are likely to alter the incidence and distribution of vector-borne diseases such as dengue fever. In this region, the peak of the dengue epidemic period is around July to September during the rainy season. It is believed that climate is an important factor for dengue transmission. This study aims to enhance the capacity of dengue prediction by the relationship of dengue incidences with climate and environmental variables for Mekong River Delta of Vietnam during 2005-2015. Mathematical models for vector-host infectious disease, including larva, mosquito, and human being were used to calculate the impacts of climate to the dengue transmission with incorporating geospatial data for model input. Monthly dengue incidence data were collected at provincial level. Precipitation data were extracted from satellite observations of GSMaP (Global Satellite Mapping of Precipitation), land surface temperature and land cover data were from MODIS. The value of seasonal reproduction number was estimated to evaluate the potential, severity and persistence of dengue infection, while the final infected number was derived to check the outbreak of dengue. The result shows that the dengue infection depends on the seasonal variation of climate variables with the peak during the rainy season and predicted dengue incidence follows well with this dynamic for the whole studied region. However, the highest outbreak of 2007 dengue was not captured by the model reflecting nonlinear dependences of transmission on climate. Other possible effects will be discussed to address the limitation of the model. This suggested the need of considering of both climate variables and another variability across temporal and spatial scales.

Keywords: infectious disease, dengue, geospatial data, climate

Procedia PDF Downloads 383
7134 Employing Operations Research at Universities to Build Management Systems

Authors: Abdallah A. Hlayel

Abstract:

Operations research science (OR) deals with good success in developing and applying scientific methods for problem solving and decision-making. However, by using OR techniques, we can enhance the use of computer decision support systems to achieve optimal management for institutions. OR applies comprehensive analysis including all factors that affect on it and builds mathematical modeling to solve business or organizational problems. In addition, it improves decision-making and uses available resources efficiently. The adoption of OR by universities would definitely contributes to the development and enhancement of the performance of OR techniques. This paper provides an understanding of the structures, approaches and models of OR in problem solving and decision-making.

Keywords: best candidates' method, decision making, decision support system, operations research

Procedia PDF Downloads 445
7133 Strengthening Factors of Family Living with Disabilities

Authors: Supranee Sittikan, Darunee Jongudomkarn, Rutja Phuphaibul

Abstract:

Thai’s families with disabilities are diverse, poor economy, low education disproportionately characterized their living that includes stress and suffering. This article reports a preliminary study using a qualitative case study with six disabilities (five physical and one mental problem) Their six family caregivers who perceived they were managing well with their conditions as well. Data were collected by in-depth interviews during November-December 2017 in North-East of Thailand. Preliminary results were found factors of moving in comprised of three themes as followings Karma: the families believe that the disability happened because of bad-karma which attached to them. From the reason, the members of families have to deserve and accept it. Family attachment: the families believe in the importance of being the family so they have to take good care in one another whether happy or suffering Community support: the families can get more to received helping hands from local health care providers and community health volunteers. These activities are very important to be representative in taking the families through health accessibility, which help them face with disabling problems. Nevertheless, the study needs further exploring on other families’ and health care team's perspective in larger scales leading to develop an appropriate health care service system which can support and promote the well-being of the families living with disabilities in the future.

Keywords: families with disabilities, Karma, family attachment, community support

Procedia PDF Downloads 163
7132 Analysis of Effects of Magnetic Slot Wedges on Characteristics of Permanent Magnet Synchronous Machine

Authors: B. Ladghem Chikouche

Abstract:

The influence of slot wedges permeability on the electromagnetic performance of three-phase permanent magnet synchronous machine is investigated in this paper. It is shown that the back-EMF waveform, electromagnetic torque and electromagnetic torque ripple are all significantly affected by slot wedges permeability. The paper presents an accurate analytical subdomain model and confirmed by finite-element analyses.

Keywords: exact analytical calculation, finite-element method, magnetic field distribution, permanent magnet machines performance, stator slot wedges permeability

Procedia PDF Downloads 326
7131 Psychological Capital as Pathways to Social Well-Being Among International Faculty in UAE: A Mediated-Moderated Study

Authors: Ejoke U. P., Smitha Dev., Madwuke Ann, DuPlessis E. D.

Abstract:

The study examines the relationship between psychological capital (PsyCap) and social well-being among international faculty members in the United Arab Emirates (UAE). The UAE has become a significant destination for global academic talent, yet challenges related to social integration, acceptance, and overall well-being persist among its international faculty. The study focuses on the predictive role of PsyCap, encompassing hope, efficacy, resilience, and optimism, in determining various dimensions of social well-being, including social integration, acceptance, contribution, actualization, and coherence. Additionally, the research investigates the potential moderating or mediating effects of institutional support and Faculty Job-Status position on the relationship between PsyCap and social well-being. Through structural equation modeling, we found that institutional support mediated the positive relationship between PsyCap and SWB and the permanent Faculty job-status position type strengthens the relationship between PsyCap and SWB. Our findings uncover the pathways through which PsyCap influences the social well-being outcomes of international faculty in the UAE. The findings will contribute to the development of tailored interventions and support systems aimed at enhancing the integration experiences and overall well-being of international faculty within the UAE academic community. Thus, fostering a more inclusive and thriving academic environment in the UAE.

Keywords: faculty job-status, institutional-faculty, psychological capital, social well-being, UAE

Procedia PDF Downloads 53
7130 The Big Five Personality Traits and Environmental Factors as Predictors of the Antisocial Behaviours among Juveniles

Authors: Karol Konaszewski

Abstract:

Background: The article is an analysis of the results of the studies conducted among juveniles (boys and girls) in the case of whom the family court applied the educational means of placing them in the youth educational centers. The aim of the study was to find out the correlations between antisocial behaviors, personality traits and the environmental determinants (support factors and risk factors) among juveniles (boys and girls). Methods: The total of 481 juveniles staying in youth educational centers participated in the study. Applied research tools: The Antisocial Behaviors Scale by L. Pytka, NEO-FFI by P. T. Costa and R. R. McCrae was used to diagnose personality traits included in a popular five-factor model (it has been adapted into Polish by B. Zawadzki, J. Strelau, P. Szczepaniak, and M. Śliwińska) and a questionnaire concerning support factors and risk factors was constructed to measure environmental determinants. The data was analysed in a regression model. Findings: The analysis model showed that the significant predictors of antisocial behaviors were neuroticism, extraversion, conscientiousness and negative relations at school. In girls group, the significant predictors of antisocial behaviors were neuroticism, conscientiousness, family support and negative relations at school, while in boys group the significant predictors of antisocial behaviors were neuroticism, extraversion and negative relations at family. Discussion: The results of this study have important implications. They allow for a better understanding of the factors that contribute to antisocial behaviors among juveniles. Future interventions could be based on the creation of personality traits, strengthening of support factors and correction of risk factors.

Keywords: antisocial behaviours, juveniles, personality, youth

Procedia PDF Downloads 259
7129 PhilSHORE: Development of a WebGIS-Based Marine Spatial Planning Tool for Tidal Current Energy Resource Assessment and Site Suitability Analysis

Authors: Ma. Rosario Concepcion O. Ang, Luis Caezar Ian K. Panganiban, Charmyne B. Mamador, Oliver Dan G. De Luna, Michael D. Bausas, Joselito P. Cruz

Abstract:

PhilSHORE is a multi-site, multi-device and multi-criteria decision support tool designed to support the development of tidal current energy in the Philippines. Its platform is based on Geographic Information Systems (GIS) which allows for the collection, storage, processing, analyses and display of geospatial data. Combining GIS tools with open source web development applications, PhilSHORE becomes a webGIS-based marine spatial planning tool. To date, PhilSHORE displays output maps and graphs of power and energy density, site suitability and site-device analysis. It enables stakeholders and the public easy access to the results of tidal current energy resource assessments and site suitability analyses. Results of the initial development shows PhilSHORE is a promising decision support tool for ORE project developments.

Keywords: gis, site suitability analysis, tidal current energy resource assessment, webgis

Procedia PDF Downloads 525
7128 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 71
7127 Stimulating Young Children Social Interaction Behaviour through Computer Play Activities: The Role of Teachers and Parents Support

Authors: Mahani Razali, Nordin Mamat

Abstract:

The purpose of the study is to explore how computer technology is integrated into pre-school activities and its relationship with children’s social interaction behaviour in pre-school classroom. The major question of interest in the present study is to investigate the social interaction behaviour of children when using computers in the Malaysian pre-school classroom. This research is based on three main objectives which are to identify children`s social interaction during computer play activities, teacher’s role and parent’s participation to develop children`s social interaction. This qualitative study was carried out among 25 pre-school children, three teachers and three parents as the research sample. On the other hand, parent’s support was obtained from their discussions, supervisions and communication at home. The data collection procedures involved structured observation which was to identify social interaction behaviour among pre-school children through computer play activities; as for semi-structured interviews, it was done to study the perception of the teachers and parents on the acquired social interaction behaviour among the children. Besides, documentation analysis method was used as to triangulate acquired information with observations and interviews. In this study, the qualitative data analysis was tabulated in descriptive manner with frequency and percentage format. This study primarily focused on social interaction behaviour elements among the pre-school children. Findings revealed that the children showed positive outcomes on the social interaction behaviour during their computer play. This research summarizes that teacher’s role and parent’s support can improve children`s social interaction behaviour through computer play activities. As a whole, this research highlighted the significance of computer play activities as to stimulate social interaction behavior among the pre-school children.

Keywords: early childhood, emotional development, parent support, play

Procedia PDF Downloads 366
7126 Optimization Model for Support Decision for Maximizing Production of Mixed Fruit Tree Farms

Authors: Andrés I. Ávila, Patricia Aros, César San Martín, Elizabeth Kehr, Yovana Leal

Abstract:

We consider a linear programming model to help farmers to decide if it is convinient to choose among three kinds of export fruits for their future investment. We consider area, investment, water, productivitiy minimal unit, and harvest restrictions and a monthly based model to compute the average income in five years. Also, conditions on the field as area, water availability and initia investment are required. Using the Chilean costs and dollar-peso exchange rate, we can simulate several scenarios to understand the possible risks associated to this market.

Keywords: mixed integer problem, fruit production, support decision model, fruit tree farms

Procedia PDF Downloads 456
7125 Constructing Evaluation Indicators for the Supply of Urban-Friendly Shelters from the Perspective of the Needs of the Elderly People in Taiwan

Authors: Chuan-Ming Tung, Tzu-Chiao Yuan

Abstract:

This research aims to construct the supply indicators and weights of shelter space from a perspective of the needs of the elderly by virtue of literature review, a systematical compilation of related regulations, and the use of the Analytical Hierarchy Process method, the questionnaires regarding the indicators filled out by 16 experts and scholars. The researcher then used 3 schools and 2 activity centers in Banqiao District, New Taipei City, as study cases to evaluate the ‘friendliness’ degree/level for the supply of shelters meeting the needs of elderly people. The supply evaluation indicators of friendly shelters meeting the needs of the elderly include "Administrative Operations and Service Needs" and "Residence-related and Living Needs"; under the "Administrative Operations and Service Needs" are "Management Operations and Information Provision", "Shelter Space Preparedness and Logistics Support", "Medical Care and Social Support", and "Shelters and Medical Environment", a total of 17 assessment items in four indicators, while under the "Residence-related and Living Needs" are "Dietary Needs", "Sleep Needs", "Hygiene and Sanitation Needs", "Accessibility and Convenience Needs ", etc., a total of 18 assessment items in four indicators. The results show that "Residence-related and Living Needs" is the most important item in the main levels of the supply indicators of the needs for friendly shelters to elderly people (weigh value 0.5504), followed by "Administrative Operations and Service Needs" (0.4496). The order of importance of the supply indicators of friendly shelters for the needs of elderly people is as follows: "Hygiene and Sanitation Needs" (0.1721), "Dietary Needs" (0.1340), "Medical Care and Social Support" (0.1300), "Sleep Needs" (0.1277), "Accessibility and Convenience Needs" (0.1166), "Basic Environment of Shelters" (0.1145), "Shelter Space Preparedness and Logistics Support" (0.1115) and "Management Operations and Information Provision" (0.0936). In addition, it can be noticed from the results of the case evaluation that the provision of refuges and shelters, mainly from schools and activity centers, is extremely inadequate for the needs of the elderly. In a set of comprehensive comparisons and contrasts, the evaluation indicators of refuges and shelters that need to be improved are "Medical Care and Social Support", "Hygiene and Sanitation Needs", "Sleep Needs", "Dietary Needs", and "Shelter Space Preparedness and Logistics Support".

Keywords: needs of the elderly people, urban shelters, evaluation indicators/indices., taiwan

Procedia PDF Downloads 80
7124 Piloting a Prototype Virtual Token Economy Intervention for On-Task Support within an Inclusive Canadian Classroom

Authors: Robert L. Williamson

Abstract:

A 'token economy' refers to a method of positive behaviour support whereby ‘tokens’ are delivered to students as a reward for exhibiting specific behaviours. Students later exchange tokens to ‘purchase’ items of interest. Unfortunately, implementation fidelity can be problematic as some find physical delivery of tokens while teaching difficult. This project developed and tested a prototype, iPad-based tool that enabled teachers to deliver and track tokens electronically. Using an alternating treatment design, any differences in on-task individual and/or group behaviours between the virtual versus physical token delivery systems were examined. Results indicated that while students and teachers preferred iPad-based implementation, no significant difference was found concerning on-task behaviours of students between the two methodologies. Perhaps more interesting was that the teacher found implementation of both methods problematic and suggested a second person was most effective in implementing a token economy method. This would represent a significant cost to the effective use of such a method. Further research should focus on the use of a lay volunteer regarding method implementation fidelity and associated outcomes of the method.

Keywords: positive behaviour support, inclusion, token economy, applied behaviour analysis

Procedia PDF Downloads 150
7123 Artificial Intelligence in Management Simulators

Authors: Nuno Biga

Abstract:

Artificial Intelligence (AI) has the potential to transform management into several impactful ways. It allows machines to interpret information to find patterns in big data and learn from context analysis, optimize operations, make predictions sensitive to each specific situation and support data-driven decision making. The introduction of an 'artificial brain' in organization also enables learning through complex information and data provided by those who train it, namely its users. The "Assisted-BIGAMES" version of the Accident & Emergency (A&E) simulator introduces the concept of a "Virtual Assistant" (VA) sensitive to context, that provides users useful suggestions to pursue the following operations such as: a) to relocate workstations in order to shorten travelled distances and minimize the stress of those involved; b) to identify in real time existing bottleneck(s) in the operations system so that it is possible to quickly act upon them; c) to identify resources that should be polyvalent so that the system can be more efficient; d) to identify in which specific processes it may be advantageous to establish partnership with other teams; and e) to assess possible solutions based on the suggested KPIs allowing action monitoring to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed and demonstrated through a pilot project (BIG-AI). Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. The systemic analysis and interpretation of data is powered in the Assisted-BIGAMES through a computer application called "BIGAMES Virtual Assistant" (VA) that players can use during the Game. Each participant in the VA permanently asks himself about the decisions he should make during the game to win the competition. To this end, the role of the VA of each team consists in guiding the players to be more effective in their decision making, through presenting recommendations based on AI methods. It is important to note that the VA's suggestions for action can be accepted or rejected by the managers of each team, as they gain a better understanding of the issues along time, reflect on good practice and rely on their own experience, capability and knowledge to support their own decisions. Preliminary results show that the introduction of the VA provides a faster learning of the decision-making process. The facilitator designated as “Serious Game Controller” (SGC) is responsible for supporting the players with further analysis. The recommended actions by the SGC may differ or be similar to the ones previously provided by the VA, ensuring a higher degree of robustness in decision-making. Additionally, all the information should be jointly analyzed and assessed by each player, who are expected to add “Emotional Intelligence”, an essential component absent from the machine learning process.

Keywords: artificial intelligence, gamification, key performance indicators, machine learning, management simulators, serious games, virtual assistant

Procedia PDF Downloads 104
7122 Current Issues on Enterprise Architecture Implementation Evaluation

Authors: Fatemeh Nikpay, Rodina Binti Ahmad, Babak Darvish Rouhani

Abstract:

Enterprise Architecture (EA) is employed by enterprises for providing integrated Information Systems (ISs) in order to support alignment of their business and Information Technology (IT). Evaluation of EA implementation can support enterprise to reach intended goals. There are some problems in current evaluation methods of EA implementation that lead to ineffectiveness implementation of EA. This paper represents current issues on evaluation of EA implementation. In this regard, we set the framework in order to represent evaluation’s issues based on their functionality and structure. The results of this research not only increase the knowledge of evaluation, but also could be useful for both academics and practitioners in order to realize the current situation of evaluations.

Keywords: current issues on EA implementation evaluation, evaluation, enterprise architecture, evaluation of enterprise architecture implementation

Procedia PDF Downloads 527
7121 Molecular Evidence for Three Species of Giraffa

Authors: Alice Petzold, Alexandre Hassanin

Abstract:

The number of giraffe species has been in focus of interest since the exploration of sub-Saharan Africa by European naturalists during the 18th and 19th centuries, as previous taxonomists, like Geoffroy Saint-Hilaire, Richard Owen or William Edward de Winton, recognized two or three species of Giraffa. For the last decades, giraffes were commonly considered as a single species subdivided into nine subspecies. In this study, we have re-examined available nuclear and mitochondrial data. Our genetic admixture analyses of seven introns support three species: G. camelopardalis (i.e., northern giraffes including reticulated giraffes), G. giraffa (southern giraffe) and G. tippelskirchi (Masai giraffe). However, the nuclear alignments show small variation and our phylogenetic analyses provide high support only for the monophyly of G. camelopardalis. Comparisons with the mitochondrial tree revealed a robust conflict for the position and monophyly of G. giraffa and G. tippelskirchi, which is explained firstly by a mitochondrial introgression from Masai giraffe to southeastern giraffe, and secondly, by gene flow mediated by male dispersal between southern populations (subspecies angolensis and giraffa). We conclude that current data gives only moderate support for three giraffe species and point out that additional nuclear data need to be studied to revise giraffe taxonomy.

Keywords: autosomal markers, Giraffidae, mitochondrial introgression, taxonomy

Procedia PDF Downloads 202
7120 Controller Design Using GA for SMC Systems

Authors: Susy Thomas, Sajju Thomas, Varghese Vaidyan

Abstract:

This paper considers SMCs using linear feedback with switched gains and proposes a method which can minimize the pole perturbation. The method is able to enhance the robustness property of the controller. A pre-assigned neighborhood of the ‘nominal’ positions is assigned and the system poles are not allowed to stray out of these bounds even when parameters variations/uncertainties act upon the system. A quasi SMM is maintained within the assigned boundaries of the sliding surface.

Keywords: parameter variations, pole perturbation, sliding mode control, switching surface, robust switching vector

Procedia PDF Downloads 363
7119 Using Analytic Hierarchy Process as a Decision-Making Tool in Project Portfolio Management

Authors: Darius Danesh, Michael J. Ryan, Alireza Abbasi

Abstract:

Project Portfolio Management (PPM) is an essential component of an organisation’s strategic procedures, which requires attention of several factors to envisage a range of long-term outcomes to support strategic project portfolio decisions. To evaluate overall efficiency at the portfolio level, it is essential to identify the functionality of specific projects as well as to aggregate those findings in a mathematically meaningful manner that indicates the strategic significance of the associated projects at a number of levels of abstraction. PPM success is directly associated with the quality of decisions made and poor judgment increases portfolio costs. Hence, various Multi-Criteria Decision Making (MCDM) techniques have been designed and employed to support the decision-making functions. This paper reviews possible option to improve the decision-making outcomes in the organisational portfolio management processes using the Analytic Hierarchy Process (AHP) both from academic and practical perspectives and will examine the usability, certainty and quality of the technique. The results of the study will also provide insight into the technical risk associated with current decision-making model to underpin initiative tracking and strategic portfolio management.

Keywords: analytic hierarchy process, decision support systems, multi-criteria decision making, project portfolio management

Procedia PDF Downloads 321
7118 Application of Deep Learning and Ensemble Methods for Biomarker Discovery in Diabetic Nephropathy through Fibrosis and Propionate Metabolism Pathways

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Diabetic nephropathy (DN) is a major complication of diabetes, with fibrosis and propionate metabolism playing critical roles in its progression. Identifying biomarkers linked to these pathways may provide novel insights into DN diagnosis and treatment. This study aims to identify biomarkers associated with fibrosis and propionate metabolism in DN. Analyze the biological pathways and regulatory mechanisms of these biomarkers. Develop a machine learning model to predict DN-related biomarkers and validate their functional roles. Publicly available transcriptome datasets related to DN (GSE96804 and GSE104948) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds), and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were identified. The analysis began with the extraction of DN-differentially expressed genes (DN-DEGs) and propionate metabolism-related DEGs (PM-DEGs), followed by the intersection of these with fibrosis-related genes to identify key intersected genes. Instead of relying on traditional models, we employed a combination of deep neural networks (DNNs) and ensemble methods such as Gradient Boosting Machines (GBM) and XGBoost to enhance feature selection and biomarker discovery. Recursive feature elimination (RFE) was coupled with these advanced algorithms to refine the selection of the most critical biomarkers. Functional validation was conducted using convolutional neural networks (CNN) for gene set enrichment and immunoinfiltration analysis, revealing seven significant biomarkers—SLC37A4, ACOX2, GPD1, ACE2, SLC9A3, AGT, and PLG. These biomarkers are involved in critical biological processes such as fatty acid metabolism and glomerular development, providing a mechanistic link to DN progression. Furthermore, a TF–miRNA–mRNA regulatory network was constructed using natural language processing models to identify 8 transcription factors and 60 miRNAs that regulate these biomarkers, while a drug–gene interaction network revealed potential therapeutic targets such as UROKINASE–PLG and ATENOLOL–AGT. This integrative approach, leveraging deep learning and ensemble models, not only enhances the accuracy of biomarker discovery but also offers new perspectives on DN diagnosis and treatment, specifically targeting fibrosis and propionate metabolism pathways.

Keywords: diabetic nephropathy, deep neural networks, gradient boosting machines (GBM), XGBoost

Procedia PDF Downloads 8
7117 A Genetic Algorithm to Schedule the Flow Shop Problem under Preventive Maintenance Activities

Authors: J. Kaabi, Y. Harrath

Abstract:

This paper studied the flow shop scheduling problem under machine availability constraints. The machines are subject to flexible preventive maintenance activities. The nonresumable scenario for the jobs was considered. That is, when a job is interrupted by an unavailability period of a machine it should be restarted from the beginning. The objective is to minimize the total tardiness time for the jobs and the advance/tardiness for the maintenance activities. To solve the problem, a genetic algorithm was developed and successfully tested and validated on many problem instances. The computational results showed that the new genetic algorithm outperforms another earlier proposed algorithm.

Keywords: flow shop scheduling, genetic algorithm, maintenance, priority rules

Procedia PDF Downloads 471
7116 Text Analysis to Support Structuring and Modelling a Public Policy Problem-Outline of an Algorithm to Extract Inferences from Textual Data

Authors: Claudia Ehrentraut, Osama Ibrahim, Hercules Dalianis

Abstract:

Policy making situations are real-world problems that exhibit complexity in that they are composed of many interrelated problems and issues. To be effective, policies must holistically address the complexity of the situation rather than propose solutions to single problems. Formulating and understanding the situation and its complex dynamics, therefore, is a key to finding holistic solutions. Analysis of text based information on the policy problem, using Natural Language Processing (NLP) and Text analysis techniques, can support modelling of public policy problem situations in a more objective way based on domain experts knowledge and scientific evidence. The objective behind this study is to support modelling of public policy problem situations, using text analysis of verbal descriptions of the problem. We propose a formal methodology for analysis of qualitative data from multiple information sources on a policy problem to construct a causal diagram of the problem. The analysis process aims at identifying key variables, linking them by cause-effect relationships and mapping that structure into a graphical representation that is adequate for designing action alternatives, i.e., policy options. This study describes the outline of an algorithm used to automate the initial step of a larger methodological approach, which is so far done manually. In this initial step, inferences about key variables and their interrelationships are extracted from textual data to support a better problem structuring. A small prototype for this step is also presented.

Keywords: public policy, problem structuring, qualitative analysis, natural language processing, algorithm, inference extraction

Procedia PDF Downloads 589
7115 Invisible and Visible Helpers in Negotiating Child Parenting by Single Mothers: A Comparative Analysis of South Africa and Germany

Authors: Maud Mthembu, Tanusha Raniga, Michael Boecker

Abstract:

In South Africa and Germany, countless number of children are raised by single mothers with little or no support from the biological fathers. As evidenced in literature, having an involved father living at home can have a positive influence in the life of a child and the mother can be supported in her role. Often single parenting is seen as a causative factor in numerous psychological and social challenges which are faced by children from single-parent households, which is an indication of a pathological lens of viewing single parenting. The empirical data from our study reveals that single mothers in formal employment experience social, economic and emotional hardships of parenting. However, a sense of determination to raise healthy and well-balanced children using economic and social capital accessible to them was one of the key findings. The participants reported visible and invisible sources of support which creates an enabling environment for them to negotiate the challenges of parenting without support from non-residence fathers. Using a qualitative paradigm, a total of twenty professional single mothers were interviewed in Germany and South Africa. Four key themes emerged from the data analysis namely; internal locus of control, positive new experiences, access to economic capital and dependable social support. This study suggests that single mothers who are economically self-reliant and have access to bonding social capital are able to cope with the demands of single parenting. Understanding this multi-dimensional experience of parenting by single parents in formal employment is important to advocate for supportive working conditions for mothers.

Keywords: child parenting, child protection, single parenting, social capital

Procedia PDF Downloads 154
7114 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education

Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue

Abstract:

In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.

Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education

Procedia PDF Downloads 107
7113 Self-Reliance Support and Environment Interaction in Long-Term Care

Authors: Chen-Yuan Hsu

Abstract:

Introduction Elderly is growing and results to live in the long-term care (LTC) and then due to the routine of the facilities in Taiwan, also resulted to losing of those people with environment interaction, so, the self-reliance support (SRS) for those people to experience environment interaction is an essential. Methods This study was recruited samples of a LTC in the central of Taiwan. There was a following research on the SRS group with 20 samples collected and routine care group with 20 samples. A structured questionnaire as the Environment Interaction Dimension, as data collection included demographic information and the dimensions of environment interaction. Data analysis used SPSS 22.0 for Window 2000 to report the finding. Results The Environment Interaction Dimension for Taiwanese is a Chinese version of the containing 8 items. The result of t-test analysis found that environment interaction showed a significant difference between groups (p<.05), the result recommended that there was a higher score of environment interaction dimension on the SRS group (29.90±5.56) comparing with the routine care group (22.1±5.53). Conclusion This study showed that the SRS group was higher than the routine care group on the environment interaction dimension for Taiwanese elderly living in the LTC. The results can also provide the reference for LTC, to encourage those people to participate in SRS in LTC, and therefore also improving their environment interaction.

Keywords: self-reliance support, environment interaction, long-term care, elderly

Procedia PDF Downloads 104
7112 Evaluation of a Hybrid Knowledge-Based System Using Fuzzy Approach

Authors: Kamalendu Pal

Abstract:

This paper describes the main features of a knowledge-based system evaluation method. System evaluation is placed in the context of a hybrid legal decision-support system, Advisory Support for Home Settlement in Divorce (ASHSD). Legal knowledge for ASHSD is represented in two forms, as rules and previously decided cases. Besides distinguishing the two different forms of knowledge representation, the paper outlines the actual use of these forms in a computational framework that is designed to generate a plausible solution for a given case, by using rule-based reasoning (RBR) and case-based reasoning (CBR) in an integrated environment. The nature of suitability assessment of a solution has been considered as a multiple criteria decision making process in ASHAD evaluation. The evaluation was performed by a combination of discussions and questionnaires with different user groups. The answers to questionnaires used in this evaluations method have been measured as a combination of linguistic variables, fuzzy numbers, and by using defuzzification process. The results show that the designed evaluation method creates suitable mechanism in order to improve the performance of the knowledge-based system.

Keywords: case-based reasoning, fuzzy number, legal decision-support system, linguistic variable, rule-based reasoning, system evaluation

Procedia PDF Downloads 367
7111 GAILoc: Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 74
7110 Preparation and Characterizations of Natural Material Based Ceramic Membranes

Authors: In-Hyuck Song, Jang-Hoon Ha

Abstract:

Recently, porous ceramic membranes have attracted great interest due to their outstanding thermal and chemical stability. In this paper, we report the results of our efforts to determine whether we could prepare a diatomite-kaolin composite coating to be deposited over a sintered diatomite support layer that could reduce the largest pore size of the sintered diatomite membrane while retaining an acceptable level of permeability. We determined under what conditions such a composite coating over a support layer could be prepared without the generation of micro-cracks during drying and sintering. The pore characteristics of the sintered diatomite membranes were studied by scanning electron microscopy and capillary flow porosimetry.

Keywords: ceramic membrane, diatomite, water treatment, sintering

Procedia PDF Downloads 515
7109 Comparative Study Performance of the Induction Motor between SMC and NLC Modes Control

Authors: A. Oukaci, R. Toufouti, D. Dib, l. Atarsia

Abstract:

This article presents a multitude of alternative techniques to control the vector control, namely the nonlinear control and sliding mode control. Moreover, the implementation of their control law applied to the high-performance to the induction motor with the objective to improve the tracking control, ensure stability robustness to parameter variations and disturbance rejection. Tests are performed numerical simulations in the Matlab/Simulink interface, the results demonstrate the efficiency and dynamic performance of the proposed strategy.

Keywords: Induction Motor (IM), Non-linear Control (NLC), Sliding Mode Control (SMC), nonlinear sliding surface

Procedia PDF Downloads 572
7108 Influence of Perceived Organizational Support and Emotional Intelligence on Organizational Cynicism among Millennials

Authors: Paridhi Agarwal, Kusum M. George

Abstract:

A cynic is someone upset about the future prematurely. In today’s highly competitive workplace, cynicism has become a prominent concern. It is a controversial issue that brings about psychological disengagement and antagonism towards the management. In organizational sciences, scientific investigation of this negative work behavior is lacking, and so there is no universal definition so far. But most commonly, Organizational Cynicism (OC) has been characterized as an unfavorable attitude towards the organization, encompassing a belief that the organization has low integrity, negative affect, and depreciative behavioral tendencies. Given its prevalence, this study aims to contribute to the existing body of knowledge on OC. This research examines the predictability of OC from two factors- Perceived Organizational Support (POS) and Emotional Intelligence (EI) among millennials in India as well as identify contradictions in today’s scenario. Standardized Organizational Cynicism Scale comprising of three components, Perceived Organizational Support Questionnaire and Goleman’s Emotional Intelligence Test are used on a convenient sample of 104 corporate sector employees in the age range 22-35 years. Correlation test elucidated the relationships, and regression analysis revealed the level of influence of the above variables on OC. Surprisingly, Emotional-Social Awareness had stronger relationships with all dimensions of OC in males as compared to females. It was also seen that EI and POS, together with predicted OC, but separately, only POS accounted for variability in OC, and this impact was much stronger for males, implying that there are other important factors that make females cynical at work. Thus, the over-emphasis on EI training for the millennial generation has also been challenged in this study. It can be said that there are avertible preconditions to the negative attitude- OC. This research has important managerial implications in areas of recruitment, training, and organizational environment.

Keywords: emotional intelligence, millennials, organizational cynicism, perceived organizational support.

Procedia PDF Downloads 124
7107 Screening of Commonly Used Reinforcement Materials for Tomb Murals

Authors: Liping Qiu, Xiaofeng Zhang

Abstract:

In its long history, precious tomb murals suffered from various diseases due to natural and man-made destruction. The key to how to protect tomb murals is how to strengthen and protect the tomb murals. In order to maximize the life of the tomb murals, the artistic, historic, and scientific values of the tomb murals can be continued. In this paper, four kinds of traditional reinforcement materials (silicone acrylic lotion, pure acrylic lotion, polyvinyl acetate lotion, and B72) are selected to reinforce the ground support layer of tomb murals, and the reinforcement effect of each reinforcement material on the ground support layer of murals is compared and analyzed, and the best protection material is obtained.

Keywords: mural, destruction cycle, reinforcement material, disease

Procedia PDF Downloads 132
7106 Analyzing and Determining the Ideal Response Force for Combatting Terrorist Groups

Authors: Erhan Turgut, Salih Ergün, Abdülkadir Öz

Abstract:

Terror is a modern war strategy which uses violence as a means of communication in order to achieve political objectives. In today’s security environment narrowing the propaganda field of terrorist organization is the primary goal for the security forces. In this sense, providing and maintaining public support is the most necessary ability for security units. Rather than enemy and threat-oriented approach, homeland security oriented approach is essential to ensure public support. In this study, terror assumed as a homeland security issue and assigning the law enforcement forces with military status is analyzed.

Keywords: terrorism, counter-terrorism, military status law-enforcement, terrorist groups

Procedia PDF Downloads 461