Search results for: polymer electrolyte membrane fuel cell
6019 A Comparative Assessment of Membrane Bioscrubber and Classical Bioscrubber for Biogas Purification
Authors: Ebrahim Tilahun, Erkan Sahinkaya, Bariş Calli̇
Abstract:
Raw biogas is a valuable renewable energy source however it usually needs removal of the impurities. The presence of hydrogen sulfide (H2S) in the biogas has detrimental corrosion effects on the cogeneration units. Removal of H2S from the biogas can therefore significantly improve the biogas quality. In this work, a conventional bioscrubber (CBS), and a dense membrane bioscrubber (DMBS) were comparatively evaluated in terms of H2S removal efficiency (RE), CH4 enrichment and alkaline consumption at gas residence times ranging from 5 to 20 min. Both bioscrubbers were fed with a synthetic biogas containing H2S (1%), CO2 (39%) and CH4 (60%). The results show that high RE (98%) was obtained in the DMBS when gas residence time was 20 min, whereas slightly lower CO2 RE was observed. While in CBS system the outlet H2S concentration was always lower than 250 ppmv, and its H2S RE remained higher than 98% regardless of the gas residence time, although the high alkaline consumption and frequent absorbent replacement limited its cost-effectiveness. The result also indicates that in DMBS when the gas residence time increased to 20 min, the CH4 content in the treated biogas enriched upto 80%. However, while operating the CBS unit the CH4 content of the raw biogas (60%) decreased by three fold. The lower CH4 content in CBS was probably caused by extreme dilution of biogas with air (N2 and O2). According to the results obtained here the DMBS system is a robust and effective biotechnology in comparison with CBS. Hence, DMBS has a better potential for real scale applications.Keywords: biogas, bioscrubber, desulfurization, PDMS membrane
Procedia PDF Downloads 2266018 2-Thioimidazole Analogues: Synthesis, in silico Studies and in vitro Anticancer and Antiprotozoal Evaluation
Authors: Drashti G. Daraji, Rosa E. Moo-Puc, Hitesh D. Patel
Abstract:
Substituted 2-Thioimidazole analogues have been synthesized and confirmed by advanced spectroscopic techniques. Among them, ten compounds have been selected and evaluated for their in vitro anti-cancer activity at the National Cancer Institute (NCI) for testing against a panel of 60 different human tumor cell lines derived from nine neoplastic cancer types. Furthermore, synthesized compounds were tested for their in vitro antiprotozoal activity, and none of them exhibited significant potency against antiprotozoans. It was observed that the tested all compounds seem effective on the UACC-62 melanoma cancer cell line as compared to other cancer cell lines and also exhibited the least potent in the Non-Small Cell Lung Cancer cell line in one-dose screening. In silico studies of these derivatives were carried out by molecular docking techniques and Absorption, Distribution, Metabolism, and Excretion (ADME) using Schrödinger software to find potent B-Raf kinase inhibitor (PDB ID: 3OG7). All the compounds have been performed for docking study; Compound D4 has a good docking score for melanoma cancer as compared with other.Keywords: anticancer activity, cancer cell line, 2-thio imidazole, one-dose assay, molecular docking
Procedia PDF Downloads 1436017 Mechanical Properties and Microstructural Analyzes of Epoxy Resins Reinforced with Satin Tissue
Authors: Băilă Diana Irinel, Păcurar Răzvan, Păcurar Ancuța
Abstract:
Although the volumes of fibre reinforced polymer composites (FRPs) used for aircraft applications is a relatively small percentage of total use, the materials often find their most sophisticated applications in this industry. In aerospace, the performance criteria placed upon materials can be far greater than in other areas – key aspects are light-weight, high-strength, high-stiffness, and good fatigue resistance. Composites were first used by the military before the technology was applied to commercial planes. Nowadays, composites are widely used, and this has been the result of a gradual direct substitution of metal components followed by the development of integrated composite designs as confidence in FRPs has increased. The airplane uses a range of components made from composites, including the fin and tailplane. In the last years, composite materials are increasingly used in automotive applications due to the improvement of material properties. In the aerospace and automotive sector, the fuel consumption is proportional to the weight of the body of the vehicle. A minimum of 20% of the cost can be saved if it used polymer composites in place of the metal structures and the operating and maintenance costs are alco very low. Glass fiber-epoxy composites are widely used in the making of aircraft and automobile body parts and are not only limited to these fields but also used in ship building, structural applications in civil engineering, pipes for the transport of liquids, electrical insulators in reactors. This article was establish the high-performance of composite material, a type glass-epoxy used in automotive and aeronautic domains, concerning the tensile and flexural tests and SEM analyzes.Keywords: glass-epoxy composite, traction and flexion tests, SEM analysis, acoustic emission (AE) signals
Procedia PDF Downloads 1036016 Towards a Biologically Relevant Tumor-on-a-Chip: Multiplex Microfluidic Platform to Study Breast Cancer Drug Response
Authors: Soroosh Torabi, Brad Berron, Ren Xu, Christine Trinkle
Abstract:
Microfluidics integrated with 3D cell culture is a powerful technology to mimic cellular environment, and can be used to study cell activities such as proliferation, migration and response to drugs. This technology has gained more attention in cancer studies over the past years, and many organ-on-a-chip systems have been developed to study cancer cell behaviors in an ex-vivo tumor microenvironment. However, there are still some barriers to adoption which include low throughput, complexity in 3D cell culture integration and limitations on non-optical analysis of cells. In this study, a user-friendly microfluidic multi-well plate was developed to mimic the in vivo tumor microenvironment. The microfluidic platform feeds multiple 3D cell culture sites at the same time which enhances the throughput of the system. The platform uses hydrophobic Cassie-Baxter surfaces created by microchannels to enable convenient loading of hydrogel/cell suspensions into the device, while providing barrier free placement of the hydrogel and cells adjacent to the fluidic path. The microchannels support convective flow and diffusion of nutrients to the cells and a removable lid is used to enable further chemical and physiological analysis on the cells. Different breast cancer cell lines were cultured in the device and then monitored to characterize nutrient delivery to the cells as well as cell invasion and proliferation. In addition, the drug response of breast cancer cell lines cultured in the device was compared to the response in xenograft models to the same drugs to analyze relevance of this platform for use in future drug-response studies.Keywords: microfluidics, multi-well 3d cell culture, tumor microenvironment, tumor-on-a-chip
Procedia PDF Downloads 2646015 Morphology and Electrical Conductivity of a Non-Symmetrical NiO-SDC/SDC Anode through a Microwave-Assisted Route
Authors: Mohadeseh Seyednezhad, Armin Rajabi, Andanastui Muchtar, Mahendra Rao Somalu
Abstract:
This work investigates the electrical properties of NiO-SDC/SDC anode sintered at about 1200 ○C for 1h through a relatively new approach, namely the microwave method. Nano powders Sm0.2Ce0.8O1.9 (SDC) and NiO were mixed by using a high-energy ball-mill and subsequent co-pressed at three different compaction pressures 200, 300 and 400 MPa. The novelty of this study consists in the effect of compaction pressure on the electrochemical performance of Ni-SDC/SDC anode, with no binder used between layers. The electrical behavior of the prepared anode has been studied by electrochemical impedance spectra (EIS) in controlled atmospheres, operating at high temperatures (600-800 °C).Keywords: sintering, fuel cell, electrical conductivity, nanostructures, impedance spectroscopy, ceramics
Procedia PDF Downloads 4716014 Physical Fitness in Omani Children with Sickle Cell Disease and Sickle Cell Trait
Authors: Mahfoodha Al-Kitani, Dylan Thompson, Keith Stokes
Abstract:
Sickle cell disease (SCD) and sickle cell trait (SCT) are the most common hematological diseases in Oman according to the national survey of genetic blood disorders. The aim of this study was to determine markers of physical fitness and anthropometrics indices in children with sickle cell disease and children with sickle cell trait and compare them with normal healthy children of the same age. One hundred and twenty male children participated in the present study divided to three groups: 40 with sickle disease (SCD; age, 13.3(.80), height, 131.9(3.5), mass, 29.2(3.1)); 40 with sickle cell trait (SCT; age, 12.2(.80), height, 141.0(9.9), mass, 38.0(4.4)); and 40 controls with normal hemoglobin (Con; age, 12.8(.80), height, 139.4(8.7), mass, 37.2(4.3)). All children completed a 5-min running exercise test on a treadmill at speed corresponding to 5 km/hr. Heart rate and was recorded during exercise and during 10-min of recovery. Blood lactate was measured before and 5 min after the completion of exercise. Children with SCD exhibited a higher mean value (P < 0.05) for percent body fat and fat mass than the normal healthy subjects and SCT subjects. Resting values of hemoglobin were similar in SCT (11.04(.78)) and control (10.8(94)) groups, and lower in SCD (8.89(.54); P < 0.05). There was a strong correlation between peak heart rate and resting hemoglobin levels for the three groups (r= -.472. n= 120, p < .0005).The SCD group (175.2(10.3)) exhibited higher mean heart rate during exercise than those observed in the SCT (143.7(9.5)) and normal control children (144.5(22.4); P < 0.05). Additionally, SCD children showed higher serum lactate values before and after treadmill exercise compared to the other groups (P < 0.05). Children with sickle cell trait demonstrate similar physical fitness level and similar exercise responses to treadmill stress test to normal children. In contrast, SCD children have lower body mass, higher fat mass and lower physical fitness than children with SCT and healthy controls.Keywords: sickle cell disease, sickle cell trait, children, exercise
Procedia PDF Downloads 4306013 Characterization of Retinal Pigmented Cell Epithelium Cell Sheet Cultivated on Synthetic Scaffold
Authors: Tan Yong Sheng Edgar, Yeong Wai Yee
Abstract:
Age-related macular degeneration (AMD) is one of the leading cause of blindness. It can cause severe visual loss due to damaged retinal pigment epithelium (RPE). RPE is an important component of the retinal tissue. It functions as a transducing boundary for visual perception making it an essential factor for sight. The RPE also functions as a metabolically complex and functional cell layer that is responsible for the local homeostasis and maintenance of the extra photoreceptor environment. Thus one of the suggested method of treating such diseases would be regenerating these RPE cells. As such, we intend to grow these cells using a synthetic scaffold to provide a stable environment that reduces the batch effects found in natural scaffolds. Stiffness of the scaffold will also be investigated to determine the optimal Young’s modulus for cultivating these cells. The cells will be generated into a monolayer cell sheet and their functions such as formation of tight junctions and gene expression patterns will be assessed to evaluate the cell sheet quality compared to a native RPE tissue.Keywords: RPE, scaffold, characterization, biomaterials, colloids and nanomedicine
Procedia PDF Downloads 4366012 Hydrogel Hybridizing Temperature-Cured Dissolvable Gelatin Microspheres as Non-Anchorage Dependent Cell Carriers for Tissue Engineering Applications
Authors: Dong-An Wang
Abstract:
All kinds of microspheres have been extensively employed as carriers for drug, gene and therapeutic cell delivery. Most therapeutic cell delivery microspheres rely on a two-step methodology: fabrication of microspheres and subsequent seeding of cells onto them. In this study, we have developed a novel one-step cell encapsulation technique using a convenient and instant water-in-oil single emulsion approach to form cell-encapsulated gelatin microspheres. This technology is adopted for hyaline cartilage tissue engineering, in which autologous chondrocytes are used as therapeutic cells. Cell viability was maintained throughout and after the microsphere formation (75-100 µm diameters) process that avoids involvement of any covalent bonding reactions or exposure to any further chemicals. Further encapsulation of cell-laden microspheres in alginate gels were performed under 4°C via a prompt process. Upon the formation of alginate constructs, they were immediately relocated into CO2 incubator where the temperature was maintained at 37°C; under this temperature, the cell-laden gelatin microspheres dissolved within hours to yield similarly sized cavities and the chondrocytes were therefore suspended within the cavities inside the alginate gel bulk. Hence, the gelatin cell-laden microspheres served two roles: as cell delivery vehicles which can be removable through temperature curing, and as porogens within an alginate hydrogel construct to provide living space for cell growth and tissue development as well as better permeability for mutual diffusions. These cell-laden microspheres, namely “temperature-cured dissolvable gelatin microsphere based cell carriers” (tDGMCs), were further encapsulated in a chondrocyte-laden alginate scaffold system and analyzed by WST-1, gene expression analyses, biochemical assays, histology and immunochemistry stains. The positive results consistently demonstrated the promise of tDGMC technology in delivering these non-anchorage dependent cells (chondrocytes). It can be further conveniently translated into delivery of other non-anchorage dependent cell species, including stem cells, progenitors or iPS cells, for regeneration of tissues in internal organs, such as engineered hepatogenesis or pancreatic regeneration.Keywords: biomaterials, tissue engineering, microsphere, hydrogel, porogen, anchorage dependence
Procedia PDF Downloads 3966011 Preparation of Nanocomposites Based on Biodegradable Polycaprolactone by Melt Mixture
Authors: Mohamed Amine Zenasni, Bahia Meroufel, André Merlin, Said Benfarhi, Stéphane Molina, Béatrice George
Abstract:
The introduction of nano-fillers into polymers field lead to the creation of the nano composites. This creation is starting up a new revolution into the world of materials. Nano composites are similar to traditional composite of a polymer blend and filler with at least one nano-scopic dimension. In our project, we worked with nano composites of biodegradable polymer: polycaprolactone, combined with nano-clay (Maghnite) and with different nano-organo-clays. These nano composites have been prepared by melt mixture method. The advantage of this polymer is its degradability and bio compatibility. A study of the relationship between development, micro structure and physico chemical properties of nano composites, clays modified with 3-aminopropyltriethoxysilane (APTES) and Hexadecyltriméthy ammonium bromide (CTAB) and untreated clays were made. Melt mixture method is most suitable methods to get a better dispersion named exfoliation.Keywords: nanocomposite, biodegradable, polycaprolactone, maghnite, melt mixture, APTES, CTAB
Procedia PDF Downloads 4356010 Use of Soil Microorganisms for the Production of Electricity through Microbial Fuel Cells
Authors: Abhipsa Mohanty, Harit Jha
Abstract:
The world's energy demands are continuing to rise, resulting in a worldwide energy crisis and environmental pollution. Because of finite, declining supply and environmental damage, reliance on fossil fuels is unsustainable. As a result, experts are concentrating on alternative, renewable, and carbon-free energy sources. Energy sources that are both environmentally and economically sustainable are required. Microbial fuel cells (MFCs) have recently received a lot of attention due to their low operating temperatures and ability to use a variety of biodegradable substrates as fuel. There are single-chamber MFCs as well as traditional MFCs with anode and cathode compartments. Bioelectricity is produced when microorganisms actively catabolize substrate. MFCs can be used as a power source in small devices like biosensors. Understanding of its components, microbiological processes, limiting variables, and construction designs in MFC systems must be simplified, and large-scale systems must be developed for them to be cost-effective as well as increase electricity production. The purpose of this research was to review current microbiology knowledge in the field of electricity. The manufacturing process, the materials, and procedures utilized to construct the technology, as well as the applications of MFC technology, are all covered.Keywords: bio-electricity, exoelectrogenic bacteria, microbial fuel cells, soil microorganisms
Procedia PDF Downloads 936009 Antimicrobial and Haemostatic Effect of Chitosan/Polyacrylic Acid Hybrid Membranes
Authors: F. A. Abdel-Mohdy, M. K. El-Bisi, A. Abou-Okeil, A. A. Sleem, S. El-Sabbagh, Kawther El-Shafei, Hoda S. El-Sayed, S. M. ElSawy
Abstract:
Chitosan/ polyacrylic acid membranes containing different amounts of Al2(SO4) and/or TiO2 were prepared. The prepared membranes were characterized by measuring mechanical properties, such as tensile strength and elongation at break, swelling properties, antimicrobial properties against gram-positive and gram-negative bacteria and blood clotting. The results obtained indicate that the presence of Al2(SO4) and TiO2 in the membrane formulations have an incremental effect on the antimicrobial properties and blood clotting in albino rate.Keywords: Chitosan, acrylic acid, antibacterial, blood clotting, membrane
Procedia PDF Downloads 4896008 Oncogenic Role of MicroRNA-346 in Human Non-Small Cell Lung Cancer by Regulation of XPC/ERK/Snail/E-Cadherin Pathway
Authors: Cheng-Cao Sun, Shu-Jun Li, De-Jia Li
Abstract:
Determinants of growth and metastasis in cancer remain of great interest to define. MicroRNAs (miRNAs) have frequently emerged as tumor metastatic regulator by acting on multiple signaling pathways. Here, we report the definition of miR-346 as an oncogenic microRNA that facilitates non-small cell lung cancer (NSCLC) cell growth and metastasis. XPC, an important DNA damage recognition factor in nucleotide excision repair was defined as a target for down-regulation by miR-346, functioning through direct interaction with the 3'-UTR of XPC mRNA. Blocking miR-346 by an antagomiR was sufficient to inhibit NSCLC cell growth and metastasis, an effect that could be phenol-copied by RNAi-mediated silencing of XPC. In vivo studies established that miR-346 overexpression was sufficient to promote tumor growth by A549 cells in xenografts mice, relative to control cells. Overall, our results defined miR-346 as an oncogenic miRNA in NSCLC, the levels of which contributed to tumor growth and invasive aggressiveness.Keywords: microRNA-346, miR-346, XPC, non-small cell lung cancer, oncogenesis
Procedia PDF Downloads 3126007 Photovoltaic Performance of AgInSe2-Conjugated Polymer Hybrid Systems
Authors: Dinesh Pathaka, Tomas Wagnera, J. M. Nunzib
Abstract:
We investigated blends of MdPVV.PCBM.AIS for photovoltaic application. AgInSe2 powder was synthesized by sealing and heating the stoichiometric constituents in evacuated quartz tube ampule. Fine grinded AIS powder was dispersed in MD-MOPVV and PCBM with and without surfactant. Different concentrations of these particles were suspended in the polymer solutions and spin casted onto ITO glass. Morphological studies have been performed by atomic force microscopy and optical microscopy. The blend layers were also investigated by various techniques like XRD, UV-VIS optical spectroscopy, AFM, PL, after a series of various optimizations with polymers/concentration/deposition/ suspension/surfactants etc. XRD investigation of blend layers shows clear evidence of AIS dispersion in polymers. Diode behavior and cell parameters also revealed it. Bulk heterojunction hybrid photovoltaic device Ag/MoO3/MdPVV.PCBM.AIS/ZnO/ITO was fabricated and tested with standard solar simulator and device characterization system. The best performance and photovoltaic parameters we obtained was an open-circuit voltage of about Voc 0.54 V and a photocurrent of Isc 117 micro A and an efficiency of 0.2 percent using a white light illumination intensity of 23 mW/cm2. Our results are encouraging for further research on the fourth generation inorganic organic hybrid bulk heterojunction photovoltaics for energy. More optimization with spinning rate/thickness/solvents/deposition rates for active layers etc. need to be explored for improved photovoltaic response of these bulk heterojunction devices.Keywords: thin films, photovoltaic, hybrid systems, heterojunction
Procedia PDF Downloads 2766006 A First Order Shear Deformation Theory Approach for the Buckling Behavior of Nanocomposite Beams
Authors: P. Pramod Kumar, Madhu Salumari, V. V. Subba Rao
Abstract:
Due to their high strength-to-weight ratio, carbon nanotube (CNTs) reinforced polymer composites are being considered as one of the most promising nanocomposites which can improve the performance when used in structural applications. The buckling behavior is one of the most important parameter needs to be considered in the design of structural members like beams and plates. In the present paper, the elastic constants of CNT reinforced polymer composites are evaluated by using Mori-Tanaka micromechanics approach. Knowing the elastic constants, an analytical study is being conducted to investigate the buckling behavior of nanocomposites for different CNT volume fractions at different boundary conditions using first-order shear deformation theory (FSDT). The effect of stacking sequence and CNT radius on the buckling of beam has also been presented. This study is being conducted primarily with an intension to find the stiffening effect of CNTs when used in polymer composites as reinforcement.Keywords: CNT, buckling, micromechanics, FSDT
Procedia PDF Downloads 2796005 Mechanical Properties of CNT Reinforced Composite Using Berkovich Nanoindentation Analysis
Authors: Khondaker Sakil Ahmed, Ang Kok Keng, Shah Md Muniruzzaman
Abstract:
Spherical and Berkovich indentation tests are carried out numerically using finite element method for uniformly dispersed Carbon Nanotube (CNT) in the polymer matrix in which perfectly bonded CNT/matrix interface is considered. The Large strain elasto-plastic analysis is performed to investigate the actual scenario of nanoindentation test. This study investigates how the addition of CNT in polymer matrix influences the mechanical properties like hardness, elastic modulus of the nanocomposite. Since the wall thickness to radius ratio (t/r) is significantly small for SWCNT there is a huge possibility of lateral buckling which is a function of the location of indentation tip as well as the mechanical properties of matrix. Separate finite element models are constructed to compare the result with Berkovich indentation. This study also investigates the buckling behavior of different nanotube in a different polymer matrix.Keywords: carbon nanotube, elasto-plastic, finite element model, nano-indentation
Procedia PDF Downloads 3896004 Preparation and Evaluation of siRNA Loaded Polymeric Nanoparticles
Authors: Riddhi Trivedi, Shrenik Shah
Abstract:
For Si RNA to be delivered various biodegradable polymers are trialed by many researchers. One of them is Chitosan (CS) nanoparticles which have been extensively studied for siRNA delivery but the stability and efficacy of such particles are highly dependent on the types of cross-linker used. Hence the attempts are made in this study with PGA To address this issue, three common cross-linkers; Ethylene glycol diacrylate (ED) and poly-D-glutamic acid (PGA) were used to prepare siRNA loaded CS-ED/PGA nanoparticles by ionic gelation method. The nanoparticles which were obtained were compared for its characterization in terms of its physicochemical properties i.e. particle size of the resultant particles, zeta potential, its encapsulation capacity in the polymer. Among all the formulations prepared with different crosslinker PGA siRNA had the smallest particle size (ranged from 120 ± 1.7 to 500 ± 10.9 nm) with zeta potential ranged from 22.1 ± 1.5 to +32.4 ± 0.5 mV, and high entrapment ( > 91%) and binding efficiencies. Similarly, CS-ED nanoparticles showed better siRNA protection during storage at 4˚C and as determined by serum protection assay. TEM micrographs revealed the assorted morphology of CS-PGA-siRNA nanoparticles in contrast to irregular morphology displayed by CS-ED-siRNA. All siRNA loaded nanoparticles were found to give initial burst release which after some time followed by a sustained release of siRNA which were loaded inside. All the formulations showed concentration-dependent cytotoxicity with when cytotoxicity performed by HeLa and normal vero cell lines.Keywords: chitosan, siRNA, cytotoxicity, cell line study
Procedia PDF Downloads 2996003 Analytical Solution for Multi-Segmented Toroidal Shells under Uniform Pressure
Authors: Nosakhare Enoma, Alphose Zingoni
Abstract:
The requirements for various toroidal shell forms are increasing due to new applications, available storage space and the consideration of appearance. Because of the complexity of some of these structural forms, the finite element method is nowadays mainly used for their analysis, even for simple static studies. This paper presents an easy-to-use analytical algorithm for pressurized multi-segmented toroidal shells of revolution. The membrane solution, which acts as a particular solution of the bending-theory equations, is developed based on membrane theory of shells, and a general approach is formulated for quantifying discontinuity effects at the shell junctions using the well-known Geckeler’s approximation. On superimposing these effects, and applying the ensuing solution to the problem of the pressurized toroid with four segments, closed-form stress results are obtained for the entire toroid. A numerical example is carried out using the developed method. The analytical results obtained show excellent agreement with those from the finite element method, indicating that the proposed method can be also used for complementing and verifying FEM results, and providing insights on other related problems.Keywords: bending theory of shells, membrane hypothesis, pressurized toroid, segmented toroidal vessel, shell analysis
Procedia PDF Downloads 3206002 Navigating the Ripple Effect: Deconstructing the Multilayered Impact of Fuel Subsidy Removal on Nigeria’s Educational Landscape
Authors: Abimbola Mobolanle Adu, Marcus Tayo Akinlade
Abstract:
This comprehensive study systematically dissects the intricate interplay between the removal of fuel subsidy and its multifaceted repercussions on Nigeria's educational system. Originating in the 1970s, the fuel subsidy policy initially conceived to curtail fuel costs and faced financial unsustainability. In 2023, President Bola Tinubu's administration announced its cessation. The resultant escalation in petroleum product prices precipitated challenges within the education sector, manifesting as heightened administrative costs, increased student fees, amplified dropout rates, and others. Employing a qualitative research methodology, grounded in Critical Theory, the study draws from diverse secondary sources and employs content analysis to unravel the intricate layers of this issue. Critical Theory provides a lens through which the power dynamics, socio-economic structures, and ideological influences shaping policy decisions can be critically examined, offering a deeper understanding of the multifaceted impact. Findings underscore the imperative for strategic interventions, advocating for investments in technology and the exploration of alternative energy sources. The paper concludes by emphasizing the pivotal role of education, advocating for nuanced policies to alleviate the impact on both private and public educational institutions. In essence, this research contributes nuanced insights into the labyrinthine dynamics between fuel subsidy policies and the educational sector, underscoring the exigency for meticulous interventions to fortify the nation's educational foundation.Keywords: administration, education, fuel subsidy, policy, multilayered impact
Procedia PDF Downloads 596001 Comparison of Filamentous Fungus (Monascus purpureus)Growth in Submerged and Solid State Culture
Authors: Shafieeh Mansoori, Fatemeh Yazdian, Ashrafsadat Hatamian, Majid Azizi
Abstract:
Monascus purpureus, which has a special metabolite with many therapeutic and medicinal properties including antioxidant, antibiotic, anti-hypercholesterolemia, and immunosuppressive properties, is a traditional Chinese fermentation fungus and is used as a natural dietary supplement. Production of desired metabolites actually determined by optimized growth which is supported by some factors such as substrates and Monascus strains type, moisture content of the fermentation mixture, aeration, and control of contamination issues. In this experiment, M. purpureus PTCC5305 was cultured in both the liquid and solid culture medium. The former medium contain YMP (yeast extract, maltose and peptone), PGC (peptone, glucose complex), and GYP (glucose, yeast extract and peptone) medium. After 8 days, the best medium for the cell production was PGC agar medium on solid culture with 0.28 g dry weight of cell mass whereas the best liquid culture was GYP medium with 3.5 g/l dry weight of cell mass. The lowest cell production was on YMP agar with 0.1 g dry weight of cell mass and then YMP medium with 2.5 g/l dry cell weight.Keywords: Monascus purpureus, solid state fermentation, submerged culture, Chinese fermentation fungus
Procedia PDF Downloads 4076000 Polymer Nanocoatings With Enhanced Self-Cleaning and Icephobic Properties
Authors: Bartlomiej Przybyszewski, Rafal Kozera, Katarzyna Zolynska, Anna Boczkowska, Daria Pakula
Abstract:
The build-up and accumulation of dirt, ice, and snow on structural elements and vehicles is an unfavorable phenomenon, leading to economic losses and often also posing a threat to people. This problem occurs wherever the use of polymer coatings has become a standard, among others in photovoltaic farms, aviation, wind energy, and civil engineering. The accumulated pollution on the photovoltaic modules can reduce their efficiency by several percent, and snow stops power production. Accumulated ice on the blades of wind turbines or the wings of airplanes and drones disrupts the airflow by changing their shape, leading to increased drag and reduced efficiency. This results in costly maintenance and repairs. The goal of the work is to reduce or completely eliminate the accumulation of dirt, snow, and ice build-up on polymer coatings by achieving self-cleaning and icephobic properties. It is done by the use of a multi-step surface modification of the polymer nanocoatings. For this purpose, two methods of surface structuring and the preceding volumetric modification of the chemical composition with proprietary organosilicon compounds and/or mineral additives were used. To characterize the surface topography of the modified coatings, light profilometry was utilized. Measurements of the wettability parameters (static contact angle and contact angle hysteresis) on the investigated surfaces allowed to identify their wetting behavior and determine relation between hydrophobic and anti-icing properties. Ice adhesion strength was measured to assess coatings' anti-icing behavior.Keywords: anti-icing properties, self-cleaning, polymer coatings, icephobic coatings
Procedia PDF Downloads 1095999 Influence of Geometry on Performance of Type-4 Filament Wound Composite Cylinder for Compressed Gas Storage
Authors: Pranjali Sharma, Swati Neogi
Abstract:
Composite pressure vessels are low weight structures mainly used in a variety of applications such as automobiles, aeronautics and chemical engineering. Fiber reinforced polymer (FRP) composite materials offer the simplicity of design and use, high fuel storage capacity, rapid refueling capability, excellent shelf life, minimal infrastructure impact, high safety due to the inherent strength of the pressure vessel, and little to no development risk. Apart from these preliminary merits, the subsidized weight of composite vessels over metallic cylinders act as the biggest asset to the automotive industry, increasing the fuel efficiency. The result is a lightweight, flexible, non-explosive, and non-fragmenting pressure vessel that can be tailor-made to attune with specific applications. The winding pattern of the composite over-wrap is a primary focus while designing a pressure vessel. The critical stresses in the system depend on the thickness, angle and sequence of the composite layers. The composite over-wrap is wound over a plastic liner, whose geometry can be varied for the ease of winding. In the present study, we aim to optimize the FRP vessel geometry that provides an ease in winding and also aids in weight reduction for enhancing the vessel performance. Finite element analysis is used to study the effect of dome geometry, yielding a design with maximum value of burst pressure and least value of vessel weight. The stress and strain analysis of different dome ends along with the cylindrical portion is carried out in ANSYS 19.2. The failure is predicted using different failure theories like Tsai-Wu theory, Tsai-Hill theory and Maximum stress theory. Corresponding to a given winding sequence, the optimum dome geometry is determined for a fixed internal pressure to identify the theoretical value of burst pressure. Finally, this geometry is used to decrease the number of layers to reach the set value of safety in accordance with the available safety standards. This results in decrease in the weight of the composite over-wrap and manufacturing cost of the pressure vessel. An improvement in the overall weight performance of the pressure vessel gives higher fuel efficiency for its use in automobile applications.Keywords: Compressed Gas Storage, Dome geometry, Theoretical Analysis, Type-4 Composite Pressure Vessel, Improvement in Vessel Weight Performance
Procedia PDF Downloads 1475998 Global Emission Inventories of Air Pollutants from Combustion Sources
Authors: Shu Tao
Abstract:
Based on a global fuel consumption data product (PKU-FUEL-2007) compiled recently and a series of databases for emission factors of various sources, global emission inventories of a number of greenhouse gases and air pollutants, including CO2, CO, SO2, NOx, primary particulate matter (total, PM 10, and PM 2.5), black carbon, organic carbon, mercury, volatile organic carbons, and polycyclic aromatic hydrocarbons, from combustion sources have been developed. The inventories feather high spatial and sectorial resolutions. The spatial resolution of the inventories are 0.1 by 0.1 degree, based on a sub-national disaggregation approach to reduce spatial bias due to uneven distribution of per person fuel consumption within countries. The finely resolved inventories provide critical information for chemical transport modeling and exposure modeling. Emissions from more than 60 sources in energy, industry, agriculture, residential, transportation, and wildfire sectors were quantified in this study. With the detailed sectorial information, the inventories become an important tool for policy makers. For residential sector, a set of models were developed to simulate temporal variation of fuel consumption, consequently pollutant emissions. The models can be used to characterize seasonal as well as inter-annual variations in the emissions in history and to predict future changes. The models can even be used to quantify net change of fuel consumption and pollutant emissions due to climate change. The inventories has been used for model ambient air quality, population exposure, and even health effects. A few examples of the applications are discussed.Keywords: air pollutants, combustion, emission inventory, sectorial information
Procedia PDF Downloads 3695997 Comprehensive Feature Extraction for Optimized Condition Assessment of Fuel Pumps
Authors: Ugochukwu Ejike Akpudo, Jank-Wook Hur
Abstract:
The increasing demand for improved productivity, maintainability, and reliability has prompted rapidly increasing research studies on the emerging condition-based maintenance concept- Prognostics and health management (PHM). Varieties of fuel pumps serve critical functions in several hydraulic systems; hence, their failure can have daunting effects on productivity, safety, etc. The need for condition monitoring and assessment of these pumps cannot be overemphasized, and this has led to the uproar in research studies on standard feature extraction techniques for optimized condition assessment of fuel pumps. By extracting time-based, frequency-based and the more robust time-frequency based features from these vibrational signals, a more comprehensive feature assessment (and selection) can be achieved for a more accurate and reliable condition assessment of these pumps. With the aid of emerging deep classification and regression algorithms like the locally linear embedding (LLE), we propose a method for comprehensive condition assessment of electromagnetic fuel pumps (EMFPs). Results show that the LLE as a comprehensive feature extraction technique yields better feature fusion/dimensionality reduction results for condition assessment of EMFPs against the use of single features. Also, unlike other feature fusion techniques, its capabilities as a fault classification technique were explored, and the results show an acceptable accuracy level using standard performance metrics for evaluation.Keywords: electromagnetic fuel pumps, comprehensive feature extraction, condition assessment, locally linear embedding, feature fusion
Procedia PDF Downloads 1175996 Cell-Based and Exosome Treatments for Hair Restoration
Authors: Armin Khaghani Boroujeni, Leila Dehghani, Parham Talebi Boroujeni, Sahar Rostamian, Ali Asilian
Abstract:
Background: Hair loss is a common complaint observed in both genders. Androgenetic alopecia is known pattern for hair loss. To assess new regenerative strategies (PRP, A-SC-BT, conditioned media, exosome-based treatments) compared to conventional therapies for hair loss or hair regeneration, an updated review was undertaken. To address this issue, we carried out this systematic review to comprehensively evaluate the efficacy of cell-based therapies on hair loss. Methods: The available online databases, including ISI Web of Science, Scopus, and PubMed, were searched systematically up to February 2022. The quality assessment of included studies was done using the Cochrane Collaboration's tool. Results: As a result, a total of 90 studies involving 2345 participants were included in the present study. The enrolled studies were conducted between 2010 and 2022. The subjects’ mean age ranged from 19 to 55.11 years old. Approaches using platelet rich plasma (PRP) provide a beneficial impact on hair regrowth. However, other cell-based therapies, including stem cell transplant, stem cell-derived conditioned medium, and stem cell-derived exosomes, revealed conflicting evidence. Conclusion: However, cell-based therapies for hair loss are still in their infancy, and more robust clinical studies are needed to better evaluate their mechanisms of action, efficacy, safety, benefits, and limitations. In this review, we provide the resources to the latest clinical studies and a more detailed description of the latest clinical studies concerning cell-based therapies in hair loss.Keywords: cell-based therapy, exosome, hair restoration, systematic review
Procedia PDF Downloads 755995 Development of Oral Biphasic Drug Delivery System Using a Natural Resourced Polymer, Terminalia catappa
Authors: Venkata Srikanth Meka, Nur Arthirah Binti Ahmad Tarmizi Tan, Muhammad Syahmi Bin Md Nazir, Adinarayana Gorajana, Senthil Rajan Dharmalingam
Abstract:
Biphasic drug delivery systems are designed to release drug at two different rates, either fast/prolonged or prolonged/fast. A fast/prolonged release system provides a burst drug release at initial stage followed by a slow release over a prolonged period of time and in case of prolonged/fast release system, the release pattern is vice versa. Terminalia catappa gum (TCG) is a natural polymer and was successfully proven as a novel pharmaceutical excipient. The main objective of the present research is to investigate the applicability of natural polymer, Terminalia catappa gum in the design of oral biphasic drug delivery system in the form of mini tablets by using a model drug, buspirone HCl. This investigation aims to produce a biphasic release drug delivery system of buspirone by combining immediate release and prolonged release mini tablets into a capsule. For immediate release mini tablets, a dose of 4.5 mg buspirone was prepared by varying the concentration of superdisintegrant; crospovidone. On the other hand, prolonged release mini tablets were produced by using different concentrations of the natural polymer; TCG with a buspirone dose of 3mg. All mini tablets were characterized for weight variation, hardness, friability, disintegration, content uniformity and dissolution studies. The optimized formulations of immediate and prolonged release mini tablets were finally combined in a capsule and was evaluated for release studies. FTIR and DSC studies were conducted to study the drug-polymer interaction. All formulations of immediate release and prolonged release mini tablets were passed all the in-process quality control tests according to US Pharmacopoeia. The disintegration time of immediate release mini tablets of different formulations was varied from 2-6 min, and maximum drug release was achieved in lesser than 60 min. Whereas prolonged release mini tablets made with TCG have shown good drug retarding properties. Formulations were controlled for about 4-10 hrs with varying concentration of TCG. As the concentration of TCG increased, the drug release retarding property also increased. The optimised mini tablets were packed in capsules and were evaluated for the release mechanism. The capsule dosage form has clearly exhibited the biphasic release of buspirone, indicating that TCG is a suitable natural polymer for this study. FTIR and DSC studies proved that there was no interaction between the drug and polymer. Based on the above positive results, it can be concluded that TCG is a suitable polymer for the biphasic drug delivery systems.Keywords: Terminalia catappa gum, biphasic release, mini tablets, tablet in capsule, natural polymers
Procedia PDF Downloads 3935994 Comparison of Hydrogen and Electrification Perspectives in Decarbonizing the Transport Sector
Authors: Matteo Nicoli, Gianvito Colucci, Valeria Di Cosmo, Daniele Lerede, Laura Savoldi
Abstract:
The transport sector is currently responsible for approximately 1/3 of greenhouse gas emissions in Europe. In the wider context of achieving carbon neutrality of the global energy system, different alternatives are available to decarbonizethe transport sector. In particular, while electricity is already the most consumed energy commodity in rail transport, battery electric vehicles are one of the zero-emissions options on the market for road transportation. On the other hand, hydrogen-based fuel cell vehicles are available for road and non-road vehicles. The European Commission is strongly pushing toward the integration of hydrogen in the energy systems of European countries and its widespread adoption as an energy vector to achieve the Green Deal targets. Furthermore, the Italian government is defining hydrogen-related objectives with the publication of a dedicated Hydrogen Strategy. The adoption of energy system optimization models to study the possible penetration of alternative zero-emitting transport technologies gives the opportunity to perform an overall analysis of the effects that the development of innovative technologies has on the entire energy system and on the supply-side, devoted to the production of energy carriers such as hydrogen and electricity. Using an open-source modeling framework such as TEMOA, this work aims to compare the role of hydrogen and electric vehicles in the decarbonization of the transport sector. The analysis investigates the advantages and disadvantages of adopting the two options, from the economic point of view (costs associated with the two options) and the environmental one (looking at the emissions reduction perspectives). Moreover, an analysis on the profitability of the investments in hydrogen and electric vehicles will be performed. The study investigates the evolution of energy consumption and greenhouse gas emissions in different transportation modes (road, rail, navigation, and aviation) by detailed analysis of the full range of vehicles included in the techno-economic database used in the TEMOA model instance adopted for this work. The transparency of the analysis is guaranteed by the accessibility of the TEMOA models, based on an open-access source code and databases.Keywords: battery electric vehicles, decarbonization, energy system optimization models, fuel cell vehicles, hydrogen, open-source modeling, TEMOA, transport
Procedia PDF Downloads 1125993 Impregnation Reduction Method for the Preparation of Platinum-Nickel/Carbon Black Alloy Nanoparticles as Faor Electrocatalyst
Authors: Maryam Kiani
Abstract:
In order to enhance the efficiency and stability of an electrocatalyst for formic acid electro-oxidation reaction (FAOR), we developed a method to create Pt/Ni nanoparticles with carbon black. These nanoparticles were prepared using a simple impregnation reduction technique. During the observation, it was found that the nanoparticles had a spherical shape. Additionally, the average particle size remained consistent, falling within the range of about 4 nm. This approach aimed to obtain a loaded Pt-based electrocatalyst that would exhibit improved performance and stability when used in FAOR applications. By utilizing the impregnation reduction method and incorporating Ni nanoparticles along with Pt, we sought to enhance the catalytic properties of the material. By incorporating Ni atoms into the Pt structure, the electronic properties of Pt are modified, resulting in a delay in the chemisorption of harmful CO intermediate species. This modification also promotes the dehydrogenation pathway of the formic acid oxidation reaction (FAOR). Through electrochemical analysis, it has been observed that the Pt3Ni-C catalyst exhibits enhanced performance in FAOR compared to traditional Pt catalysts. This means that the addition of Ni atoms improves the efficiency and effectiveness of the Pt3Ni-C catalyst in facilitating the FAOR process. Overall, the utilization of these alloy nanoparticles as electrocatalysts represents a significant advancement in fuel cell technology.Keywords: electrocatalyst, impregnation reduction method, formic acid electro-oxidation reaction, fuel cells
Procedia PDF Downloads 1275992 Transport of Analytes under Mixed Electroosmotic and Pressure Driven Flow of Power Law Fluid
Authors: Naren Bag, S. Bhattacharyya, Partha P. Gopmandal
Abstract:
In this study, we have analyzed the transport of analytes under a two dimensional steady incompressible flow of power-law fluids through rectangular nanochannel. A mathematical model based on the Cauchy momentum-Nernst-Planck-Poisson equations is considered to study the combined effect of mixed electroosmotic (EO) and pressure driven (PD) flow. The coupled governing equations are solved numerically by finite volume method. We have studied extensively the effect of key parameters, e.g., flow behavior index, concentration of the electrolyte, surface potential, imposed pressure gradient and imposed electric field strength on the net average flow across the channel. In addition to study the effect of mixed EOF and PD on the analyte distribution across the channel, we consider a nonlinear model based on general convective-diffusion-electromigration equation. We have also presented the retention factor for various values of electrolyte concentration and flow behavior index.Keywords: electric double layer, finite volume method, flow behavior index, mixed electroosmotic/pressure driven flow, non-Newtonian power-law fluids, numerical simulation
Procedia PDF Downloads 3115991 An Overview of Food Waste Management Technologies; The Advantages of Using New Management Methods over the Older Methods to Reduce the Environmental Impacts of Food Waste, Conserve Resources, and Energy Recovery
Authors: Bahareh Asefi, Fereidoun Farzaneh, Ghazaleh Asefi
Abstract:
Continuous increasing food waste produced on a global as well as national scale may lead to burgeoning environmental and economic problems. Simultaneously, decreasing the use efficiencies of natural resources such as land, water, and energy is occurring. On the other hand, food waste has a high-energy content, which seems ideal to achieve dual benefits in terms of energy recovery and the improvement of resource use efficiencies. Therefore, to decrease the environmental impacts of food waste and resource conservation, the researcher has focused on traditional methods of using food waste as a resource through different approaches such as anaerobic digestion, composting, incineration, and landfill. The adverse environmental effects of growing food waste make it difficult for traditional food waste treatment and management methods to balance social, economic, and environmental benefits. The old technology does not need to develop, but several new technologies such as microbial fuel cells, food waste disposal, and bio-converting food waste technology still need to establish or appropriately considered. It is pointed out that some new technologies can take into account various benefits. Since the information about food waste and its management method is critical for executable policy, a review of the latest information regarding the source of food waste and its management technology in some counties is provided in this study.Keywords: food waste, management technology, innovative method, bio converting food waste, microbial fuel cell
Procedia PDF Downloads 1165990 Evaluation of the Use of U-Wrap Anchorage Systems for Strengthening Concrete Members Reinforced by Fiber Reinforced-Polymer Laminate
Authors: Mai A. Aljaberi
Abstract:
The anchorage of fibre-reinforced polymer (FRP) sheets is the most effective solution to prevent or delay debonding failure; this system has proven to get better levels of FRP utilization. Unfortunately, the related design information is still unclear. This shortcoming limits the widespread use of the anchorage system. In order to minimize the knowledge gap about the design of U-wrap anchors, this paper reports the results of tested beams which were strengthened with carbon fiber-reinforced polymer (CFRP) sheets at their tension sides and secured with U-wrap anchors at each end of the longitudinal CFRP. The beams were tested under four-point loading until failure. The parameters examined include the compressive strength of the concrete and the number of longitudinal CFRP. It is concluded that these parameters have a considerable effect on the debonding of the strain. The greatest improvement in the strain was 55.8% over the control beam.Keywords: CFRP, concrete strengthening, debonding failure, debonding strain, U-wrap anchor
Procedia PDF Downloads 84