Search results for: implementation of nep-2020. outcome based learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 35678

Search results for: implementation of nep-2020. outcome based learning

34568 Developing Medical Leaders: A Realistic Evaluation Study for Improving Patient Safety and Maximising Medical Engagement

Authors: Lisa Fox, Jill Aylott

Abstract:

There is a global need to identify ways to engage doctors in non-clinical matters such as medical leadership, service improvement and health system transformation. Using the core principles of Realistic Evaluation (RE), this study examined what works, for doctors of different grades, specialities and experience in an acute NHS Hospital Trust in the UK. Realistic Evaluation is an alternative to more traditional cause and effect evaluation models and seeks to understand the interdependencies of Context, Mechanism and Outcome proposing that Context (C) + Mechanism (M) = Outcome (O). In this study, the context, mechanism and outcome were examined from within individual medical leaders to determine what enables levels of medical engagement in a specific improvement project to reduce hospital inpatient mortality. Five qualitative case studies were undertaken with consultants who had regularly completed mortality reviews over a six month period. The case studies involved semi-structured interviews to test the theory behind the drivers for medical engagement. The interviews were analysed using a theory-driven thematic analysis to identify CMO configurations to explain what works, for whom and in what circumstances. The findings showed that consultants with a longer length of service became more engaged if there were opportunities to be involved in the beginning of an improvement project, with more opportunities to affect the design. Those that are new to a consultant role were more engaged if they felt able to apply any learning directly into their own settings or if they could use it as an opportunity to understand more about the organisation they are working in. This study concludes that RE is a useful methodology for better understanding the complexities of motivation and consultant engagement in a trust wide service improvement project. The study showed that there should be differentiated and bespoke training programmes to maximise each individual doctor’s propensity for medical engagement. The RE identified that there are different ways to ensure that doctors have the right skills to feel confident in service improvement projects.

Keywords: realistic evaluation, medical leadership, medical engagement, patient safety, service improvement

Procedia PDF Downloads 219
34567 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics

Authors: Fabio Fabris, Alex A. Freitas

Abstract:

Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.

Keywords: algorithm recommendation, meta-learning, bioinformatics, hierarchical classification

Procedia PDF Downloads 314
34566 [Keynote Talk]: Implementation of 5 Level and 7 Level Multilevel Inverter in Local Trains of Mumbai

Authors: Sharvari Sane, Swati Sharma, Sanjay K. Prasad

Abstract:

Local trains are the lifelines of Mumbai city. Earlier 1500 Volt D.C. supply, is now completely and successfully converted into 25 KV A.C. in central, western and harbour routes. This task is the outcome of the advancement in the area of power electronics. Author has already done the comparative study between D.C. and A.C. supply of traction and predicted the serious problem regarding the harmonics. In this paper, the simulation for 5 level as well as 7 level multilevel inverter has been done which is the substitute for the present cascade type inverter. This paper also showed the reduced level of Total Harmonic Distortion (THD) in the traction system.

Keywords: total harmonic distortion (THD), traction sub station (TSS), harmonics, multilevel inverter

Procedia PDF Downloads 419
34565 An Approach to Building a Recommendation Engine for Travel Applications Using Genetic Algorithms and Neural Networks

Authors: Adrian Ionita, Ana-Maria Ghimes

Abstract:

The lack of features, design and the lack of promoting an integrated booking application are some of the reasons why most online travel platforms only offer automation of old booking processes, being limited to the integration of a smaller number of services without addressing the user experience. This paper represents a practical study on how to improve travel applications creating user-profiles through data-mining based on neural networks and genetic algorithms. Choices made by users and their ‘friends’ in the ‘social’ network context can be considered input data for a recommendation engine. The purpose of using these algorithms and this design is to improve user experience and to deliver more features to the users. The paper aims to highlight a broader range of improvements that could be applied to travel applications in terms of design and service integration, while the main scientific approach remains the technical implementation of the neural network solution. The motivation of the technologies used is also related to the initiative of some online booking providers that have made the fact that they use some ‘neural network’ related designs public. These companies use similar Big-Data technologies to provide recommendations for hotels, restaurants, and cinemas with a neural network based recommendation engine for building a user ‘DNA profile’. This implementation of the ‘profile’ a collection of neural networks trained from previous user choices, can improve the usability and design of any type of application.

Keywords: artificial intelligence, big data, cloud computing, DNA profile, genetic algorithms, machine learning, neural networks, optimization, recommendation system, user profiling

Procedia PDF Downloads 163
34564 Intelligent Process and Model Applied for E-Learning Systems

Authors: Mafawez Alharbi, Mahdi Jemmali

Abstract:

E-learning is a developing area especially in education. E-learning can provide several benefits to learners. An intelligent system to collect all components satisfying user preferences is so important. This research presents an approach that it capable to personalize e-information and give the user their needs following their preferences. This proposal can make some knowledge after more evaluations made by the user. In addition, it can learn from the habit from the user. Finally, we show a walk-through to prove how intelligent process work.

Keywords: artificial intelligence, architecture, e-learning, software engineering, processing

Procedia PDF Downloads 191
34563 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.

Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks

Procedia PDF Downloads 332
34562 Investigating Learners’ Online Learning Experiences in a Blended-Learning School Environment

Authors: Abraham Ampong

Abstract:

BACKGROUND AND SIGNIFICANCE OF THE STUDY: The development of information technology and its influence today is inevitable in the world of education. The development of information technology and communication (ICT) has an impact on the use of teaching aids such as computers and the Internet, for example, E-learning. E-learning is a learning process attained through electronic means. But learning is not merely technology because learning is essentially more about the process of interaction between teacher, student, and source study. The main purpose of the study is to investigate learners’ online learning experiences in a blended learning approach, evaluate how learners’ experience of an online learning environment affects the blended learning approach and examine the future of online learning in a blended learning environment. Blended learning pedagogies have been recognized as a path to improve teacher’s instructional strategies for teaching using technology. Blended learning is perceived to have many advantages for teachers and students, including any-time learning, anywhere access, self-paced learning, inquiry-led learning and collaborative learning; this helps institutions to create desired instructional skills such as critical thinking in the process of learning. Blended learning as an approach to learning has gained momentum because of its widespread integration into educational organizations. METHODOLOGY: Based on the research objectives and questions of the study, the study will make use of the qualitative research approach. The rationale behind the selection of this research approach is that participants are able to make sense of their situations and appreciate their construction of knowledge and understanding because the methods focus on how people understand and interpret their experiences. A case study research design is adopted to explore the situation under investigation. The target population for the study will consist of selected students from selected universities. A simple random sampling technique will be used to select the targeted population. The data collection instrument that will be adopted for this study will be questions that will serve as an interview guide. An interview guide is a set of questions that an interviewer asks when interviewing respondents. Responses from the in-depth interview will be transcribed into word and analyzed under themes. Ethical issues to be catered for in this study include the right to privacy, voluntary participation, and no harm to participants, and confidentiality. INDICATORS OF THE MAJOR FINDINGS: It is suitable for the study to find out that online learning encourages timely feedback from teachers or that online learning tools are okay to use without issues. Most of the communication with the teacher can be done through emails and text messages. It is again suitable for sampled respondents to prefer online learning because there are few or no distractions. Learners can have access to technology to do other activities to support their learning”. There are, again, enough and enhanced learning materials available online. CONCLUSION: Unlike the previous research works focusing on the strengths and weaknesses of blended learning, the present study aims at the respective roles of its two modalities, as well as their interdependencies.

Keywords: online learning, blended learning, technologies, teaching methods

Procedia PDF Downloads 86
34561 The Possible Double-Edged Sword Effects of Online Learning on Academic Performance: A Quantitative Study of Preclinical Medical Students

Authors: Atiwit Sinyoo, Sekh Thanprasertsuk, Sithiporn Agthong, Pasakorn Watanatada, Shaun Peter Qureshi, Saknan Bongsebandhu-Phubhakdi

Abstract:

Background: Since the SARS-CoV-2 virus became extensively disseminated throughout the world, online learning has become one of the most hotly debated topics in educational reform. While some studies have already shown the advantage of online learning, there are still questions concerning how online learning affects students’ learning behavior and academic achievement when each student learns in a different way. Hence, we aimed to develop a guide for preclinical medical students to avoid drawbacks and get benefits from online learning that possibly a double-edged sword. Methods: We used a multiple-choice questionnaire to evaluate the learning behavior of second-year Thai medical students in the neuroscience course. All traditional face-to-face lecture classes were video-recorded and promptly posted to the online learning platform throughout this course. Students could pick and choose whatever classes they wanted to attend, and they may use online learning as often as they wished. Academic performance was evaluated as summative score, spot exam score and pre-post-test improvement. Results: More frequently students used online learning platform, the less they attended lecture classes (P = 0.035). High proactive online learners (High PO) who were irregular attendee (IrA) had significantly lower summative scores (P = 0.026), spot exam score (P = 0.012) and pre-post-test improvement (P = 0.036). In the meanwhile, conditional attendees (CoA) who only attended classes with attendance check had significantly higher summative score (P = 0.025) and spot exam score (P = 0.001) if they were in the High PO group. Conclusions: The benefit and drawbacks edges of using an online learning platform were demonstrated in our research. Based on this double-edged sword effect, we believe that online learning is a valuable learning strategy, but students must carefully plan their study schedule to gain the “benefit edge” meanwhile avoiding its “drawback edge”.

Keywords: academic performance, assessment, attendance, online learning, preclinical medical students

Procedia PDF Downloads 158
34560 Start with the Art: Early Results from a Study of Arts-Integrated Instruction for Young Children

Authors: Juliane Toce, Steven Holochwost

Abstract:

A substantial and growing literature has demonstrated that arts education benefits young children’s socioemotional and cognitive development. Less is known about the capacity of arts-integrated instruction to yield benefits to similar domains, particularly among demographically and socioeconomically diverse groups of young children. However, the small literature on this topic suggests that arts-integrated instruction may foster young children’s socioemotional and cognitive development by presenting opportunities to 1) engage in instructional content in diverse ways, 2) experience and regulate strong emotions, 3) experience growth-oriented feedback, and 4) engage in collaborative work with peers. Start with the Art is a new program of arts-integrated instruction currently being implemented in four schools in a school district that serves students from a diverse range of backgrounds. The program employs a co-teaching model in which teaching artists and classroom teachers engage in collaborative lesson planning and instruction over the course of the academic year and is currently the focus of an impact study featuring a randomized-control design, as well as an implementation study, both of which are funded through an Educational Innovation and Research grant from the United States Department of Education. The paper will present the early results from the Start with the Art implementation study. These results will provide an overview of the extent to which the program was implemented in accordance with design, with a particular emphasis on the degree to which the four opportunities enumerated above (e.g., opportunities to engage in instructional content in diverse ways) were presented to students. There will be a review key factors that may influence the fidelity of implementation, including classroom teachers’ reception of the program and the extent to which extant conditions in the classroom (e.g., the overall level of classroom organization) may have impacted implementation fidelity. With the explicit purpose of creating a program that values and meets the needs of the teachers and students, Start with the Art incorporates the feedback from individuals participating in the intervention. Tracing its trajectory from inception to ongoing development and examining the adaptive changes made in response to teachers' transformative experiences in the post-pandemic classroom, Start with the Art continues to solicit input from experts in integrating artistic content into core curricula within educational settings catering to students from under-represented backgrounds in the arts. Leveraging the input from this rich consortium of experts has allowed for a comprehensive evaluation of the program’s implementation. The early findings derived from the implementation study emphasize the potential of arts-integrated instruction to incorporate restorative practices. Such practices serve as a crucial support system for both students and educators, providing avenues for children to express themselves, heal emotionally, and foster social development, while empowering teachers to create more empathetic, inclusive, and supportive learning environments. This all-encompassing analysis spotlights Start with the Art’s adaptability to any learning environment through the program’s effectiveness, resilience, and its capacity to transform - through art - the classroom experience within the ever-evolving landscape of education.

Keywords: arts-integration, social emotional learning, diverse learners, co-teaching, teaching artists, post-pandemic teaching

Procedia PDF Downloads 62
34559 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning

Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V

Abstract:

The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.

Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network

Procedia PDF Downloads 142
34558 Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks

Authors: Martin K. Steiger, Lukas Heisler, Hans-Georg Brachtendorf

Abstract:

Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications.

Keywords: deep neural networks, gradient-based learning, image processing, ordinary differential equation networks

Procedia PDF Downloads 168
34557 Self-Efficacy in Online Vocal Learning: Current Situation, Influencing Factors and Optimization Strategies

Authors: Tianyou Wang

Abstract:

Students' own intrinsic motivation is the main source of energy for learning activities, and their self-efficacy becomes a key factor affecting the learning effect. In today's increasingly common situation of online vocal music teaching, virtualized teaching scenarios have brought a considerable impact on students' personal efficacy. Since personal efficacy is the result of the interaction between environmental factors and subject characteristics, an empirical study was conducted to investigate the changes in students' self-efficacy, influencing factors, and characteristics in online vocal teaching scenarios based on the three dimensions of teachers, students, and technology. One hundred valid questionnaires were studied through a quantitative survey. The results showed that students' personal efficacy was significantly lower in online learning environments compared to offline vocal teaching and showed significant differences due to factors such as gender and class type; students' self-efficacy in online vocal teaching was significantly affected by factors such as technological environment, teaching style, and information technology ability. Based on the results of the study, it is recommended to pay attention to inquiry and practice in the teaching design, use singing projects as the teaching organization, grasp the learning process with the orientation of problem-solving, push the applicable vocal music teaching resources in time, lead students to explore and refine the problems and push students to learn independently according to the goals and plans.

Keywords: vocal pedagogy, self-efficacy, online learning, intrinsic motivation, information technology

Procedia PDF Downloads 55
34556 Impact of Pedagogical Techniques on the Teaching of Sports Sciences

Authors: Muhammad Saleem

Abstract:

Background: The teaching of sports sciences encompasses a broad spectrum of disciplines, including biomechanics, physiology, psychology, and coaching. Effective pedagogical techniques are crucial in imparting both theoretical knowledge and practical skills necessary for students to excel in the field. The impact of these techniques on students’ learning outcomes, engagement, and professional preparedness remains a vital area of study. Objective: This study aims to evaluate the effectiveness of various pedagogical techniques used in the teaching of sports sciences. It seeks to identify which methods most significantly enhance student learning, retention, engagement, and practical application of knowledge. Methods: A mixed-methods approach was employed, including both quantitative and qualitative analyses. The study involved a comparative analysis of traditional lecture-based teaching, experiential learning, problem-based learning (PBL), and technology-enhanced learning (TEL). Data were collected through surveys, interviews, and academic performance assessments from students enrolled in sports sciences programs at multiple universities. Statistical analysis was used to evaluate academic performance, while thematic analysis was applied to qualitative data to capture student experiences and perceptions. Results: The findings indicate that experiential learning and PBL significantly improve students' understanding and retention of complex sports science concepts compared to traditional lectures. TEL was found to enhance engagement and provide students with flexible learning opportunities, but its impact on deep learning varied depending on the quality of the digital resources. Overall, a combination of experiential learning, PBL, and TEL was identified as the most effective pedagogical approach, leading to higher student satisfaction and better preparedness for real-world applications. Conclusion: The study underscores the importance of adopting diverse and student-centered pedagogical techniques in the teaching of sports sciences. While traditional lectures remain useful for foundational knowledge, integrating experiential learning, PBL, and TEL can substantially improve student outcomes. These findings suggest that educators should consider a blended approach to pedagogy to maximize the effectiveness of sports science education.

Keywords: sport sciences, pedagogical techniques, health and physical education, problem-based learning, student engagement

Procedia PDF Downloads 26
34555 A Literature Review Evaluating the Use of Online Problem-Based Learning and Case-Based Learning Within Dental Education

Authors: Thomas Turner

Abstract:

Due to the Covid-19 pandemic alternative ways of delivering dental education were required. As a result, many institutions moved teaching online. The impact of this is poorly understood. Is online problem-based learning (PBL) and case-based learning (CBL) effective and is it suitable in the post-pandemic era? PBL and CBL are both types of interactive, group-based learning which are growing in popularity within many dental schools. PBL was first introduced in the 1960’s and can be defined as learning which occurs from collaborative work to resolve a problem. Whereas CBL encourages learning from clinical cases, encourages application of knowledge and helps prepare learners for clinical practice. To evaluate the use of online PBL and CBL. A literature search was conducted using the CINAHL, Embase, PubMed and Web of Science databases. Literature was also identified from reference lists. Studies were only included from dental education. Seven suitable studies were identified. One of the studies found a high learner and facilitator satisfaction rate with online CBL. Interestingly one study found learners preferred CBL over PBL within an online format. A study also found, that within the context of distance learning, learners preferred a hybrid curriculum including PBL over a traditional approach. A further study pointed to the limitations of PBL within an online format, such as reduced interaction, potentially hindering the development of communication skills and the increased time and technology support required. An audience response system was also developed for use within CBL and had a high satisfaction rate. Interestingly one study found achievement of learning outcomes was correlated with the number of student and staff inputs within an online format. Whereas another study found the quantity of learner interactions were important to group performance, however the quantity of facilitator interactions was not. This review identified generally favourable evidence for the benefits of online PBL and CBL. However, there is limited high quality evidence evaluating these teaching methods within dental education and there appears to be limited evidence comparing online and faceto-face versions of these sessions. The importance of the quantity of learner interactions is evident, however the importance of the quantity of facilitator interactions appears to be questionable. An element to this may be down to the quality of interactions, rather than just quantity. Limitations of online learning regarding technological issues and time required for a session are also highlighted, however as learners and facilitators get familiar with online formats, these may become less of an issue. It is also important learners are encouraged to interact and communicate during these sessions, to allow for the development of communication skills. Interestingly CBL appeared to be preferred to PBL in an online format. This may reflect the simpler nature of CBL, however further research is required to explore this finding. Online CBL and PBL appear promising, however further research is required before online formats of these sessions are widely adopted in the post-pandemic era.

Keywords: case-based learning, online, problem-based learning, remote, virtual

Procedia PDF Downloads 77
34554 E-Learning Approach for Improving Classroom Teaching to Enhance Students' Learning in Secondary Schools in Nigeria

Authors: Chika Ethel Esege

Abstract:

Electronic learning is learning facilitated by technology which has basically altered approaches globally, including the field of education. This trend is compelling educators to focus on approaches that improve classroom practices in order to enhance students’ learning and participation in a global digital society. However, e-learning is not fully utilized across subject disciplines particularly in the field of humanities, in the context of Nigerian secondary education. This study focused on the use of e-learning to enhance the development of digital skills, particularly, collaboration and communication in secondary school students in Nigeria. The study adopted an ‘action research’ involving 210 students and 7 teachers, who utilised the e-learning platform designed by the researcher for the survey. Mixed methods- qualitative and quantitative- were used for data collection including questionnaire, observation, interview, and analysis of statutory documents. The data were presented using frequency counts for questionnaire responses and figures of screenshots for learning tasks. The VOD Burner software was also used to analyse interviews and video recordings. The study showed that the students acquired collaboration and communication skills through e-learning intervention lesson, and demonstrated satisfaction with this approach. However, the study further revealed that the traditional teaching approach could not provide digital education or develop the digital skills of the students. Based on these findings, recommendations were made that the Nigerian Government should incorporate digital content across subject disciplines into secondary school education curricular and provide adequate infrastructure in order to enable educators to adopt relevant approaches necessary for the enhancement of students’ learning especially in a technologically evolving and advancing world.

Keywords: developing collaboration and communication skills, electronic learning, improving classroom teaching, secondary schools in Nigeria

Procedia PDF Downloads 134
34553 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs

Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny

Abstract:

As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.

Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning

Procedia PDF Downloads 211
34552 Design and Development of an 'Optimisation Controller' and a SCADA Based Monitoring System for Renewable Energy Management in Telecom Towers

Authors: M. Sundaram, H. R. Sanath Kumar, A. Ramprakash

Abstract:

Energy saving is a key sustainability focus area for the Indian telecom industry today. This is especially true in rural India where energy consumption contributes to 70 % of the total network operating cost. In urban areas, the energy cost for network operation ranges between 15-30 %. This expenditure on energy as a result of the lack of grid power availability highlights a potential barrier to telecom industry growth. As a result of this, telecom tower companies switch to diesel generators, making them the second largest consumer of diesel in India, consuming over 2.5 billion litres per annum. The growing cost of energy due to increasing diesel prices and concerns over rising greenhouse emissions have caused these companies to look at other renewable energy options. Even the TRAI (Telecom Regulation Authority of India) has issued a number of guidelines to implement Renewable Energy Technologies (RETs) in the telecom towers as part of its ‘Implementation of Green Technologies in Telecom Sector’ initiative. Our proposal suggests the implementation of a Programmable Logic Controller (PLC) based ‘optimisation controller’ that can not only efficiently utilize the energy from RETs but also help to conserve the power used in the telecom towers. When there are multiple RETs available to supply energy, this controller will pick the optimum amount of energy from each RET based on the availability and feasibility at that point of time, reducing the dependence on diesel generators. For effective maintenance of the towers, we are planing to implement a SCADA based monitoring system along with the ‘optimization controller’.

Keywords: operation costs, consumption of fuel and carbon footprint, implementation of a programmable logic controller (PLC) based ‘optimisation controller’, efficient SCADA based monitoring system

Procedia PDF Downloads 419
34551 Perceptions of College Students on Whether an Intelligent Tutoring System Is a Tutor

Authors: Michael Smalenberger

Abstract:

Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate the benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. Developments improving the ease of ITS creation have recently increased their proliferation, leading many K-12 schools and institutions of higher education in the United States to regularly use ITS within classrooms. We investigated how students perceive their experience using an ITS. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course and were subsequently asked for feedback on their experience. Results show that their perceptions were generally favorable of the ITS, and most would seek to use an ITS both for STEM and non-STEM courses in the future. Along with detailed transaction-level data, this feedback also provides insights on the design of user-friendly interfaces, guidance on accessibility for students with impairments, the sequencing of exercises, students’ expectation of achievement, and comparisons to other tutoring experiences. We discuss how these findings are important for the creation, implementation, and evaluation of ITS as a mode and method of teaching and learning.

Keywords: college statistics course, intelligent tutoring systems, in vivo study, student perceptions of tutoring

Procedia PDF Downloads 101
34550 Social Media as an Interactive Learning Tool Applied to Faculty of Tourism and Hotels, Fayoum University

Authors: Islam Elsayed Hussein

Abstract:

The aim of this paper is to discover the impact of students’ attitude towards social media and the skills required to adopt social media as a university e-learning (2.0) platform. In addition, it measures the effect of social media adoption on interactive learning effectiveness. The population of this study was students at Faculty of tourism and Hotels, Fayoum University. A questionnaire was used as a research instrument to collect data from respondents, which had been selected randomly. Data had been analyzed using quantitative data analysis method. Findings showed that the students have a positive attitude towards adopting social networking in the learning process and they have also good skills for effective use of social networking tools. In addition, adopting social media is effectively affecting the interactive learning environment.

Keywords: attitude, skills, e-learning 2.0, interactive learning, Egypt

Procedia PDF Downloads 525
34549 Neural Network Based Decision Trees Using Machine Learning for Alzheimer's Diagnosis

Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, S. Meenakshi Sundaram

Abstract:

Alzheimer’s disease is one of the prevalent kind of ailment, expected for impudent reconciliation or an effectual therapy is to be accredited hitherto. Probable detonation of patients in the upcoming years, and consequently an enormous deal of apprehension in early discovery of the disorder, this will conceivably chaperon to enhanced healing outcomes. Complex impetuosity of the brain is an observant symbolic of the disease and a unique recognition of genetic sign of the disease. Machine learning alongside deep learning and decision tree reinforces the aptitude to absorb characteristics from multi-dimensional data’s and thus simplifies automatic classification of Alzheimer’s disease. Susceptible testing was prophesied and realized in training the prospect of Alzheimer’s disease classification built on machine learning advances. It was shrewd that the decision trees trained with deep neural network fashioned the excellent results parallel to related pattern classification.

Keywords: Alzheimer's diagnosis, decision trees, deep neural network, machine learning, pattern classification

Procedia PDF Downloads 297
34548 Botnet Detection with ML Techniques by Using the BoT-IoT Dataset

Authors: Adnan Baig, Ishteeaq Naeem, Saad Mansoor

Abstract:

The Internet of Things (IoT) gadgets have advanced quickly in recent years, and their use is steadily rising daily. However, cyber-attackers can target these gadgets due to their distributed nature. Additionally, many IoT devices have significant security flaws in their implementation and design, making them vulnerable to security threats. Hence, these threats can cause important data security and privacy loss from a single attack on network devices or systems. Botnets are a significant security risk that can harm the IoT network; hence, sophisticated techniques are required to mitigate the risk. This work uses a machine learning-based method to identify IoT orchestrated by botnets. The proposed technique identifies the net attack by distinguishing between legitimate and malicious traffic. This article proposes a hyperparameter tuning model to improvise the method to improve the accuracy of existing processes. The results demonstrated an improved and more accurate indication of botnet-based cyber-attacks.

Keywords: Internet of Things, Botnet, BoT-IoT dataset, ML techniques

Procedia PDF Downloads 11
34547 Resources-Based Ontology Matching to Access Learning Resources

Authors: A. Elbyed

Abstract:

Nowadays, ontologies are used for achieving a common understanding within a user community and for sharing domain knowledge. However, the de-centralized nature of the web makes indeed inevitable that small communities will use their own ontologies to describe their data and to index their own resources. Certainly, accessing to resources from various ontologies created independently is an important challenge for answering end user queries. Ontology mapping is thus required for combining ontologies. However, mapping complete ontologies at run time is a computationally expensive task. This paper proposes a system in which mappings between concepts may be generated dynamically as the concepts are encountered during user queries. In this way, the interaction itself defines the context in which small and relevant portions of ontologies are mapped. We illustrate application of the proposed system in the context of Technology Enhanced Learning (TEL) where learners need to access to learning resources covering specific concepts.

Keywords: resources query, ontologies, ontology mapping, similarity measures, semantic web, e-learning

Procedia PDF Downloads 313
34546 The Development of Crisis Distance Education at Kuwait University During the COVID-19 Pandemic

Authors: Waleed Alanzi

Abstract:

The purpose of this qualitative study was to add to the existing literature and provide a more detailed understanding of the individual experiences and perceptions of 15 Deans at the University of Kuwait regarding their first year of planning, developing, and implementing crisis distance education (CDE) in response to the COVID-19 epidemic. An interpretative phenomenological approach was applied, using the thematic analysis of interview transcripts to describe the challenging journeys taken by each of the Deans from the first-person point of view. There was objective evidence, manifested by four primary themes (“Obstacles to the implementation of CDE”; “Planning for CDE”; “Training for CDE,” and “Future Directions”) to conclude that the faculty members, technical staff, administrative staff, and students generally helped each other to overcome the obstacles associated with planning and implementing CDE. The idea that CDE may turn homes into schools and parents into teachers was supported. The planning and implementation of CDE were inevitably associated with a certain amount of confusion, as well as disruptions in the daily routines of staff and students, as well as significant changes in their responsibilities. There were contradictory ideas about the future directions of distance education after the pandemic. Previous qualitative research on the implementation of CDE at higher education institutions in the Arab world has focused mainly on the experiences and perceptions of students; however, little is known about the experiences and perceptions of the students at the University of Kuwait during the COVID19 pandemic, providing a rationale and direction for future research.

Keywords: distance learning, qualitative research, COVID-19 epidemic, Kuwait university

Procedia PDF Downloads 105
34545 Virtualization and Visualization Based Driver Configuration in Operating System

Authors: Pavan Shah

Abstract:

In an Embedded system, Virtualization and visualization technology can provide us an effective response and measurable work in a software development environment. In addition to work of virtualization and virtualization can be easily deserved to provide the best resource sharing between real-time hardware applications and a healthy environment. However, the virtualization is noticeable work to minimize the I/O work and utilize virtualization & virtualization technology for either a software development environment (SDE) or a runtime environment of real-time embedded systems (RTMES) or real-time operating system (RTOS) eras. In this Paper, we particularly focus on virtualization and visualization overheads data of network which generates the I/O and implementation of standardized I/O (i.e., Virto), which can work as front-end network driver in a real-time operating system (RTOS) hardware module. Even there have been several work studies are available based on the virtualization operating system environment, but for the Virto on a general-purpose OS, my implementation is on the open-source Virto for a real-time operating system (RTOS). In this paper, the measurement results show that implementation which can improve the bandwidth and latency of memory management of the real-time operating system environment (RTMES) for getting more accuracy of the trained model.

Keywords: virtualization, visualization, network driver, operating system

Procedia PDF Downloads 133
34544 A Model for Reverse-Mentoring in Education

Authors: Sabine A. Zauchner-Studnicka

Abstract:

As the term indicates, reverse-mentoring flips the classical roles of mentoring: In school, students take over the role of mentors for adults, i.e. teachers or parents. Originally reverse-mentoring stems from US enterprises, which implemented this innovative method in order to benefit from the resources of skilled younger employees for the enhancement of IT competences of senior colleagues. However, reverse-mentoring in schools worldwide is rare. Based on empirical studies and theoretical approaches, in this article an implementation model for reverse-mentoring is developed in order to bring the significant potential reverse-mentoring has for education into practice.

Keywords: reverse-mentoring, innovation in education, implementation model, school education

Procedia PDF Downloads 248
34543 Forecasting the Future Implications of ChatGPT Usage in Education Based on AI Algorithms

Authors: Yakubu Bala Mohammed, Nadire Chavus, Mohammed Bulama

Abstract:

Generative Pre-trained Transformer (ChatGPT) represents an artificial intelligence (AI) tool capable of swiftly generating comprehensive responses to prompts and follow-up inquiries. This emerging AI tool was introduced in November 2022 by OpenAI firm, an American AI research laboratory, utilizing substantial language models. This present study aims to delve into the potential future consequences of ChatGPT usage in education using AI-based algorithms. The paper will bring forth the likely potential risks of ChatGBT utilization, such as academic integrity concerns, unfair learning assessments, excessive reliance on AI, and dissemination of inaccurate information using four machine learning algorithms: eXtreme-Gradient Boosting (XGBoost), Support vector machine (SVM), Emotional artificial neural network (EANN), and Random forest (RF) would be used to analyze the study collected data due to their robustness. Finally, the findings of the study will assist education stakeholders in understanding the future implications of ChatGPT usage in education and propose solutions and directions for upcoming studies.

Keywords: machine learning, ChatGPT, education, learning, implications

Procedia PDF Downloads 232
34542 Reference Model for the Implementation of an E-Commerce Solution in Peruvian SMEs in the Retail Sector

Authors: Julio Kauss, Miguel Cadillo, David Mauricio

Abstract:

E-commerce is a business model that allows companies to optimize the processes of buying, selling, transferring goods and exchanging services through computer networks or the Internet. In Peru, the electronic commerce is used infrequently. This situation is due, in part to the fact that there is no model that allows companies to implement an e-commerce solution, which means that most SMEs do not have adequate knowledge to adapt to electronic commerce. In this work, a reference model is proposed for the implementation of an e-commerce solution in Peruvian SMEs in the retail sector. It consists of five phases: Business Analysis, Business Modeling, Implementation, Post Implementation and Results. The present model was validated in a SME of the Peruvian retail sector through the implementation of an electronic commerce platform, through which the company increased its sales through the delivery channel by 10% in the first month of deployment. This result showed that the model is easy to implement, is economical and agile. In addition, it allowed the company to increase its business offer, adapt to e-commerce and improve customer loyalty.

Keywords: e-commerce, retail, SMEs, reference model

Procedia PDF Downloads 320
34541 Decision-Making Under Uncertainty in Obsessive-Compulsive Disorder

Authors: Helen Pushkarskaya, David Tolin, Lital Ruderman, Ariel Kirshenbaum, J. MacLaren Kelly, Christopher Pittenger, Ifat Levy

Abstract:

Obsessive-Compulsive Disorder (OCD) produces profound morbidity. Difficulties with decision making and intolerance of uncertainty are prominent clinical features of OCD. The nature and etiology of these deficits are poorly understood. We used a well-validated choice task, grounded in behavioral economic theory, to investigate differences in valuation and value-based choice during decision making under uncertainty in 20 unmedicated participants with OCD and 20 matched healthy controls. Participants’ choices were used to assess individual decision-making characteristics. Compared to controls, individuals with OCD were less consistent in their choices and less able to identify options that were unambiguously preferable. These differences correlated with symptom severity. OCD participants did not differ from controls in how they valued uncertain options when outcome probabilities were known (risk) but were more likely than controls to avoid uncertain options when these probabilities were imprecisely specified (ambiguity). These results suggest that the underlying neural mechanisms of valuation and value-based choices during decision-making are abnormal in OCD. Individuals with OCD show elevated intolerance of uncertainty, but only when outcome probabilities are themselves uncertain. Future research focused on the neural valuation network, which is implicated in value-based computations, may provide new neurocognitive insights into the pathophysiology of OCD. Deficits in decision-making processes may represent a target for therapeutic intervention.

Keywords: obsessive compulsive disorder, decision-making, uncertainty intolerance, risk aversion, ambiguity aversion, valuation

Procedia PDF Downloads 615
34540 A Developmental Study of the Flipped Classroom Approach on Students’ Learning in English Language Modules in British University in Egypt

Authors: A. T. Zaki

Abstract:

The flipped classroom approach as a mode of blended learning was formally introduced to students of the English language modules at the British University in Egypt (BUE) at the start of the academic year 2015/2016. This paper aims to study the impact of the flipped classroom approach after three semesters of implementation. It will restrict itself to the examination of students’ achievement rates, student satisfaction, and how different student cohorts have benefited differently from the flipped practice. The paper concludes with recommendations of how the experience can be further developed.

Keywords: achievement rates, developmental experience, Egypt, flipped classroom, higher education, student cohorts, student satisfaction

Procedia PDF Downloads 258
34539 An Artificially Intelligent Teaching-Agent to Enhance Learning Interactions in Virtual Settings

Authors: Abdulwakeel B. Raji

Abstract:

This paper introduces a concept of an intelligent virtual learning environment that involves communication between learners and an artificially intelligent teaching agent in an attempt to replicate classroom learning interactions. The benefits of this technology over current e-learning practices is that it creates a virtual classroom where real time adaptive learning interactions are made possible. This is a move away from the static learning practices currently being adopted by e-learning systems. Over the years, artificial intelligence has been applied to various fields, including and not limited to medicine, military applications, psychology, marketing etc. The purpose of e-learning applications is to ensure users are able to learn outside of the classroom, but a major limitation has been the inability to fully replicate classroom interactions between teacher and students. This study used comparative surveys to gain information and understanding of the current learning practices in Nigerian universities and how they compare to these practices compare to the use of a developed e-learning system. The study was conducted by attending several lectures and noting the interactions between lecturers and tutors and as an aftermath, a software has been developed that deploys the use of an artificial intelligent teaching-agent alongside an e-learning system to enhance user learning experience and attempt to create the similar learning interactions to those found in classroom and lecture hall settings. Dialogflow has been used to implement a teaching-agent, which has been developed using JSON, which serves as a virtual teacher. Course content has been created using HTML, CSS, PHP and JAVASCRIPT as a web-based application. This technology can run on handheld devices and Google based home technologies to give learners an access to the teaching agent at any time. This technology also implements the use of definite clause grammars and natural language processing to match user inputs and requests with defined rules to replicate learning interactions. This technology developed covers familiar classroom scenarios such as answering users’ questions, asking ‘do you understand’ at regular intervals and answering subsequent requests, taking advanced user queries to give feedbacks at other periods. This software technology uses deep learning techniques to learn user interactions and patterns to subsequently enhance user learning experience. A system testing has been undergone by undergraduate students in the UK and Nigeria on the course ‘Introduction to Database Development’. Test results and feedback from users shows that this study and developed software is a significant improvement on existing e-learning systems. Further experiments are to be run using the software with different students and more course contents.

Keywords: virtual learning, natural language processing, definite clause grammars, deep learning, artificial intelligence

Procedia PDF Downloads 135