Search results for: instructional decisions
1059 Data-Driven Decision Making: A Reference Model for Organizational, Educational and Competency-Based Learning Systems
Authors: Emanuel Koseos
Abstract:
Data-Driven Decision Making (DDDM) refers to making decisions that are based on historical data in order to inform practice, develop strategies and implement policies that benefit organizational settings. In educational technology, DDDM facilitates the implementation of differential educational learning approaches such as Educational Data Mining (EDM) and Competency-Based Education (CBE), which commonly target university classrooms. There is a current need for DDDM models applied to middle and secondary schools from a concern for assessing the needs, progress and performance of students and educators with respect to regional standards, policies and evolution of curriculums. To address these concerns, we propose a DDDM reference model developed using educational key process initiatives as inputs to a machine learning framework implemented with statistical software (SAS, R) to provide a best-practices, complex-free and automated approach for educators at their regional level. We assessed the efficiency of the model over a six-year period using data from 45 schools and grades K-12 in the Langley, BC, Canada regional school district. We concluded that the model has wider appeal, such as business learning systems.Keywords: competency-based learning, data-driven decision making, machine learning, secondary schools
Procedia PDF Downloads 1721058 The Effect of Mandatory International Financial Reporting Standards Reporting on Investors' Herding Practice: Evidence from Eu Equity Markets
Authors: Mohammed Lawal Danrimi, Ervina Alfan, Mazni Abdullah
Abstract:
The purpose of this study is to investigate whether the adoption of International Financial Reporting Standards (IFRS) encourages information-based trading and mitigates investors’ herding practice in emerging EU equity markets. Utilizing a modified non-linear model of cross-sectional absolute deviation (CSAD), we find that the hypothesis that mandatory IFRS adoption improves the information set of investors and reduces irrational investment behavior may in some cases be incorrect, and the reverse may be true. For instance, with regard to herding concerns, the new reporting benchmark has rather aggravated investors’ herding practice. However, we also find that mandatory IFRS adoption does not appear to be the only instigator of the observed herding practice; national institutional factors, particularly regulatory quality, political stability and control of corruption, also significantly contribute to investors’ herd formation around the new reporting regime. The findings would be of interest to academics, regulators and policymakers in performing a cost-benefit analysis of the so-called better reporting regime, as well as financial statement users who make decisions based on firms’ fundamental variables, treating them as significant indicators of future market movement.Keywords: equity markets, herding, IFRS, CSAD
Procedia PDF Downloads 1781057 The Artificial Intelligence (AI) Impact on Project Management: A Destructive or Transformative Agent
Authors: Kwame Amoah
Abstract:
Artificial intelligence (AI) has the prospect of transforming project management, significantly improving efficiency and accuracy. By automating specific tasks with defined guidelines, AI can assist project managers in making better decisions and allocating resources efficiently, with possible risk mitigation. This study explores how AI is already impacting project management and likely future AI's impact on the field. The AI's reaction has been a divided opinion; while others picture it as a destroyer of jobs, some welcome it as an innovation advocate. Both sides agree that AI will be disruptive and revolutionize PM's functions. If current research is to go by, AI or some form will replace one-third of all learning graduate PM jobs by as early as 2030. A recent survey indicates AI spending will reach $97.9 billion by the end of 2023. Considering such a profound impact, the project management profession will also see a paradigm shift driven by AI. The study examines what the project management profession will look like in the next 5-10 years after this technological disruption. The research methods incorporate existing literature, develop trend analysis, and conduct structured interviews with project management stakeholders from North America to gauge the trend. PM professionals can harness the power of AI, ensuring a smooth transition and positive outcomes. AI adoption will maximize benefits, minimize adverse consequences, and uphold ethical standards, leading to improved project performance.Keywords: project management, disruptive teacnologies, project management function, AL applications, artificial intelligence
Procedia PDF Downloads 831056 Design of Knowledge Management System with Geographic Information System
Authors: Angga Hidayah Ramadhan, Luciana Andrawina, M. Azani Hasibuan
Abstract:
Data will be as a core of the decision if it has a good treatment or process, which is process that data into information, and information into knowledge to make a wisdom or decision. Today, many companies have not realize it include XYZ University Admission Directorate as executor of National Admission called Seleksi Masuk Bersama (SMB) that during the time, the workers only uses their feeling to make a decision. Whereas if it done, then that company can analyze the data to make a right decision to get a pin sales from student candidate or registrant that follow SMB as many as possible. Therefore, needs Knowledge Management System (KMS) with Geographic Information System (GIS) use 5C4C that can process that company data becomes more useful and can help make decisions. This information system can process data into information based on the pin sold data with 5C (Contextualized, Categorize, Calculation, Correction, Condensed) and convert information into knowledge with 4C (Comparing, Consequence, Connection, Conversation) that has been several steps until these data can be useful to make easier to take a decision or wisdom, resolve problems, communicate, and quicker to learn to the employees have not experience and also for ease of viewing/visualization based on spatial data that equipped with GIS functionality that can be used to indicate events in each province with indicator that facilitate in this system. The system also have a function to save the tacit on the system then to be proceed into explicit in expert system based on the problems that will be found from the consequences of information. With the system each team can make a decision with same ways, structured, and the important is based on the actual event/data.Keywords: 5C4C, data, information, knowledge
Procedia PDF Downloads 4611055 Life-Narratives and Human Rights: Reflections about the Women's Rights and State of Exception
Authors: Luana Mathias Souto
Abstract:
The situation about women’s rights it’s a sensitive issue when it’s talking about human rights. More difficult its find a way to protect these rights. Aware of this problem, this article aims to analyze the women’s rights in the Brazilian context, mainly, the reproductive rights. So, to achieve this purpose, this paper through the combination of Law, philosophy, and Literature tries to rethinking why women can’t have a voice when the decisions about their rights are taken. Methodologically, it was used as an interdisciplinary bibliographical revision between Law, philosophy, and Literature. From Literature it brings the contributions from the life-narratives as an instrument to promote human rights. Besides the life-narratives theory, it’s also used the novel The Handmaid’s tale from Margaret Atwood, which became a symbol to reflect about reproductive rights. From philosophy, it’s adopted the concepts of Homo sacer and state of exception developed by the philosopher Giorgio Agamben. The contributions of these different researches fields made possible to conclude that women are Homo sacer because governments ignore their voices and opinions when they talk about abortion. The control of the human body, mainly, women bodies it’s more important than preserving some fundamental rights and because of this, it’s so difficult to preserve and promote the human rights. Based on these conclusions, it is understood that when the state is incapable or does not want to guarantee the adequate protection of human rights, it is up to society through its various means to find ways to protect them, and this is the main proposal sought by this article.Keywords: dystopian fiction, human rights, life-narratives, state of exception
Procedia PDF Downloads 2081054 A Reinforcement Learning Based Method for Heating, Ventilation, and Air Conditioning Demand Response Optimization Considering Few-Shot Personalized Thermal Comfort
Authors: Xiaohua Zou, Yongxin Su
Abstract:
The reasonable operation of heating, ventilation, and air conditioning (HVAC) is of great significance in improving the security, stability, and economy of power system operation. However, the uncertainty of the operating environment, thermal comfort varies by users and rapid decision-making pose challenges for HVAC demand response optimization. In this regard, this paper proposes a reinforcement learning-based method for HVAC demand response optimization considering few-shot personalized thermal comfort (PTC). First, an HVAC DR optimization framework based on few-shot PTC model and DRL is designed, in which the output of few-shot PTC model is regarded as the input of DRL. Then, a few-shot PTC model that distinguishes between awake and asleep states is established, which has excellent engineering usability. Next, based on soft actor criticism, an HVAC DR optimization algorithm considering the user’s PTC is designed to deal with uncertainty and make decisions rapidly. Experiment results show that the proposed method can efficiently obtain use’s PTC temperature, reduce energy cost while ensuring user’s PTC, and achieve rapid decision-making under uncertainty.Keywords: HVAC, few-shot personalized thermal comfort, deep reinforcement learning, demand response
Procedia PDF Downloads 851053 Climate Refugees In International Law – Analyzing The Legal Framework
Authors: Kristof Lukas Heidemann
Abstract:
The adverse effects of climate change, such as rising sea levels, increased temperatures, and extreme weather events are already posing a significant threat to the lives of people living in extreme weather zones all around the globe and could displace more than a billion people worldwide in the upcoming decades, causing a wave of climate-induced migration. Notwithstanding the urgency of the situation, this situation has so far not been addressed in a specific international treaty. Therefore, this paper analyses whether solutions might be found through existing legal framework. Accordingly, the investigation scrutinizes the possibilities of overcoming the conceptual challenge of combining climate law, refugee law, and human rights law. To this end, the study particularly reflects upon the example of Pacific Islanders by assessing the reasoning within the decisions Ioane Teitota v. New Zealand and Daniel Billy and Others v. Australia. The paper concludes that the differences in objective, scope, and enforcement of the three fields are too fundamental to be surmounted by overlapping concepts, e.g. state responsibility or the non-refoulement principle. Consequently, states are urged to tackle the problem with a separate international treaty in which the advantages of the different traditions are incorporated into a new protection mechanism.Keywords: climate change, climate treaties, forcibly displaced persons, human rights, improving and creating advanced knowledge of concepts, non-refoulement, state responsibility, refugee law, refugee status
Procedia PDF Downloads 41052 Implementing Critical Friends Groups in Schools
Authors: S. Odabasi Cimer, A. Cimer
Abstract:
Recently, the poor quality of education, low achieving students, low international exam performances and little or no effect of the education reforms on the teaching in the classrooms are the main problems of education discussed in Turkey. Research showed that the quality of an education system can not exceed the quality of its teachers and teaching. Therefore, in-service training (INSET) courses are important to improve teacher quality, thereby, the quality of education. However, according to the research conducted on the evaluation of the INSET courses in Turkey, they are not effective in improving the quality of teaching in the classroom. The main reason for this result is because INSET courses are conducted and delivered in limited time and presented theoretically, which does not meet the needs of teachers and as a result, the knowledge and skills taught are not used in the classrooms. Recently, developed countries have been using Critical Friends Groups (CFGs) successfully for the purpose of school-based training of teachers. CFGs are the learning groups which contain 6-10 teachers aimed at fostering their capacities to undertake instructional and personal improvement and schoolwide reform. CFGs have been recognized as a critical feature in school reform, improving teaching practice and improving student achievement. In addition, in the USA, teachers have named CFGs one of the most powerful professional development activities in which they have ever participated. Whereas, in Turkey, the concept is new. This study aimed to investigate the implications of application, evaluation, and promotion of CFGs which has the potential to contribute to teacher development and student learning in schools in Turkey. For this purpose, the study employed a qualitative approach and case study methodology to implement the model in high schools. The research was conducted in two schools and 13 teachers working in these schools participated. The study lasted two years and the data were collected through various data collection tools including interviews, meeting transcripts, questionnaires, portfolios, and diaries. The results of the study showed that CFGs contributed professional development of teachers and their students’ learning. It also contributed to a culture of collaborative work in schools. A number of barriers and challenges which prevent effective implementation were also determined.Keywords: critical friends group, education reform, science learning, teacher education
Procedia PDF Downloads 1271051 Teacher-Child Interactions within Learning Contexts in Prekindergarten
Authors: Angélique Laurent, Marie-Josée Letarte, Jean-Pascal Lemelin, Marie-France Morin
Abstract:
This study aims at exploring teacher-child interactions within learning contexts in public prekindergartens of the province of Québec (Canada). It is based on previous research showing that teacher-child interactions in preschools have direct and determining effects on the quality of early childhood education and could directly or indirectly influence child development. However, throughout a typical preschool day, children experience different learning contexts to promote their learning opportunities. Depending on these specific contexts, teacher-child interactions could vary, for example, between free play and shared book reading. Indeed, some studies have found that teacher-directed or child-directed contexts might lead to significant variations in teacher-child interactions. This study drew upon both the bioecological and the Teaching Through Interactions frameworks. It was conducted through a descriptive and correlational design. Fifteen teachers were recruited to participate in the study. At Time 1 in October, they completed a diary to report the learning contexts they proposed in their classroom during a typical week. At Time 2, seven months later (May), they were videotaped three times in the morning (two weeks’ time between each recording) during a typical morning class. The quality of teacher-child interactions was then coded with the Classroom Assessment Scoring System (CLASS) through the contexts identified. This tool measures three main domains of interactions: emotional support, classroom organization, and instruction support, and10 dimensions scored on a scale from 1 (low quality) to 7 (high quality). Based on the teachers’ reports, five learning contexts were identified: 1) shared book reading, 2) free play, 3) morning meeting, 4) teacher-directed activity (such as craft), and 5) snack. Based on preliminary statistical analyses, little variation was observed within the learning contexts for each domain of the CLASS. However, the instructional support domain showed lower scores during specific learning contexts, specifically free play and teacher-directed activity. Practical implications for how preschool teachers could foster specific domains of interactions depending on learning contexts to enhance children’s social and academic development will be discussed.Keywords: teacher practices, teacher-child interactions, preschool education, learning contexts, child development
Procedia PDF Downloads 1071050 Invalidation of the Start of Lunar Calendars Based on Sighting of Crescent: A Survey of 101 Years of Data between 1938 and 2038
Authors: Rafik Ouared
Abstract:
The purpose of this paper is to invalidate decisions made by the Islamic conference led at Istanbul in 2016, which had defined two basic criteria to determine the start of the lunar month: (1)they are all based on the sighting of the crescent, be it observed or computed with modern methods, and (2) they've strongly recommended the adoption of the principle of 'unification of sighting', by which any occurrence of sighting anywhere would be applicable everywhere. To demonstrate the invalidation of those statements, a survey of 101 years of data, from 1938 to 2038, have been analyzed to compare the probability density function (PDF) of time difference between different types of fajr and new moon. Two groups of fajr have been considered: the 'natural fajr', which is the very first fajr following new moon, and the 'biased fajr', which is defined by human being inclusively of all chosen definitions. The parametric and non-parametric statistical comparisons between the different groups have shown the all the biased PDFs are significantly different from the unbiased (natural) PDF with probability value (p-value) less than 0.001. The significance level was fixed to 0.05. Conclusion: the on-going reference to sighting of crescent is inducing an significant bias in defining lunar calendar. Therefore, 'natural' calendar would be more applicable requiring a more contextualized revision of issue in fiqh.Keywords: biased fajr, lunar calendar, natural fajr, probability density function, sighting of crescent, time difference between fajr and new moon
Procedia PDF Downloads 2121049 Gymnastics Under Special Surveillance. The Impact of Western Sanctions on Russian Sport
Authors: Aleksandra Majewska
Abstract:
The article analyses the impact of Western sanctions on Russian rhythmic gymnastics since the outbreak of war in Ukraine. The chronological presentation of events shows how international political tensions and economic sanctions have affected the organisation of competitions, training and the careers of athletes. The article outlines the key moments and decisions that have changed the landscape of Russian sport, including the decision to change the citizenship made by some gymnasts in order to continue competing in international competitions. Russia strongly opposes participation in competitions without its flag and anthem while maintaining the view that Russian gymnasts are crucial to the prestige of rhythmic gymnastics in the world. In response to the sanctions, Russia created its own rules for rhythmic gymnastics, according to which they now compete domestically. Furthermore, this sport in Russia is strongly linked to politics, which further emphasises its importance in the national and international context. The information collected derives from numerous interviews with Russian athletes, coaches and other people, which are available only in the Russian language. The findings highlight the significant difficulties Russian athletes have faced due to their isolation in the international arena and the adaptive strategies adopted by Russia in the face of these challenges. The article makes an important contribution to understanding the consequences of global politics on the world of sport and the fate of individual athletes.Keywords: sport, gymnastics, war in Ukraine, sanctions
Procedia PDF Downloads 391048 Conceptualizing the Cyber Insecurity Risk in the Ethics of Automated Warfare
Authors: Otto Kakhidze, Hoda Alkhzaimi, Adam Ramey, Nasir Memon
Abstract:
This paper provides an alternative, cyber security based a conceptual framework for the ethics of automated warfare. The large body of work produced on fully or partially autonomous warfare systems tends to overlook malicious security factors as in the possibility of technical attacks on these systems when it comes to the moral and legal decision-making. The argument provides a risk-oriented justification to why technical malicious risks cannot be dismissed in legal, ethical and policy considerations when warfare models are being implemented and deployed. The assumptions of the paper are supported by providing a broader model that contains the perspective of technological vulnerabilities through the lenses of the Game Theory, Just War Theory as well as standard and non-standard defense ethics. The paper argues that a conventional risk-benefit analysis without considering ethical factors is insufficient for making legal and policy decisions on automated warfare. This approach will provide the substructure for security and defense experts as well as legal scholars, ethicists and decision theorists to work towards common justificatory grounds that will accommodate the technical security concerns that have been overlooked in the current legal and policy models.Keywords: automated warfare, ethics of automation, inherent hijacking, security vulnerabilities, risk, uncertainty
Procedia PDF Downloads 3571047 Spatio-Temporal Data Mining with Association Rules for Lake Van
Authors: Tolga Aydin, M. Fatih Alaeddinoğlu
Abstract:
People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.Keywords: apriori algorithm, association rules, data mining, spatio-temporal data
Procedia PDF Downloads 3741046 Utilization of Multi-Criteria Evaluation in Forensic Engineering and the Expertise outside Wall Subsystem
Authors: Tomas Barnak, Libor Matejka
Abstract:
The aim of this study is to create a standard application using multi-criteria evaluation in the field of forensic engineering. This situation can occur in the professional assessment in several cases such as when it is necessary to consider more criteria variant of the structural subsystems, more variants according to several criteria based on a court claim, which requires expert advice. A problematic situation arises when it is necessary to clearly determine the ranking of the options according to established criteria, and reduce subjective evaluation. For the procurement in the field of construction which is based on the prepared text of the law not only economic criteria but also technical, technological and environmental criteria will be determined. This fact substantially changes the style of evaluation of individual bids. For the above-mentioned needs of procurement, the unification of expert’s decisions and the use of multi-criteria assessment seem to be a reasonable option. In the case of experimental verification when using multi-criteria evaluation of alternatives construction subsystem the economic, technical, technological and environmental criteria will be compared. The core of the solution is to compare a selected number of set criteria, application methods and evaluation weighting based on the weighted values assigned to each of the criteria to use multi-criteria evaluation methods. The sequence of individual variations is determined by the evaluation of the importance of the values of corresponding criteria concerning expertise in the problematic of outside wall constructional subsystems.Keywords: criteria, expertise, multi-criteria evaluation, outside wall subsystems
Procedia PDF Downloads 3301045 Exploring Ways Early Childhood Teachers Integrate Information and Communication Technologies into Children's Play: Two Case Studies from the Australian Context
Authors: Caroline Labib
Abstract:
This paper reports on a qualitative study exploring the approaches teachers used to integrate computers or smart tablets into their program planning. Their aim was to integrate ICT into children’s play, thereby supporting children’s learning and development. Data was collected in preschool settings in Melbourne in 2016. Interviews with teachers, observations of teacher interactions with children and copies of teachers’ planning and observation documents informed the study. The paper looks closely at findings from two early childhood settings and focuses on exploring the differing approaches two EC teachers have adopted when integrating iPad or computers into their settings. Data analysis revealed three key approaches which have been labelled: free digital play, guided digital play and teacher-led digital use. Importantly, teacher decisions were influenced by the interplay between the opportunities that the ICT tools offered, the teachers’ prior knowledge and experience about ICT and children’s learning needs and contexts. This paper is a snapshot of two early childhood settings, and further research will encompass data from six more early childhood settings in Victoria with the aim of exploring a wide range of motivating factors for early childhood teachers trying to integrate ICT into their programs.Keywords: early childhood education (ECE), digital play, information and communication technologies (ICT), play, and teachers' interaction approaches
Procedia PDF Downloads 2121044 Bystanders' Behavior during Emergencies
Authors: Alan (Avi) Kirschenbaum, Carmit Rapaport
Abstract:
The behavior of bystanders in emergencies and disasters have been examined for over 50 years. Such acts have been cited as contributing to saving lives in terms of providing first responder help until official emergency units can arrive. Several reasons have been suggested for this type of behavior but most focused on a broad segment of individual psychological decision-making processes. Recent theoretical evidence suggests that the external factors for such bystander decisions, mainly disaster community based social contexts factors, are also important. We aim to test these competing arguments. Specifically, we examine alternative explanatory perspectives by focusing on self-efficacy as a proxy for the accepted individual psychological case and contrast it with potential bystander characteristics of the individual as well factors as embedded in the social context of the disaster community. To do so, we will utilize a random sampling of the population from a field study of an urban community in Israel that experienced five years of continuous terror attacks. The results strongly suggest that self-efficacy, as well as external factors: preparedness and having skills for intervention during emergencies along with gender best, predict potential helping behaviors. These results broaden our view of bystander behavior and open a window for enhancing this phenomenon as another element in disaster and crisis management.Keywords: bystander behavior, disasters emergencies, psychological motivation to help, social context for helping
Procedia PDF Downloads 1221043 Development of Time Series Forecasting Model for Dengue Cases in Nakhon Si Thammarat, Southern Thailand
Authors: Manit Pollar
Abstract:
Identifying the dengue epidemic periods early would be helpful to take necessary actions to prevent the dengue outbreaks. Providing an accurate prediction on dengue epidemic seasons will allow sufficient time to take the necessary decisions and actions to safeguard the situation for local authorities. This study aimed to develop a forecasting model on number of dengue incidences in Nakhon Si Thammarat Province, Southern Thailand using time series analysis. We develop Seasonal Autoregressive Moving Average (SARIMA) models on the monthly data collected between 2003-2011 and validated the models using data collected between January-September 2012. The result of this study revealed that the SARIMA(1,1,0)(1,2,1)12 model closely described the trends and seasons of dengue incidence and confirmed the existence of dengue fever cases in Nakhon Si Thammarat for the years between 2003-2011. The study showed that the one-step approach for predicting dengue incidences provided significantly more accurate predictions than the twelve-step approach. The model, even if based purely on statistical data analysis, can provide a useful basis for allocation of resources for disease prevention.Keywords: SARIMA, time series model, dengue cases, Thailand
Procedia PDF Downloads 3581042 Developing Integrated Model for Building Design and Evacuation Planning
Authors: Hao-Hsi Tseng, Hsin-Yun Lee
Abstract:
In the process of building design, the designers have to complete the spatial design and consider the evacuation performance at the same time. It is usually difficult to combine the two planning processes and it results in the gap between spatial design and evacuation performance. Then the designers cannot complete an integrated optimal design solution. In addition, the evacuation routing models proposed by previous researchers is different from the practical evacuation decisions in the real field. On the other hand, more and more building design projects are executed by Building Information Modeling (BIM) in which the design content is formed by the object-oriented framework. Thus, the integration of BIM and evacuation simulation can make a significant contribution for designers. Therefore, this research plan will establish a model that integrates spatial design and evacuation planning. The proposed model will provide the support for the spatial design modifications and optimize the evacuation planning. The designers can complete the integrated design solution in BIM. Besides, this research plan improves the evacuation routing method to make the simulation results more practical. The proposed model will be applied in a building design project for evaluation and validation when it will provide the near-optimal design suggestion. By applying the proposed model, the integration and efficiency of the design process are improved and the evacuation plan is more useful. The quality of building spatial design will be better.Keywords: building information modeling, evacuation, design, floor plan
Procedia PDF Downloads 4561041 Assessing the Adaptive Re-Use Potential of Buildings as Part of the Disaster Management Process
Authors: A. Esra İdemen, Sinan M. Şener, Emrah Acar
Abstract:
The technological paradigm of the disaster management field, especially in the case of governmental intervention strategies, is generally based on rapid and flexible accommodation solutions. From various technical solution patterns used to address the immediate housing needs of disaster victims, the adaptive re-use of existing buildings can be considered to be both low-cost and practical. However, there is a scarcity of analytical methods to screen, select and adapt buildings to help decision makers in cases of emergency. Following an extensive literature review, this paper aims to highlight key points and problem areas associated with the adaptive re-use of buildings within the disaster management context. In other disciplines such as real estate management, the adaptive re-use potential (ARP) of existing buildings is typically based on the prioritization of a set of technical and non-technical criteria which are then weighted to arrive at an economically viable investment decision. After a disaster, however, the assessment of the ARP of buildings requires consideration of different/additional layers of analysis which stem from general disaster management principles and the peculiarities of different types of disasters, as well as of their victims. In this paper, a discussion of the development of an adaptive re-use potential (ARP) assessment model is presented. It is thought that governmental and non-governmental decision makers who are required to take quick decisions to accommodate displaced masses following disasters are likely to benefit from the implementation of such a model.Keywords: adaptive re-use of buildings, disaster management, temporary housing, assessment model
Procedia PDF Downloads 3321040 Development of a Technology Assessment Model by Patents and Customers' Review Data
Authors: Kisik Song, Sungjoo Lee
Abstract:
Recent years have seen an increasing number of patent disputes due to excessive competition in the global market and a reduced technology life-cycle; this has increased the risk of investment in technology development. While many global companies have started developing a methodology to identify promising technologies and assess for decisions, the existing methodology still has some limitations. Post hoc assessments of the new technology are not being performed, especially to determine whether the suggested technologies turned out to be promising. For example, in existing quantitative patent analysis, a patent’s citation information has served as an important metric for quality assessment, but this analysis cannot be applied to recently registered patents because such information accumulates over time. Therefore, we propose a new technology assessment model that can replace citation information and positively affect technological development based on post hoc analysis of the patents for promising technologies. Additionally, we collect customer reviews on a target technology to extract keywords that show the customers’ needs, and we determine how many keywords are covered in the new technology. Finally, we construct a portfolio (based on a technology assessment from patent information) and a customer-based marketability assessment (based on review data), and we use them to visualize the characteristics of the new technologies.Keywords: technology assessment, patents, citation information, opinion mining
Procedia PDF Downloads 4661039 Place Branding and the Sense of Place in the Italian UNESCO World Heritage Site of Vicenza
Authors: A. Chtourou, K. Ben Youssef, M. Friel, T. Leicht
Abstract:
These Place attributes and destination images associated with tourism destinations are often crucial important for tourist travel decisions and choice behavior. Understanding the interactions between them is fundamental for developing sustainable place brands. Despite their extensive use on an empirical ground, little research has been done in terms of analyzing the constructs that determine the sense of place in the marketing of cultural heritage sites and on how tourist experiences at such places influence tourist motivations to revisit destinations. By referring to the Italian city of Vicenza, internationally renowned for its gold jewelry production and for the Palladian architectures and buildings which have been recognized World Heritage by the UNESCO, the paper aims to identify how destination image, place familiarity and travel satisfaction influence tourists’ motivations to revisit Vicenza. After an introduction and literature review, the paper investigates the importance of the core constructs that determine the sense of place in the tourist practice. In accordance with previous research, the results provide evidence that favorable travel experiences influence revisit intentions positively. The managerial implications and recommendations for the city of Vicenza are discussed.Keywords: consumer behavior, heritage tourism, sense of place, place branding, territorial marketing
Procedia PDF Downloads 4081038 Effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management Solutions
Authors: Tesfaye Mengistu
Abstract:
This thesis aims to investigate the effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management solutions. The study explores the potential of Model Free RL approaches, such as Monte Carlo RL and Q-learning, to improve energy management by autonomously adjusting energy management strategies to maximize efficiency. The research investigates the implementation of RL algorithms for optimizing energy consumption in a single-agent environment. The focus is on developing a framework for the implementation of RL algorithms, highlighting the importance of RL for enabling autonomous systems to adapt quickly to changing conditions and make decisions based on previous experiences. Moreover, the paper proposes RL as a novel energy management solution to address nations' CO2 emission goals. Reinforcement learning algorithms are well-suited to solving problems with sequential decision-making patterns and can provide accurate and immediate outputs to ease the planning and decision-making process. This research provides insights into the challenges and opportunities of using RL for energy management solutions and recommends further studies to explore its full potential. In conclusion, this study provides valuable insights into how RL can be used to improve the efficiency of energy management systems and supports the use of RL as a promising approach for developing autonomous energy management solutions in residential buildings.Keywords: artificial intelligence, reinforcement learning, monte carlo, energy management, CO2 emission
Procedia PDF Downloads 831037 Capital Adequacy and Islamic Banks Behavior: Evidence from Middle East Countries
Authors: Khaled Alkadamani
Abstract:
Using the simultaneous equations model, this paper examines the impact of capital requirements on bank risk-taking during the recent financial crisis. It also explores the relationship between capital and risk decisions and the impact of economic instability on this relationship. By analyzing the data of 20 Islamic commercial banks between 2004 and 2014 from four Middle East countries, the study concludes a positive effect of regulatory pressure on bank capital in Saudi Arabia and UAE and a negative effect in Jordan and Kuwait. Moreover, the results show a negative impact of regulatory pressure on bank risk taking in Saudi Arabia, Jordan and UAE. The findings reveal also that banks close to the minimum regulatory capital requirements improve their capital adequacy by increasing their capital and decreasing their risk taking. Furthermore, the results show that economic crisis negatively affects bank risk changes, suggesting that banks react to the impact of uncertainty by reducing their risk taking. Finally, the estimations show a negative correlation between banks profitability and capital adequacy ratio (CAR), implying that as more capital is set aside as a buffer for banks safety; it affects the performance of Islamic banks.Keywords: bank capital, bank regulation, crisis, Islamic banks, risk taking
Procedia PDF Downloads 4411036 An Investigation into the Impact of Techno-Entrepreneurship Education on Self-Employment
Authors: Farnaz Farzin, Julie C. Thomson, Rob Dekkers, Geoff Whittam
Abstract:
Research has shown that techno-entrepreneurship is economically significant. Therefore, it is suggested that teaching techno-entrepreneurship may be important because such programmes would prepare current and future generations of learners to recognize and act on high-technology opportunities. Education in techno-entrepreneurship may increase the knowledge of how to start one’s own enterprise and recognize the technological opportunities for commercialisation to improve decision-making about starting a new venture; also it influence decisions about capturing the business opportunities and turning them into successful ventures. Universities can play a main role in connecting and networking techno-entrepreneurship students towards a cooperative attitude with real business practice and industry knowledge. To investigate and answer whether education for techno-entrepreneurs really helps, this paper chooses a comparison of literature reviews as its method of research. Then, 6 different studies were selected. These particular papers were selected based on a keywords search and as their aim, objectives, and gaps were close to the current research. In addition, they were all based on the influence of techno-entrepreneurship education in self-employment and intention of students to start new ventures. The findings showed that teaching techno-entrepreneurship education may have an influence on students’ intention and their future self-employment, but which courses should be covered and the duration of programmes needs further investigation.Keywords: techno entrepreneurship education, training, higher education, intention, self-employment
Procedia PDF Downloads 3371035 Transforming Public Administration in the Digital Era: Challenges and Opportunities
Authors: Catalina Oana Dumitrescu, Andreea L. Drugau-constantin
Abstract:
In the digital age, public administration is facing profound change, fueled by technological advances and the growing demands of citizens for efficient, accessible and transparent services. This paper explores how new digital technologies – including artificial intelligence, blockchain, big data and e-governance solutions – are reshaping the functioning of public administrations globally. In addition to the obvious opportunities to streamline and optimize processes, digital transformation brings with it major challenges, such as cyber security, personal data protection, resistance to change and the need to develop new skills for employees. The paper aims to provide a discussion platform for public administration experts, policy makers and technology innovators to consider how governments can balance the benefits and risks of digital transformation. Topics such as the reconfiguration of administrative processes, the creation of interoperable government systems, the involvement of citizens in public decisions through digital platforms, and solutions for reducing the digital gap between developed and developing regions will be addressed. In conclusion, the digital transformation of public administration is not only an opportunity for modernization, but also a necessity to respond to the new demands and challenges of contemporary society. This paper will provide new insights into the role of technology in improving the quality of governance and public services.Keywords: public administration, digital ERA, technology, government systems, global
Procedia PDF Downloads 171034 Use of Machine Learning in Data Quality Assessment
Authors: Bruno Pinto Vieira, Marco Antonio Calijorne Soares, Armando Sérgio de Aguiar Filho
Abstract:
Nowadays, a massive amount of information has been produced by different data sources, including mobile devices and transactional systems. In this scenario, concerns arise on how to maintain or establish data quality, which is now treated as a product to be defined, measured, analyzed, and improved to meet consumers' needs, which is the one who uses these data in decision making and companies strategies. Information that reaches low levels of quality can lead to issues that can consume time and money, such as missed business opportunities, inadequate decisions, and bad risk management actions. The step of selecting, identifying, evaluating, and selecting data sources with significant quality according to the need has become a costly task for users since the sources do not provide information about their quality. Traditional data quality control methods are based on user experience or business rules limiting performance and slowing down the process with less than desirable accuracy. Using advanced machine learning algorithms, it is possible to take advantage of computational resources to overcome challenges and add value to companies and users. In this study, machine learning is applied to data quality analysis on different datasets, seeking to compare the performance of the techniques according to the dimensions of quality assessment. As a result, we could create a ranking of approaches used, besides a system that is able to carry out automatically, data quality assessment.Keywords: machine learning, data quality, quality dimension, quality assessment
Procedia PDF Downloads 1481033 Essential Factors of Risk Perception Crucial in Efficient Construction Management
Authors: Francis Edum-Fotwe, Tony Thorpe, Charles Afetornu
Abstract:
Risk perception informs the outcome of how issues are responded to in either solving or overcoming a problem or improving a situation. Risk perception is established to be affected by some key factors reflecting in the varying ways in which work is done as well as the level of efficiency achieved. These factors potentially would influence risk perception to different extents. Such that if these factors are said to determine risk perception, how does a change in any affect risk perception. Since the ability to address risk is influenced by risk perception, establishing and developing awareness of that perception should enable construction professionals to make viable decisions. Any act to improve the construction industry cannot be overemphasised, considering its contribution to national development. A survey questionnaire was conducted in Ghana to elicit data that measures the risk perception and the essential factors as well as the necessary demographics of the respondents, who are construction professionals. This study finds out the sensitivity of the critical factors of risk perception. It uses the Relative Importance Index analysis tool to investigate the differential effect of these essential factors on risk perception, such that a slight change in a factor makes a significant change in risk perception, having established that it is influenced by essential factors. The findings can lead to policy formation for employers on the prioritisation factors to undertake to improve the risk perception of employees. Other areas in which this study can be useful in team formation for sensitive and complex projects where efficient risk management is critical.Keywords: construction industry, risk, risk management, risk perception
Procedia PDF Downloads 1431032 An Empirical Analysis of the Freight Forwarders’ Buying Behaviour: Implications for the Ocean Container Carriers
Authors: Peter Dzakah Fanam, Hong O. Nguyen, Stephen Cahoon
Abstract:
The objective of this study is to explore the buying behavior of the freight forwarders and to evaluate how their buying decision affects the ocean container carriers’ market share. This study analysed the buying decisions of the freight forwarders and validated the process of stages that the freight forwarders’ pass through before choosing an ocean container carrier. Factor analysis was applied to data collected from 105 freight forwarding companies to unveil the influential factors the freight forwarders’ consider important when selecting an ocean container carrier. This study did not only analysed the buying behaviour of the freight forwarders but also unveiled the influential factors affecting the competitiveness of the ocean container carriers in their market share maximisation. Furthermore, the study have made a methodological contribution that helps in better understanding of the critical factors influencing the selection of the ocean container carriers from the freight forwarders’ perspective. The implications of the freight forwarders’ buying behaviour is important to the ocean container carriers because it have severe effect on the market share of the ocean container carriers and the percentage of customers they control within the liner shipping sector. The findings of this study will help the ocean container carriers to formulate relevant marketing strategies in attracting the freight forwarders in purchasing the liner shipping service.Keywords: ocean carrier, freight forwarder, buying behaviour, influential factors
Procedia PDF Downloads 2511031 Harnessing the Power of Artificial Intelligence: Advancements and Ethical Considerations in Psychological and Behavioral Sciences
Authors: Nayer Mofidtabatabaei
Abstract:
Advancements in artificial intelligence (AI) have transformed various fields, including psychology and behavioral sciences. This paper explores the diverse ways in which AI is applied to enhance research, diagnosis, therapy, and understanding of human behavior and mental health. We discuss the potential benefits and challenges associated with AI in these fields, emphasizing the ethical considerations and the need for collaboration between AI researchers and psychological and behavioral science experts. Artificial Intelligence (AI) has gained prominence in recent years, revolutionizing multiple industries, including healthcare, finance, and entertainment. One area where AI holds significant promise is the field of psychology and behavioral sciences. AI applications in this domain range from improving the accuracy of diagnosis and treatment to understanding complex human behavior patterns. This paper aims to provide an overview of the various AI applications in psychological and behavioral sciences, highlighting their potential impact, challenges, and ethical considerations. Mental Health Diagnosis AI-driven tools, such as natural language processing and sentiment analysis, can analyze large datasets of text and speech to detect signs of mental health issues. For example, chatbots and virtual therapists can provide initial assessments and support to individuals suffering from anxiety or depression. Autism Spectrum Disorder (ASD) Diagnosis AI algorithms can assist in early ASD diagnosis by analyzing video and audio recordings of children's behavior. These tools help identify subtle behavioral markers, enabling earlier intervention and treatment. Personalized Therapy AI-based therapy platforms use personalized algorithms to adapt therapeutic interventions based on an individual's progress and needs. These platforms can provide continuous support and resources for patients, making therapy more accessible and effective. Virtual Reality Therapy Virtual reality (VR) combined with AI can create immersive therapeutic environments for treating phobias, PTSD, and social anxiety. AI algorithms can adapt VR scenarios in real-time to suit the patient's progress and comfort level. Data Analysis AI aids researchers in processing vast amounts of data, including survey responses, brain imaging, and genetic information. Privacy Concerns Collecting and analyzing personal data for AI applications in psychology and behavioral sciences raise significant privacy concerns. Researchers must ensure the ethical use and protection of sensitive information. Bias and Fairness AI algorithms can inherit biases present in training data, potentially leading to biased assessments or recommendations. Efforts to mitigate bias and ensure fairness in AI applications are crucial. Transparency and Accountability AI-driven decisions in psychology and behavioral sciences should be transparent and subject to accountability. Patients and practitioners should understand how AI algorithms operate and make decisions. AI applications in psychological and behavioral sciences have the potential to transform the field by enhancing diagnosis, therapy, and research. However, these advancements come with ethical challenges that require careful consideration. Collaboration between AI researchers and psychological and behavioral science experts is essential to harness AI's full potential while upholding ethical standards and privacy protections. The future of AI in psychology and behavioral sciences holds great promise, but it must be navigated with caution and responsibility.Keywords: artificial intelligence, psychological sciences, behavioral sciences, diagnosis and therapy, ethical considerations
Procedia PDF Downloads 701030 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients
Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim
Abstract:
The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter
Procedia PDF Downloads 145