Search results for: mobile Adhoc network (MANET)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6142

Search results for: mobile Adhoc network (MANET)

5032 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism

Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li

Abstract:

Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.

Keywords: keypoint detection, feature fusion, attention, semantic segmentation

Procedia PDF Downloads 119
5031 Risk Tolerance and Individual Worthiness Based on Simultaneous Analysis of the Cognitive Performance and Emotional Response to a Multivariate Situational Risk Assessment

Authors: Frederic Jumelle, Kelvin So, Didan Deng

Abstract:

A method and system for neuropsychological performance test, comprising a mobile terminal, used to interact with a cloud server which stores user information and is logged into by the user through the terminal device; the user information is directly accessed through the terminal device and is processed by artificial neural network, and the user information comprises user facial emotions information, performance test answers information and user chronometrics. This assessment is used to evaluate the cognitive performance and emotional response of the subject to a series of dichotomous questions describing various situations of daily life and challenging the users' knowledge, values, ethics, and principles. In industrial applications, the timing of this assessment will depend on the users' need to obtain a service from a provider, such as opening a bank account, getting a mortgage or an insurance policy, authenticating clearance at work, or securing online payments.

Keywords: artificial intelligence, neurofinance, neuropsychology, risk management

Procedia PDF Downloads 138
5030 Enabling Citizen Participation in Urban Planning through Geospatial Gamification

Authors: Joanne F. Hayek

Abstract:

This study explores the use of gamification to promote citizen e-participation in urban planning. The research departs from a case study: the ‘Shape Your City’ web app designed and programmed by the author and presented as part of the 2021 Dubai Design Week to engage citizens in the co-creation of the future of their city through a gamified experience. The paper documents the design and development methodology of the web app and concludes with the findings of its pilot release. The case study explores the use of mobile interactive mapping, real-time data visualization, augmented reality, and machine learning as tools to enable co-planning. The paper also details the user interface design strategies employed to integrate complex cross-sector e-planning systems and make them accessible to citizens.

Keywords: gamification, co-planning, citizen e-participation, mobile interactive mapping, real-time data visualization

Procedia PDF Downloads 141
5029 The Next Frontier for Mobile Based Augmented Reality: An Evaluation of AR Uptake in India

Authors: K. Krishna Milan Rao, Nelvin Joseph, Praveen Dwarakanath

Abstract:

Augmented and Virtual Realties is quickly becoming a hotbed of activity with millions of dollars being spent on R & D and companies such as Google and Microsoft rushing to stake their claim. Augmented reality (AR) is however marching ahead due to the spread of the ideal AR device – the smartphone. Despite its potential, there remains a deep digital divide between the Developed and Developing Countries. The Technological Acceptance Model (TAM) and Hofstede cultural dimensions also predict the behaviour intention to uptake AR in India will be large. This paper takes a quantified approach by collecting 340 survey responses to AR scenarios and analyzing them through statistics. The Survey responses show that the Intention to Use, Perceived Usefulness and Perceived Enjoyment dimensions are high among the urban population in India. This along with the exponential smartphone indicates that India is on the cusp of a boom in the AR sector.

Keywords: mobile augmented reality, technology acceptance model, Hofstede, cultural dimensions, India

Procedia PDF Downloads 250
5028 Improving Waste Recycling and Resource Productivity by Integrating Smart Resource Tracking System

Authors: Atiq Zaman

Abstract:

The high contamination rate in the recycling waste stream is one of the major problems in Australia. In addition, a lack of reliable waste data makes it even more difficult for designing and implementing an effective waste management plan. This article conceptualizes the opportunity to improve resource productivity by integrating smart resource tracking system (SRTS) into the Australian household waste management system. The application of the smart resource tracking system will be implemented through the following ways: (i) mobile application-based resource tracking system used to measure the household’s material flow; (ii) RFID, smart image and weighing system used to track waste generation, recycling and contamination; (iii) informing and motivating manufacturer and retailers to improve their problematic products’ packaging; and (iv) ensure quality and reliable data through open-sourced cloud data for public use. The smart mobile application, imaging, radio-frequency identification (RFID) and weighing technologies are not new, but the very straightforward idea of using these technologies in the household resource consumption, waste bins and collection trucks will open up a new era of accurately measuring and effectively managing our waste. The idea will bring the most urgently needed reliable, data and clarity on household consumption, recycling behaviour and waste management practices in the context of available local infrastructure and policies. Therefore, the findings of this study would be very important for decision makers to improve resource productivity in the waste industry by using smart resource tracking system.

Keywords: smart devices, mobile application, smart sensors, resource tracking, waste management, resource productivity

Procedia PDF Downloads 144
5027 D-Epi App: Mobile Application to Control Sodium Valproat Administration in Children with Idiopatic Epilepsy in Indonesia

Authors: Nyimas Annissa Mutiara Andini

Abstract:

There are 325,000 children younger than age 15 in the U.S. have epilepsy. In Indonesia, 40% of 3,5 millions cases of epilepsy happens in children. The most common type of epilepsy, which affects 6 out of 10 people with the disorder, is called idiopathic epilepsy and which has no identifiable cause. One of the most commonly used medications in the treatment of this childhood epilepsy is sodium valproate. Administration of sodium valproat in children has a problem to fail. Nearly 60% of pediatric patients known were mildly, moderately, or severely non-adherent with therapy during the first six months of treatment. Many parents or caregiver took far less medication than prescribed, and the treatment-adherence pattern for the majority of patients was established during the first month of treatment. 42% of the patients were almost always given their medications as prescribed but 13% had very poor adherence even in the early weeks and months of treatment. About 7% of patients initially gave the medication correctly 90% of the time, but adherence dropped to around 20% within six months of starting treatment. Over the six months of observation, the total missing of administration is about four out of 14 doses in any given week. This fail can cause the epilepsy to relapse. Whereas, current reported epilepsy disorder were significantly more likely than those never diagnosed to experience depression (8% vs 2%), anxiety (17% vs 3%), attention-deficit/hyperactivity disorder (23% vs 6%), developmental delay (51% vs 3%), autism/autism spectrum disorder (16% vs 1%), and headaches (14% vs 5%) (all P< 0.05). They had a greater risk of limitation in the ability to do things (relative risk: 9.22; 95% CI: 7.56–11.24), repeating a school grade (relative risk: 2.59; CI: 1.52–4.40), and potentially having unmet medical and mental health needs. In the other side, technology can help to make our life easier. One of the technology, that we can use is a mobile application. A mobile app is a software program we can download and access directly using our phone. Indonesians are highly mobile centric. They use, on average, 6.7 applications over a 30 day period. This paper is aimed to describe an application that could help to control a sodium valproat administration in children; we call it as D-Epi app. D-Epi app is a downloadable application that can help parents or caregiver alert by a timer-related application to warn whether it is the time to administer the sodium valproat. It works not only as a standard alarm, but also inform important information about the drug and emergency stuffs to do to children with epilepsy. This application could help parents and caregiver to take care a child with epilepsy in Indonesia.

Keywords: application, children, D-Epi, epilepsy

Procedia PDF Downloads 280
5026 Particle Filter Supported with the Neural Network for Aircraft Tracking Based on Kernel and Active Contour

Authors: Mohammad Izadkhah, Mojtaba Hoseini, Alireza Khalili Tehrani

Abstract:

In this paper we presented a new method for tracking flying targets in color video sequences based on contour and kernel. The aim of this work is to overcome the problem of losing target in changing light, large displacement, changing speed, and occlusion. The proposed method is made in three steps, estimate the target location by particle filter, segmentation target region using neural network and find the exact contours by greedy snake algorithm. In the proposed method we have used both region and contour information to create target candidate model and this model is dynamically updated during tracking. To avoid the accumulation of errors when updating, target region given to a perceptron neural network to separate the target from background. Then its output used for exact calculation of size and center of the target. Also it is used as the initial contour for the greedy snake algorithm to find the exact target's edge. The proposed algorithm has been tested on a database which contains a lot of challenges such as high speed and agility of aircrafts, background clutter, occlusions, camera movement, and so on. The experimental results show that the use of neural network increases the accuracy of tracking and segmentation.

Keywords: video tracking, particle filter, greedy snake, neural network

Procedia PDF Downloads 343
5025 Dynamic Performance Analysis of Distribution/ Sub-Transmission Networks with High Penetration of PV Generation

Authors: Cristian F.T. Montenegro, Luís F. N. Lourenço, Maurício B. C. Salles, Renato M. Monaro

Abstract:

More PV systems have been connected to the electrical network each year. As the number of PV systems increases, some issues affecting grid operations have been identified. This paper studied the impacts related to changes in solar irradiance on a distribution/sub-transmission network, considering variations due to moving clouds and daily cycles. Using MATLAB/Simulink software, a solar farm of 30 MWp was built and then implemented to a test network. From simulations, it has been determined that irradiance changes can have a significant impact on the grid by causing voltage fluctuations outside the allowable thresholds. This work discussed some local control strategies and grid reinforcements to mitigate the negative effects of the irradiance changes on the grid.

Keywords: reactive power control, solar irradiance, utility-scale PV systems, voltage fluctuations

Procedia PDF Downloads 460
5024 Inducing Flow Experience in Mobile Learning: An Experiment Using a Spanish Learning Mobile Application

Authors: S. Jonsson, D. Millard, C. Bokhove

Abstract:

Smartphones are ubiquitous and frequently used as learning tools, which makes the design of educational apps an important area of research. A key issue is designing apps to encourage engagement while maintaining a focus on the educational aspects of the app. Flow experience is a promising method for addressing this issue, which refers to a mental state of cognitive absorption and positive emotion. Flow experience has been shown to be associated with positive emotion and increased learning performance. Studies have shown that immediate feedback is an antecedent to Flow. This experiment investigates the effect of immediate feedback on Flow experience. An app teaching Spanish phrases was developed, and 30 participants completed both a 10min session with immediate feedback and a 10min session with delayed feedback. The app contained a task where the user assembles Spanish phrases by pressing bricks with Spanish words. Immediate feedback was implemented by incorrect bricks recoiling, while correct brick moved to form part of the finished phrase. In the delayed feedback condition, the user did not know if the bricks they pressed were correct until the phrase was complete. The level of Flow experienced by the participants was measured after each session using the Flow Short Scale. The results showed that higher levels of Flow were experienced in the immediate feedback session. It was also found that 14 of the participants indicated that the demands of the task were ‘just right’ in the immediate feedback session, while only one did in the delayed feedback session. These results have implications for how to design educational technology and opens up questions for how Flow experience can be used to increase performance and engagement.

Keywords: feedback timing, flow experience, L2 language learning, mobile learning

Procedia PDF Downloads 133
5023 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling

Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed

Abstract:

The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.

Keywords: streamflow, neural network, optimisation, algorithm

Procedia PDF Downloads 152
5022 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags

Authors: Zhang Shuqi, Liu Dan

Abstract:

For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.

Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation

Procedia PDF Downloads 105
5021 Artificial Neural Network Speed Controller for Excited DC Motor

Authors: Elabed Saud

Abstract:

This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs.

Keywords: Artificial Neural Network (ANNs), excited DC motor, convenional controller, speed Controller

Procedia PDF Downloads 726
5020 Integration Network ASI in Lab Automation and Networks Industrial in IFCE

Authors: Jorge Fernandes Teixeira Filho, André Oliveira Alcantara Fontenele, Érick Aragão Ribeiro

Abstract:

The constant emergence of new technologies used in automated processes makes it necessary for teachers and traders to apply new technologies in their classes. This paper presents an application of a new technology that will be employed in a didactic plant, which represents an effluent treatment process located in a laboratory of a federal educational institution. At work were studied in the first place, all components to be placed on automation laboratory in order to determine ways to program, parameterize and organize the plant. New technologies that have been implemented to the process are basically an AS-i network and a Profinet network, a SCADA system, which represented a major innovation in the laboratory. The project makes it possible to carry out in the laboratory various practices of industrial networks and SCADA systems.

Keywords: automation, industrial networks, SCADA systems, lab automation

Procedia PDF Downloads 548
5019 Alloy Design of Single Crystal Ni-base Superalloys by Combined Method of Neural Network and CALPHAD

Authors: Mehdi Montakhabrazlighi, Ercan Balikci

Abstract:

The neural network (NN) method is applied to alloy development of single crystal Ni-base Superalloys with low density and improved mechanical strength. A set of 1200 dataset which includes chemical composition of the alloys, applied stress and temperature as inputs and density and time to rupture as outputs is used for training and testing the network. Thermodynamic phase diagram modeling of the screened alloys is performed with Thermocalc software to model the equilibrium phases and also microsegregation in solidification processing. The model is first trained by 80% of the data and the 20% rest is used to test it. Comparing the predicted values and the experimental ones showed that a well-trained network is capable of accurately predicting the density and time to rupture strength of the Ni-base superalloys. Modeling results is used to determine the effect of alloying elements, stress, temperature and gamma-prime phase volume fraction on rupture strength of the Ni-base superalloys. This approach is in line with the materials genome initiative and integrated computed materials engineering approaches promoted recently with the aim of reducing the cost and time for development of new alloys for critical aerospace components. This work has been funded by TUBITAK under grant number 112M783.

Keywords: neural network, rupture strength, superalloy, thermocalc

Procedia PDF Downloads 315
5018 Analyzing Keyword Networks for the Identification of Correlated Research Topics

Authors: Thiago M. R. Dias, Patrícia M. Dias, Gray F. Moita

Abstract:

The production and publication of scientific works have increased significantly in the last years, being the Internet the main factor of access and distribution of these works. Faced with this, there is a growing interest in understanding how scientific research has evolved, in order to explore this knowledge to encourage research groups to become more productive. Therefore, the objective of this work is to explore repositories containing data from scientific publications and to characterize keyword networks of these publications, in order to identify the most relevant keywords, and to highlight those that have the greatest impact on the network. To do this, each article in the study repository has its keywords extracted and in this way the network is  characterized, after which several metrics for social network analysis are applied for the identification of the highlighted keywords.

Keywords: bibliometrics, data analysis, extraction and data integration, scientometrics

Procedia PDF Downloads 258
5017 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection

Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner

Abstract:

Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.

Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.

Procedia PDF Downloads 223
5016 Protein Tertiary Structure Prediction by a Multiobjective Optimization and Neural Network Approach

Authors: Alexandre Barbosa de Almeida, Telma Woerle de Lima Soares

Abstract:

Protein structure prediction is a challenging task in the bioinformatics field. The biological function of all proteins majorly relies on the shape of their three-dimensional conformational structure, but less than 1% of all known proteins in the world have their structure solved. This work proposes a deep learning model to address this problem, attempting to predict some aspects of the protein conformations. Throughout a process of multiobjective dominance, a recurrent neural network was trained to abstract the particular bias of each individual multiobjective algorithm, generating a heuristic that could be useful to predict some of the relevant aspects of the three-dimensional conformation process formation, known as protein folding.

Keywords: Ab initio heuristic modeling, multiobjective optimization, protein structure prediction, recurrent neural network

Procedia PDF Downloads 206
5015 Social Network Analysis as a Research and Pedagogy Tool in Problem-Focused Undergraduate Social Innovation Courses

Authors: Sean McCarthy, Patrice M. Ludwig, Will Watson

Abstract:

This exploratory case study explores the deployment of Social Network Analysis (SNA) in mapping community assets in an interdisciplinary, undergraduate, team-taught course focused on income insecure populations in a rural area in the US. Specifically, it analyzes how students were taught to collect data on community assets and to visualize the connections between those assets using Kumu, an SNA data visualization tool. Further, the case study shows how social network data was also collected about student teams via their written communications in Slack, an enterprise messaging tool, which enabled instructors to manage and guide student research activity throughout the semester. The discussion presents how SNA methods can simultaneously inform both community-based research and social innovation pedagogy through the use of data visualization and collaboration-focused communication technologies.

Keywords: social innovation, social network analysis, pedagogy, problem-based learning, data visualization, information communication technologies

Procedia PDF Downloads 147
5014 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.

Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime

Procedia PDF Downloads 150
5013 Life Prediction of Condenser Tubes Applying Fuzzy Logic and Neural Network Algorithms

Authors: A. Majidian

Abstract:

The life prediction of thermal power plant components is necessary to prevent the unexpected outages, optimize maintenance tasks in periodic overhauls and plan inspection tasks with their schedules. One of the main critical components in a power plant is condenser because its failure can affect many other components which are positioned in downstream of condenser. This paper deals with factors affecting life of condenser. Failure rates dependency vs. these factors has been investigated using Artificial Neural Network (ANN) and fuzzy logic algorithms. These algorithms have shown their capabilities as dynamic tools to evaluate life prediction of power plant equipments.

Keywords: life prediction, condenser tube, neural network, fuzzy logic

Procedia PDF Downloads 351
5012 GPS Devices to Increase Efficiency of Indian Auto-Rickshaw Segment

Authors: Sanchay Vaidya, Sourabh Gupta, Gouresh Singhal

Abstract:

There are various modes of transport in metro cities in India, auto-rickshaws being one of them. Auto-rickshaws provide connectivity to all the places in the city offering last mile connectivity. Among all the modes of transport, the auto-rickshaw industry is the most unorganized and inefficient. Although unions exist in different cities they aren’t good enough to cope up with the upcoming advancements in the field of technology. An introduction of simple technology in this field may do wonder and help increase the revenues. This paper aims to organize this segment under a single umbrella using GPS devices and mobile phones. The paper includes surveys of about 300 auto-rickshaw drivers and 1000 plus commuters across 6 metro cities in India. Carrying out research and analysis provides a base for the development of this model and implementation of this innovative technique, which is discussed in this paper in detail with ample emphasis given on the implementation of this model.

Keywords: auto-rickshaws, business model, GPS device, mobile application

Procedia PDF Downloads 227
5011 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain

Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas

Abstract:

Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.

Keywords: the agricultural robot, autonomous control, path-tracking control, tracked mobile robot

Procedia PDF Downloads 172
5010 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction

Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic

Abstract:

Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.

Keywords: bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks

Procedia PDF Downloads 385
5009 Access of Refugees in Rural Areas to Regular Medication during COVID-19 Era: International Organization for Migration, Jordan Experience

Authors: Rasha Shoumar

Abstract:

Background: Since the onset of the Syria crisis in 2011, Jordan has hosted many Syrian refugees, many of which are residing in urban and rural areas. Vulnerability of refugees has increased due to the COVID-19 pandemic, adding to their already existing challenge in access to medical services, rendering them vulnerable to the complications of untreated medical conditions and amplifying their risk for severe COVID-19 disease. To improve health outcomes and access to health care services in a COVID-19 context, IOM (The International Organization for Migration) provided health services including awareness raising, direct primary health care through mobile teams and referrals to secondary services were extended to the vulnerable populations of refugees. Method: 6 community health volunteers were trained and deployed to different governorates to provide COVID-19 and non-communicable disease awareness and collect data rated to non-communicable disease and access to medical health services. Primary health care services were extended to 7 governorates through a mobile medical team, providing medical management. The collected Data was reviewed and analyzed. Results: 2150 refugees in rural areas were reached out by community health volunteers, out of which 78 received their medications through the Ministry of Health, 121 received their medications through different non-governmental organizations, 665 patients couldn’t afford buying any medications, 1286 patients were occasionally buying their medications when they were able to afford it. 853 patients received medications and follow up through IOM mobile clinics, the most common conditions were hypertension, diabetes, hyperlipidemia, anemia, heart disease, thyroid disease, asthma, seizures, and psychiatric conditions. 709 of these patients had more than 3 of the comorbidities. Multiple cases were referred for secondary and tertiary lifesaving interventions. Conclusion: Non communicable diseases are highly prevalent among refugee population in Jordan, access to medical services have proven to be a challenge in rural areas especially during the COVID-19 era, many of the patients have multiple uncontrolled medical conditions placing them at risk for complications and risk for severe COVID-19 disease. Deployment of mobile clinics to rural areas plays an essential role in managing such medical conditions, thus improving the continuum of health care approach, physical and mental wellbeing of refugees and reducing the risk for severe COVID-19 disease among this group, taking us one step forward toward universal health access.

Keywords: COVID-19, refugees, mobile clinics, primary health care

Procedia PDF Downloads 141
5008 Promoting Patients' Adherence to Home-Based Rehabilitation: A Randomised Controlled Trial of a Theory-Driven Mobile Application

Authors: Derwin K. C. Chan, Alfred S. Y. Lee

Abstract:

The integrated model of self-determination theory and the theory of planned behaviour has been successfully applied to explain individuals’ adherence to health behaviours, including behavioural adherence toward rehabilitation. This study was a randomised controlled trial that examined the effectiveness of an mHealth intervention (i.e., mobile application) developed based on this integrated model in promoting treatment adherence of patients of anterior cruciate ligament rupture during their post-surgery home-based rehabilitation period. Subjects were 67 outpatients (aged between 18 and 60) who undertook anterior cruciate ligament (ACL) reconstruction surgery for less than 2 months for this study. Participants were randomly assigned either into the treatment group (who received the smartphone application; N = 32) and control group (who receive standard treatment only; N = 35), and completed psychological measures relating to the theories (e.g., motivations, social cognitive factors, and behavioural adherence) and clinical outcome measures (e.g., subjective knee function (IKDC), laxity (KT-1000), muscle strength (Biodex)) relating to ACL recovery at baseline, 2-month, and 4-month. Generalise estimating equation showed the interaction between group and time was significant on intention was only significant for intention (Wald x² = 5.23, p = .02), that of perceived behavioural control (Wald x² = 3.19, p = .07), behavioural adherence (Wald x² = 3.08, p = .08, and subjective knee evaluation (Wald x² = 2.97, p = .09) were marginally significant. Post-hoc between-subject analysis showed that control group had significant drop of perceived behavioural control (p < .01), subjective norm (p < .01) and intention (p < .01), behavioural adherence (p < .01) from baseline to 4-month, but such pattern was not observed in the treatment group. The treatment group had a significant decrease of behavioural adherence (p < .05) in the 2-month, but such a decrease was not observed in 4-month (p > .05). Although the subjective knee evaluation in both group significantly improved at 2-month and 4-month from the baseline (p < .05), and the improvements in the control group (mean improvement at 4-month = 40.18) were slightly stronger than the treatment group (mean improvement at 4-month = 34.52). In conclusion, the findings showed that the theory driven mobile application ameliorated the decline of treatment intention of home-based rehabilitation. Patients in the treatment group also reported better muscle strength than control group at 4-month follow-up. Overall, the mobile application has shown promises on tackling the problem of orthopaedics outpatients’ non-adherence to medical treatment.

Keywords: self-determination theory, theory of planned behaviour, mobile health, orthopaedic patients

Procedia PDF Downloads 198
5007 Optimal Sortation Strategy for a Distribution Network in an E-Commerce Supply Chain

Authors: Pankhuri Dagaonkar, Charumani Singh, Poornima Krothapalli, Krishna Karthik

Abstract:

The backbone of any retail e-commerce success story is a unique design of supply chain network, providing the business an unparalleled speed and scalability. Primary goal of the supply chain strategy is to meet customer expectation by offering fastest deliveries while keeping the cost minimal. Meeting this objective at the large market that India provides is the problem statement that we have targeted here. There are many models and optimization techniques focused on network design to identify the ideal facility location and size, optimizing cost and speed. In this paper we are presenting a tactical approach to optimize cost of an existing network for a predefined speed. We have considered both forward and reverse logistics of a retail e-commerce supply chain consisting of multiple fulfillment (warehouse) and delivery centers, which are connected via sortation nodes. The mathematical model presented here determines if the shipment from a node should get sorted directly for the last mile delivery center or it should travel as consolidated package to another node for further sortation (resort). The objective function minimizes the total cost by varying the resort percentages between nodes and provides the optimal resource allocation and number of sorts at each node.

Keywords: distribution strategy, mathematical model, network design, supply chain management

Procedia PDF Downloads 297
5006 Neural Network Monitoring Strategy of Cutting Tool Wear of Horizontal High Speed Milling

Authors: Kious Mecheri, Hadjadj Abdechafik, Ameur Aissa

Abstract:

The wear of cutting tool degrades the quality of the product in the manufacturing processes. The online monitoring of the cutting tool wear level is very necessary to prevent the deterioration of the quality of machining. Unfortunately there is not a direct manner to measure the cutting tool wear online. Consequently we must adopt an indirect method where wear will be estimated from the measurement of one or more physical parameters appearing during the machining process such as the cutting force, the vibrations, or the acoustic emission etc. In this work, a neural network system is elaborated in order to estimate the flank wear from the cutting force measurement and the cutting conditions.

Keywords: flank wear, cutting forces, high speed milling, signal processing, neural network

Procedia PDF Downloads 393
5005 Participation of Students and Lecturers in Social Networking for Teaching and Learning in Public Universities in Rivers State, Nigeria

Authors: Nkeiruka Queendarline Nwaizugbu

Abstract:

The use of social media and mobile devices has become acceptable in virtually all areas of today’s world. Hence, this study is a survey that was carried out to find out if students and lecturers in public universities in Rivers State use social networking for educational purposes. The sample of the study comprised of 240 students and 99 lecturers from the University of Port Harcourt and the Rivers State University of science and Technology. The study had five research questions, two hypotheses and the instrument for data collection was a 4-point Likert-type rating scale questionnaire. The data was analysed using mean, standard deviation and z-test. The findings gotten from the analysed data shows that students participate in social networking using different types of web applications but they hardly use them for educational purposes. Some recommendations were also made.

Keywords: internet access, mobile learning, participation, social media, social networking, technology

Procedia PDF Downloads 423
5004 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model

Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili

Abstract:

Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. By-products such as ferronickel slags (FNS), fly ash (FA), and Crepidula fornicata (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype was utilized to build an artificial neural network.

Keywords: artificial neural network, cement, circular economy, concrete, by products

Procedia PDF Downloads 114
5003 ANN Based Simulation of PWM Scheme for Seven Phase Voltage Source Inverter Using MATLAB/Simulink

Authors: Mohammad Arif Khan

Abstract:

This paper analyzes and presents the development of Artificial Neural Network based controller of space vector modulation (ANN-SVPWM) for a seven-phase voltage source inverter. At first, the conventional method of producing sinusoidal output voltage by utilizing six active and one zero space vectors are used to synthesize the input reference, is elaborated and then new PWM scheme called Artificial Neural Network Based PWM is presented. The ANN based controller has the advantage of the very fast implementation and analyzing the algorithms and avoids the direct computation of trigonometric and non-linear functions. The ANN controller uses the individual training strategy with the fixed weight and supervised models. A computer simulation program has been developed using Matlab/Simulink together with the neural network toolbox for training the ANN-controller. A comparison of the proposed scheme with the conventional scheme is presented based on various performance indices. Extensive Simulation results are provided to validate the findings.

Keywords: space vector PWM, total harmonic distortion, seven-phase, voltage source inverter, multi-phase, artificial neural network

Procedia PDF Downloads 452