Search results for: free flying birds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3817

Search results for: free flying birds

2707 Dual Thermoresponsive Polyzwitterionic Core-Shell Microgels and Study of Their Anti-Fouling Effect

Authors: P. Saha, R. Ganguly, N. K .Singha, A. Pich

Abstract:

Microgel, a smart class of material, has drawn attention in the past few years due to its response to external stimuli like temperature, pH, and ionic strength of the solution. Among them, one type of polymer becomes soluble, and the other becomes insoluble in water upon heating displaying upper critical solution temperature (UCST) (e.g., polysulfobetaine, PSB) and lower critical solution temperature (LCST) (e.g., poly(N-vinylcaprolactam, PVCL)) respectively. Polyzwitterions, electrically neutral polymers are biocompatible, biodegradable, and non-cytotoxic in nature, and presence of zwitterionic pendant group in the main backbone makes them stable against temperature and pH variations and strong hydration capability in salt solution promotes them to be used as interfacial bio-adhesion resistance material. Majority of zwitterionic microgels have been synthesized in mini- emulsion technique using free radical polymerization approach. Here, a new route to synthesize dual thermo-responsive PVCL microgels decorated with appreciable amount of zwitterionic PSB chains was developed by a purely water-based surfactant-free reversible addition–fragmentation chain transfer (RAFT) precipitation polymerization. PSB macro-RAFTs having different molecular weights were synthesized and utilized for surface-grafting with PVCL microgels varying the macro-RAFT concentration using N,N′-methylenebis(acrylamide) (BIS) as cross-linker. Increasing the PSB concentration in the PVCL microgels resulted in a linear increase in UCST but decrease in hydrodynamic radius due to strong intrachain coulombic attraction forces acting between the opposite charges present in the zwitterionic groups. Anti- fouling effect was observed on addition of BSA protein solution on the microgel-coated membrane surfaces as studied by fluorescence spectrophotoscopy.

Keywords: microgels, polyzwitterions, upper critical solution temperature-lower critical solution temperature, UCST-LCST, ionic crosslinking

Procedia PDF Downloads 116
2706 Ethical Considerations in the Execution of Post-Fuel Subsidy Removal Support Initiatives in Kwara State, Nigeria: A Focus from Islamic Principles

Authors: Muhammad Jum’at Dasuki

Abstract:

This study investigates the ethical implications of post-fuel subsidy removal support initiatives in Kwara State, Nigeria, with a focus on the application of Islamic principles. The contentious issue of subsidy removal carries significant social and economic consequences, emphasizing the crucial role of ethical considerations in policy implementation. The research provides a comprehensive background on fuel subsidy removal in Nigeria and its implications. Examining post-fuel subsidy removal palliative measures in Kwara State, the study focuses on design and implementation challenges, ethical considerations, transparency, equity, and public trust. Utilizing a case study approach offers insights and best practices. The methodology includes primary sources through in-depth oral interviews and secondary sources like textbooks and journals, aiming for a holistic understanding of the ethical dimensions of support initiatives within the context of Islamic principles in Kwara State. The objective is to contribute to policy decisions and community development. The study recommends an ethically sound implementation of post-fuel subsidy removal support initiatives, emphasizing transparency, accountability, and inclusivity. It advocates for the inclusiveness of governmental palliatives, reaching both civil servants and common individuals in the state. Continuous distribution during fuel subsidy removal challenges is deemed vital. Additionally, extending free or subsidized transportation beyond higher institutions to the general populace is suggested. Consideration should also be given to reducing governmental hospital bills or providing free health services. The study underscores the importance of Islamic ethics in Nigerian governance and employs a case study approach to assess palliative measures in Kwara State, offering practical insights for policymakers and stakeholders.

Keywords: considerations, ethical, palliative, post-fuel subsidy removal

Procedia PDF Downloads 46
2705 A Serum- And Feeder-Free Culture System for the Robust Generation of Human Stem Cell-Derived CD19+ B Cells and Antibody-Secreting Cells

Authors: Kirsten Wilson, Patrick M. Brauer, Sandra Babic, Diana Golubeva, Jessica Van Eyk, Tinya Wang, Avanti Karkhanis, Tim A. Le Fevre, Andy I. Kokaji, Allen C. Eaves, Sharon A. Louis, , Nooshin Tabatabaei-Zavareh

Abstract:

Long-lived plasma cells are rare, non-proliferative B cells generated from antibody-secreting cells (ASCs) following an immune response to protect the host against pathogen re-exposure. Despite their therapeutic potential, the lack of in vitro protocols in the field makes it challenging to use B cells as a cellular therapeutic tool. As a result, there is a need to establish robust and reproducible methods for the generation of B cells. To address this, we have developed a culture system for generating B cells from hematopoietic stem and/or progenitor cells (HSPCs) derived from human umbilical cord blood (CB) or pluripotent stem cells (PSCs). HSPCs isolated from CB were cultured using the StemSpan™ B Cell Generation Kit and produced CD19+ B cells at a frequency of 23.2 ± 1.5% and 59.6 ± 2.3%, with a yield of 91 ± 11 and 196 ± 37 CD19+ cells per input CD34+ cell on culture days 28 and 35, respectively (n = 50 - 59). CD19+IgM+ cells were detected at a frequency of 31.2 ± 2.6% and were produced at a yield of 113 ± 26 cells per input CD34+ cell on culture day 35 (n = 50 - 59). The B cell receptor loci of CB-derived B cells were sequenced to confirm V(D)J gene rearrangement. ELISpot analysis revealed that ASCs were generated at a frequency of 570 ± 57 per 10,000 day 35 cells, with an average IgM+ ASC yield of 16 ± 2 cells per input CD34+ cell (n = 33 - 42). PSC-derived HSPCs were generated using the STEMdiff™ Hematopoietic - EB reagents and differentiated to CD10+CD19+ B cells with a frequency of 4 ± 0.8% after 28 days of culture (n = 37, 1 embryonic and 3 induced pluripotent stem cell lines tested). Subsequent culture of PSC-derived HSPCs increased CD19+ frequency and generated ASCs from 1 - 2 iPSC lines. This method is the first report of a serum- and feeder-free system for the generation of B cells from CB and PSCs, enabling further B lineage-specific research for potential future clinical applications.

Keywords: stem cells, B cells, immunology, hematopoiesis, PSC, differentiation

Procedia PDF Downloads 57
2704 X-Ray Crystallographic Studies on BPSL2418 from Burkholderia pseudomallei

Authors: Mona Alharbi

Abstract:

Melioidosis has emerged as a lethal disease. Unfortunately, the molecular mechanisms of virulence and pathogenicity of Burkholderia pseudomallei remain unknown. However, proteomics research has selected putative targets in B. pseudomallei that might play roles in the B. pseudomallei virulence. BPSL 2418 putative protein has been predicted as a free methionine sulfoxide reductase and interestingly there is a link between the level of the methionine sulfoxide in pathogen tissues and its virulence. Therefore in this work, we describe the cloning expression, purification, and crystallization of BPSL 2418 and the solution of its 3D structure using X-ray crystallography. Also, we aimed to identify the substrate binding and reduced forms of the enzyme to understand the role of BPSL 2418. The gene encoding BPSL2418 from B. pseudomallei was amplified by PCR and reclone in pETBlue-1 vector and transformed into E. coli Tuner DE3 pLacI. BPSL2418 was overexpressed using E. coli Tuner DE3 pLacI and induced by 300μM IPTG for 4h at 37°C. Then BPS2418 purified to better than 95% purity. The pure BPSL2418 was crystallized with PEG 4000 and PEG 6000 as precipitants in several conditions. Diffraction data were collected to 1.2Å resolution. The crystals belonged to space group P2 21 21 with unit-cell parameters a = 42.24Å, b = 53.48Å, c = 60.54Å, α=γ=β= 90Å. The BPSL2418 binding MES was solved by molecular replacement with the known structure 3ksf using PHASER program. The structure is composed of six antiparallel β-strands and four α-helices and two loops. BPSL2418 shows high homology with the GAF domain fRMsrs enzymes which suggest that BPSL2418 might act as methionine sulfoxide reductase. The amino acids alignment between the fRmsrs including BPSL 2418 shows that the three cysteines that thought to catalyze the reduction are fully conserved. BPSL 2418 contains the three conserved cysteines (Cys⁷⁵, Cys⁸⁵ and Cys¹⁰⁹). The active site contains the six antiparallel β-strands and two loops where the disulfide bond formed between Cys⁷⁵ and Cys¹⁰⁹. X-ray structure of free methionine sulfoxide binding and native forms of BPSL2418 were solved to increase the understanding of the BPSL2418 catalytic mechanism.

Keywords: X-Ray Crystallography, BPSL2418, Burkholderia pseudomallei, Melioidosis

Procedia PDF Downloads 248
2703 Application of Hyperspectral Remote Sensing in Sambhar Salt Lake, A Ramsar Site of Rajasthan, India

Authors: Rajashree Naik, Laxmi Kant Sharma

Abstract:

Sambhar lake is the largest inland Salt Lake of India, declared as a Ramsar site on 23 March 1990. Due to high salinity and alkalinity condition its biodiversity richness is contributed by haloalkaliphilic flora and fauna along with the diverse land cover including waterbody, wetland, salt crust, saline soil, vegetation, scrub land and barren land which welcome large number of flamingos and other migratory birds for winter harboring. But with the gradual increase in the irrational salt extraction activities, the ecological diversity is at stake. There is an urgent need to assess the ecosystem. Advanced technology like remote sensing and GIS has enabled to look into the past, compare with the present for the future planning and management of the natural resources in a judicious way. This paper is a research work intended to present a vegetation in typical inland lake environment of Sambhar wetland using satellite data of NASA’s EO-1 Hyperion sensor launched in November 2000. With the spectral range of 0.4 to 2.5 micrometer at approximately 10nm spectral resolution with 242 bands 30m spatial resolution and 705km orbit was used to produce a vegetation map for a portion of the wetland. The vegetation map was tested for classification accuracy with a pre-existing detailed GIS wetland vegetation database. Though the accuracy varied greatly for different classes the algal communities were successfully identified which are the major sources of food for flamingo. The results from this study have practical implications for uses of spaceborne hyperspectral image data that are now becoming available. Practical limitations of using these satellite data for wetland vegetation mapping include inadequate spatial resolution, complexity of image processing procedures, and lack of stereo viewing.

Keywords: Algal community, NASA’s EO-1 Hyperion, salt-tolerant species, wetland vegetation mapping

Procedia PDF Downloads 135
2702 Microfluidic Device for Real-Time Electrical Impedance Measurements of Biological Cells

Authors: Anil Koklu, Amin Mansoorifar, Ali Beskok

Abstract:

Dielectric spectroscopy (DS) is a noninvasive, label free technique for a long term real-time measurements of the impedance spectra of biological cells. DS enables characterization of cellular dielectric properties such as membrane capacitance and cytoplasmic conductivity. We have developed a lab-on-a-chip device that uses an electro-activated microwells array for loading, DS measurements, and unloading of biological cells. We utilized from dielectrophoresis (DEP) to capture target cells inside the wells and release them after DS measurement. DEP is a label-free technique that exploits differences among dielectric properties of the particles. In detail, DEP is the motion of polarizable particles suspended in an ionic solution and subjected to a spatially non-uniform external electric field. To the best of our knowledge, this is the first microfluidic chip that combines DEP and DS to analyze biological cells using electro-activated wells. Device performance is tested using two different cell lines of prostate cancer cells (RV122, PC-3). Impedance measurements were conducted at 0.2 V in the 10 kHz to 40 MHz range with 6 s time resolution. An equivalent circuit model was developed to extract the cell membrane capacitance and cell cytoplasmic conductivity from the impedance spectra. We report the time course of the variations in dielectric properties of PC-3 and RV122 cells suspended in low conductivity medium (LCB), which enhances dielectrophoretic and impedance responses, and their response to sudden pH change from a pH of 7.3 to a pH of 5.8. It is shown that microfluidic chip allowed online measurements of dielectric properties of prostate cancer cells and the assessment of the cellular level variations under external stimuli such as different buffer conductivity and pH. Based on these data, we intend to deploy the current device for single cell measurements by fabricating separately addressable N × N electrode platforms. Such a device will allow time-dependent dielectric response measurements for individual cells with the ability of selectively releasing them using negative-DEP and pressure driven flow.

Keywords: microfluidic, microfabrication, lab on a chip, AC electrokinetics, dielectric spectroscopy

Procedia PDF Downloads 151
2701 Computational Modelling of Epoxy-Graphene Composite Adhesive towards the Development of Cryosorption Pump

Authors: Ravi Verma

Abstract:

Cryosorption pump is the best solution to achieve clean, vibration free ultra-high vacuum. Furthermore, the operation of cryosorption pump is free from the influence of electric and magnetic fields. Due to these attributes, this pump is used in the space simulation chamber to create the ultra-high vacuum. The cryosorption pump comprises of three parts (a) panel which is cooled with the help of cryogen or cryocooler, (b) an adsorbent which is used to adsorb the gas molecules, (c) an epoxy which holds the adsorbent and the panel together thereby aiding in heat transfer from adsorbent to the panel. The performance of cryosorption pump depends on the temperature of the adsorbent and hence, on the thermal conductivity of the epoxy. Therefore we have made an attempt to increase the thermal conductivity of epoxy adhesive by mixing nano-sized graphene filler particles. The thermal conductivity of epoxy-graphene composite adhesive is measured with the help of indigenously developed experimental setup in the temperature range from 4.5 K to 7 K, which is generally the operating temperature range of cryosorption pump for efficiently pumping of hydrogen and helium gas. In this article, we have presented the experimental results of epoxy-graphene composite adhesive in the temperature range from 4.5 K to 7 K. We have also proposed an analytical heat conduction model to find the thermal conductivity of the composite. In this case, the filler particles, such as graphene, are randomly distributed in a base matrix of epoxy. The developed model considers the complete spatial random distribution of filler particles and this distribution is explained by Binomial distribution. The results obtained by the model have been compared with the experimental results as well as with the other established models. The developed model is able to predict the thermal conductivity in both isotropic regions as well as in anisotropic region over the required temperature range from 4.5 K to 7 K. Due to the non-empirical nature of the proposed model, it will be useful for the prediction of other properties of composite materials involving the filler in a base matrix. The present studies will aid in the understanding of low temperature heat transfer which in turn will be useful towards the development of high performance cryosorption pump.

Keywords: composite adhesive, computational modelling, cryosorption pump, thermal conductivity

Procedia PDF Downloads 89
2700 In vitro Characterization of Mice Bone Microstructural Changes by Low-Field and High-Field Nuclear Magnetic Resonance

Authors: Q. Ni, J. A. Serna, D. Holland, X. Wang

Abstract:

The objective of this study is to develop Nuclear Magnetic Resonance (NMR) techniques to enhance bone related research applied on normal and disuse (Biglycan knockout) mice bone in vitro by using both low-field and high-field NMR simultaneously. It is known that the total amplitude of T₂ relaxation envelopes, measured by the Carr-Purcell-Meiboom-Gill NMR spin echo train (CPMG), is a representation of the liquid phase inside the pores. Therefore, the NMR CPMG magnetization amplitude can be transferred to the volume of water after calibration with the NMR signal amplitude of the known volume of the selected water. In this study, the distribution of mobile water, porosity that can be determined by using low-field (20 MHz) CPMG relaxation technique, and the pore size distributions can be determined by a computational inversion relaxation method. It is also known that the total proton intensity of magnetization from the NMR free induction decay (FID) signal is due to the water present inside the pores (mobile water), the water that has undergone hydration with the bone (bound water), and the protons in the collagen and mineral matter (solid-like protons). Therefore, the components of total mobile and bound water within bone that can be determined by low-field NMR free induction decay technique. Furthermore, the bound water in solid phase (mineral and organic constituents), especially, the dominated component of calcium hydroxyapatite (Ca₁₀(OH)₂(PO₄)₆) can be determined by using high-field (400 MHz) magic angle spinning (MAS) NMR. With MAS technique reducing NMR spectral linewidth inhomogeneous broadening and susceptibility broadening of liquid-solid mix, in particular, we can conduct further research into the ¹H and ³¹P elements and environments of bone materials to identify the locations of bound water such as OH- group within minerals and bone architecture. We hypothesize that with low-field and high-field magic angle spinning NMR can provide a more complete interpretation of water distribution, particularly, in bound water, and these data are important to access bone quality and predict the mechanical behavior of bone.

Keywords: bone, mice bone, NMR, water in bone

Procedia PDF Downloads 176
2699 Effects of Four Dietary Oils on Cholesterol and Fatty Acid Composition of Egg Yolk in Layers

Authors: A. F. Agboola, B. R. O. Omidiwura, A. Oyeyemi, E. A. Iyayi, A. S. Adelani

Abstract:

Dietary cholesterol has elicited the most public interest as it relates with coronary heart disease. Thus, humans have been paying more attention to health, thereby reducing consumption of cholesterol enriched food. Egg is considered as one of the major sources of human dietary cholesterol. However, an alternative way to reduce the potential cholesterolemic effect of eggs is to modify the fatty acid composition of the yolk. The effect of palm oil (PO), soybean oil (SO), sesame seed oil (SSO) and fish oil (FO) supplementation in the diets of layers on egg yolk fatty acid, cholesterol, egg production and egg quality parameters were evaluated in a 42-day feeding trial. One hundred and five Isa Brown laying hens of 34 weeks of age were randomly distributed into seven groups of five replicates and three birds per replicate in a completely randomized design. Seven corn-soybean basal diets (BD) were formulated: BD+No oil (T1), BD+1.5% PO (T2), BD+1.5% SO (T3), BD+1.5% SSO (T4), BD+1.5% FO (T5), BD+0.75% SO+0.75% FO (T6) and BD+0.75% SSO+0.75% FO (T7). Five eggs were randomly sampled at day 42 from each replicate to assay for the cholesterol, fatty acid profile of egg yolk and egg quality assessment. Results showed that there were no significant (P>0.05) differences observed in production performance, egg cholesterol and egg quality parameters except for yolk height, albumen height, yolk index, egg shape index, haugh unit, and yolk colour. There were no significant differences (P>0.05) observed in total cholesterol, high density lipoprotein and low density lipoprotein levels of egg yolk across the treatments. However, diets had effect (P<0.05) on TAG (triacylglycerol) and VLDL (very low density lipoprotein) of the egg yolk. The highest TAG (603.78 mg/dl) and VLDL values (120.76 mg/dl) were recorded in eggs of hens on T4 (1.5% sesame seed oil) and was similar to those on T3 (1.5% soybean oil), T5 (1.5% fish oil) and T6 (0.75% soybean oil + 0.75% fish oil). However, results revealed a significant (P<0.05) variations on eggs’ summation of polyunsaturated fatty acid (PUFA). In conclusion, it is suggested that dietary oils could be included in layers’ diets to produce designer eggs low in cholesterol and high in PUFA especially omega-3 fatty acids.

Keywords: dietary oils, egg cholesterol, egg fatty acid profile, egg quality parameters

Procedia PDF Downloads 308
2698 Transport of Inertial Finite-Size Floating Plastic Pollution by Ocean Surface Waves

Authors: Ross Calvert, Colin Whittaker, Alison Raby, Alistair G. L. Borthwick, Ton S. van den Bremer

Abstract:

Large concentrations of plastic have polluted the seas in the last half century, with harmful effects on marine wildlife and potentially to human health. Plastic pollution will have lasting effects because it is expected to take hundreds or thousands of years for plastic to decay in the ocean. The question arises how waves transport plastic in the ocean. The predominant motion induced by waves creates ellipsoid orbits. However, these orbits do not close, resulting in a drift. This is defined as Stokes drift. If a particle is infinitesimally small and the same density as water, it will behave exactly as the water does, i.e., as a purely Lagrangian tracer. However, as the particle grows in size or changes density, it will behave differently. The particle will then have its own inertia, the fluid will exert drag on the particle, because there is relative velocity, and it will rise or sink depending on the density and whether it is on the free surface. Previously, plastic pollution has all been considered to be purely Lagrangian. However, the steepness of waves in the ocean is small, normally about α = k₀a = 0.1 (where k₀ is the wavenumber and a is the wave amplitude), this means that the mean drift flows are of the order of ten times smaller than the oscillatory velocities (Stokes drift is proportional to steepness squared, whilst the oscillatory velocities are proportional to the steepness). Thus, the particle motion must have the forces of the full motion, oscillatory and mean flow, as well as a dynamic buoyancy term to account for the free surface, to determine whether inertia is important. To track the motion of a floating inertial particle under wave action requires the fluid velocities, which form the forcing, and the full equations of motion of a particle to be solved. Starting with the equation of motion of a sphere in unsteady flow with viscous drag. Terms can added then be added to the equation of motion to better model floating plastic: a dynamic buoyancy to model a particle floating on the free surface, quadratic drag for larger particles and a slope sliding term. Using perturbation methods to order the equation of motion into sequentially solvable parts allows a parametric equation for the transport of inertial finite-sized floating particles to be derived. This parametric equation can then be validated using numerical simulations of the equation of motion and flume experiments. This paper presents a parametric equation for the transport of inertial floating finite-size particles by ocean waves. The equation shows an increase in Stokes drift for larger, less dense particles. The equation has been validated using numerical solutions of the equation of motion and laboratory flume experiments. The difference in the particle transport equation and a purely Lagrangian tracer is illustrated using worlds maps of the induced transport. This parametric transport equation would allow ocean-scale numerical models to include inertial effects of floating plastic when predicting or tracing the transport of pollutants.

Keywords: perturbation methods, plastic pollution transport, Stokes drift, wave flume experiments, wave-induced mean flow

Procedia PDF Downloads 121
2697 Antioxidant Activity and Total Phenolic Content within the Aerial Parts of Artemisia absinthium

Authors: Hallal Nouria, Kharoubi Omar

Abstract:

Wormwood (Artemisia absinthium L.) is a medicinal and aromatic bitter herb, which has been used as a medicine from ancient times. It has traditionally been used as anthelmintic, choleretic, antiseptic, balsamic, depurative, digestive, diuretic, emmenagogue and in treating leukemia and sclerosis. The species was cited to be used externally as cataplasm of crushed leaves for snake and scorpion bites or decoction for wounds and sores applied locally as antiseptic and antifungal. Wormwood extract have high contents of total phenolic compounds and total flavonoids indicating that these compounds contribute to antiradical and antioxidative activity. Most of the degenerative diseases are caused by free radicals. Antioxidants are the agents responsible for scavenging free radicals. The aim of present study was to evaluate the phytochemical and in vitro antioxidant properties of Wormwood extract. DPPH assay and reducing power assay were the method adopted to study antioxidant potentials of extracts. Standard methods were used to screen preliminary phytochemistry and quantitative analysis of tannin, phenolics and flavanoids. Aqueous and alcoholic extracts were showed good antioxidant effect with IC50 ranges from 62 μg/ml for aqueous and 116μg/ml for alcoholic extracts. Phenolic compounds, tannins and flavonoids were the major phytochemicals present in both the extracts. Percentage of inhibition increased with the increased concentration of extracts. The aqueous and alcoholic extract yielded 20, 15& 3, 59 mg/g gallic acid equivalent phenolic content 2, 78 & 1,83 mg/g quercetin equivalent flavonoid and 2, 34 & 6, 40 g tannic acid equivalent tannins respectively. The aqueous and methanol extracts of the aerial parts showed a positive correlation between the total phenolic content and the antioxidant activity measured in the plant samples. The present study provides evidence that both extracts of Artemisia absinthium is a potential source of natural antioxidant.

Keywords: pharmaceutical industries, medicinal and aromatic plant, antioxidants, phenolic compounds, Artemisia absinthium

Procedia PDF Downloads 431
2696 The Gender Equality within the European Union Reconciliation of Work and Family Life Policies: Tackling Gender Inequality or Tackling Unemployment

Authors: Nazli Kazanoglu

Abstract:

Reconciliation of work and family life has been an area of interest within the academic as well as in the political debate for more than three decades. With the dramatic changes in the extent to which women and men contribute to unpaid domestic work and paid employment, the reconciliation of work and family life issues have become more prominent than ever before. And they have begun to enjoy an increased attention of policy makers both at the EU and national levels. Over the last three decades the EU has initiated numerous equality programs and strategies and roadmaps regarding reconciliation of work and family life, though particularly because of the crisis and increasing willingness of achieving the EUs target of seventy five per cent of men and women in employment by 2020, those programs, strategies and roadmaps emphasized on eradicating womens familial burdens while entering labor market and providing them as equal opportunities as their male counterparts have. Reconciliation of work and family life policies thus bit by bit moved away from the objectives with a strong commitment to ensuring gender equality towards employment objectives. This paper is thus an endeavor to look at the nature of EU reconciliation of work and family life policies from the angle of gender equality. More precisely relying on the feminist literature, this paper rests on the assumption that reconciliation of work and family policies should provide the sufficient measures indeed with a more emphasis on endorsing gender equality rather than economic concerns and prioritizes two inter-related aspects while evaluating the gender equality of reconciliation of work and family life policies. First providing free choice to women in terms of their family and work lives and second challenge the unequal division of labor at home. In that sense, it investigates the nature of the changing uses and meanings of gender equality in reconciliation of work and family life policies in different stages of the EU social policy development particularly after the introduction of European Employment Strategy which gave a tremendous importance to reconciliation of work and family life during their collaborations with other issues on the EU agenda as well as the major rationale behind their development and implementation and locates them in terms of two inter-related parameters mentioned above.

Keywords: European Union, division of unpaid work, gender equality, rhetoric of free choice

Procedia PDF Downloads 300
2695 Heuristic for Accelerating Run-Time Task Mapping in NoC-Based Heterogeneous MPSoCs

Authors: M. K. Benhaoua, A. K. Singh, A. E. H. Benyamina, A. Kumar, P. Boulet

Abstract:

In this paper, we propose a new packing strategy to find free resources for run-time mapping of application tasks on NoC-based Heterogeneous MPSoCs. The proposed strategy minimizes the task mapping time in addition to placing the communicating tasks close to each other. To evaluate our approach, a comparative study is carried out. Experiments show that our strategy provides better results when compared to latest dynamic mapping strategies reported in the literature.

Keywords: heterogeneous MPSoCs, NoC, dynamic mapping, routing

Procedia PDF Downloads 526
2694 Sonication as a Versatile Tool for Photocatalysts’ Synthesis and Intensification of Flow Photocatalytic Processes Within the Lignocellulose Valorization Concept

Authors: J. C. Colmenares, M. Paszkiewicz-Gawron, D. Lomot, S. R. Pradhan, A. Qayyum

Abstract:

This work is a report of recent selected experiments of photocatalysis intensification using flow microphotoreactors (fabricated by an ultrasound-based technique) for photocatalytic selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (PhCHO) (in the frame of the concept of lignin valorization), and the proof of concept of intensifying a flow selective photocatalytic oxidation process by acoustic cavitation. The synthesized photocatalysts were characterized by using different techniques such as UV-Vis diffuse reflectance spectroscopy, X-ray diffraction, nitrogen sorption, thermal gravimetric analysis, and transmission electron microscopy. More specifically, the work will be on: a Design and development of metal-containing TiO₂ coated microflow reactor for photocatalytic partial oxidation of benzyl alcohol: The current work introduces an efficient ultrasound-based metal (Fe, Cu, Co)-containing TiO₂ deposition on the inner walls of a perfluoroalkoxy alkanes (PFA) microtube under mild conditions. The experiments were carried out using commercial TiO₂ and sol-gel synthesized TiO₂. The rough surface formed during sonication is the site for the deposition of these nanoparticles in the inner walls of the microtube. The photocatalytic activities of these semiconductor coated fluoropolymer based microreactors were evaluated for the selective oxidation of BnOH to PhCHO in the liquid flow phase. The analysis of the results showed that various features/parameters are crucial, and by tuning them, it is feasible to improve the conversion of benzyl alcohol and benzaldehyde selectivity. Among all the metal-containing TiO₂ samples, the 0.5 at% Fe/TiO₂ (both, iron and titanium, as cheap, safe, and abundant metals) photocatalyst exhibited the highest BnOH conversion under visible light (515 nm) in a microflow system. This could be explained by the higher crystallite size, high porosity, and flake-like morphology. b. Designing/fabricating photocatalysts by a sonochemical approach and testing them in the appropriate flow sonophotoreactor towards sustainable selective oxidation of key organic model compounds of lignin: Ultrasonication (US)-assitedprecipitaion and US-assitedhydrosolvothermal methods were used for the synthesis of metal-oxide-based and metal-free-carbon-based photocatalysts, respectively. Additionally, we report selected experiments of intensification of a flow photocatalytic selective oxidation through the use of ultrasonic waves. The effort of our research is focused on the utilization of flow sonophotocatalysis for the selective transformation of lignin-based model molecules by nanostructured metal oxides (e.g., TiO₂), and metal-free carbocatalysts. A plethora of parameters that affects the acoustic cavitation phenomena, and as a result the potential of sonication were investigated (e.g. ultrasound frequency and power). Various important photocatalytic parameters such as the wavelength and intensity of the irradiated light, photocatalyst loading, type of solvent, mixture of solvents, and solution pH were also optimized.

Keywords: heterogeneous photo-catalysis, metal-free carbonaceous materials, selective redox flow sonophotocatalysis, titanium dioxide

Procedia PDF Downloads 101
2693 A Combined Fiber-Optic Surface Plasmon Resonance and Ta2O5: rGO Nanocomposite Synergistic Scheme for Trace Detection of Insecticide Fenitrothion

Authors: Ravi Kant, Banshi D. Gupta

Abstract:

The unbridled application of insecticides to enhance agricultural yield has become a matter of grave concern to both the environment and the human health and, thus pose a potential threat to sustainable development. Fenitrothion is an extensively used organophosphate insecticide whose residues are reported to be extremely toxic for birds, humans and aquatic life. A sensitive, swift and accurate detection protocol for fenitrothion is, thus, highly demanded. In this work, we report an SPR based fiber optic sensor for the detection of fenitrothion, where a nanocomposite arrangement of Ta2O5 and reduced graphene oxide (rGO) (Ta₂O₅: rGO) decorated on silver coated unclad core region of an optical fiber forms the sensing channel. A nanocomposite arrangement synergistically integrates the properties of involved components and consequently furnishes a conducive framework for sensing applications. The modification of the dielectric function of the sensing layer on exposure to fenitrothion solutions of diverse concentration forms the sensing mechanism. This modification is reflected in terms of the shift in resonance wavelength. Experimental variables such as the concentration of rGO in the nanocomposite configuration, dip time of silver coated fiber optic probe for deposition of sensing layer and influence of pH on the performance of the sensor have been optimized to extract the best performance of the sensor. SPR studies on the optimized sensing probe reveal the high sensitivity, wide operating range and good reproducibility of the fabricated sensor, which unveil the promising utility of Ta₂O₅: rGO nanocomposite framework for developing an efficient detection methodology for fenitrothion. FOSPR approach in cooperation with nanomaterials projects the present work as a beneficial approach for fenitrothion detection by imparting numerous useful advantages such as sensitivity, selectivity, compactness and cost-effectiveness.

Keywords: surface plasmon resonance, optical fiber, sensor, fenitrothion

Procedia PDF Downloads 208
2692 Importance of Prostate Volume, Prostate Specific Antigen Density and Free/Total Prostate Specific Antigen Ratio for Prediction of Prostate Cancer

Authors: Aliseydi Bozkurt

Abstract:

Objectives: Benign prostatic hyperplasia (BPH) is the most common benign disease, and prostate cancer (PC) is malign disease of the prostate gland. Transrectal ultrasound-guided biopsy (TRUS-bx) is one of the most important diagnostic tools in PC diagnosis. Identifying men at increased risk for having a biopsy detectable prostate cancer should consider prostate specific antigen density (PSAD), f/t PSA Ratio, an estimate of prostate volume. Method: We retrospectively studied 269 patients who had a prostate specific antigen (PSA) score of 4 or who had suspected rectal examination at any PSA level and received TRUS-bx between January 2015 and June 2018 in our clinic. TRUS-bx was received by 12 experienced urologists with 12 quadrants. Prostate volume was calculated prior to biopsy together with TRUS. Patients were classified as malignant and benign at the end of pathology. Age, PSA value, prostate volume in transrectal ultrasonography, corpuscle biopsy, biopsy pathology result, the number of cancer core and Gleason score were evaluated in the study. The success rates of PV, PSAD, and f/tPSA were compared in all patients and those with PSA 2.5-10 ng/mL and 10.1-30 ng/mL tp foresee prostate cancer. Result: In the present study, in patients with PSA 2.5-10 ng/ml, PV cut-off value was 43,5 mL (n=42 < 43,5 mL and n=102 > 43,5 mL) while in those with PSA 10.1-30 ng/mL prostate volüme (PV) cut-off value was found 61,5 mL (n=31 < 61,5 mL and n=36 > 61,5 mL). Total PSA values in the group with PSA 2.5-10 ng/ml were found lower (6.0 ± 1.3 vs 6.7 ± 1.7) than that with PV < 43,5 mL, this value was nearly significant (p=0,043). In the group with PSA value 10.1-30 ng/mL, no significant difference was found (p=0,117) in terms of total PSA values between the group with PV < 61,5 mL and that with PV > 61,5 mL. In the group with PSA 2.5-10 ng/ml, in patients with PV < 43,5 mL, f/t PSA value was found significantly lower compared to the group with PV > 43,5 mL (0.21 ± 0.09 vs 0.26 ± 0.09 p < 0.001 ). Similarly, in the group with PSA value of 10.1-30 ng/mL, f/t PSA value was found significantly lower in patients with PV < 61,5 mL (0.16 ± 0.08 vs 0.23 ± 0.10 p=0,003). In the group with PSA 2.5-10 ng/ml, PSAD value in patients with PV < 43,5 mL was found significantly higher compared to those with PV > 43,5 mL (0.17 ± 0.06 vs 0.10 ± 0.03 p < 0.001). Similarly, in the group with PSA value 10.1-30 ng/mL PSAD value was found significantly higher in patients with PV < 61,5 mL (0.47 ± 0.23 vs 0.17 ± 0.08 p < 0.001 ). The biopsy results suggest that in the group with PSA 2.5-10 ng/ml, in 29 of the patients with PV < 43,5 mL (69%) cancer was detected while in 13 patients (31%) no cancer was detected. While in 19 patients with PV > 43,5 mL (18,6%) cancer was found, in 83 patients (81,4%) no cancer was detected (p < 0.001). In the group with PSA value 10.1-30 ng/mL, in 21 patients with PV < 61,5 mL (67.7%) cancer was observed while only in10 patients (32.3%) no cancer was seen. In 5 patients with PV > 61,5 mL (13.9%) cancer was found while in 31 patients (86.1%) no cancer was observed (p < 0.001). Conclusions: Identifying men at increased risk for having a biopsy detectable prostate cancer should consider PSA, f/t PSA Ratio, an estimate of prostate volume. Prostate volume in PC was found lower.

Keywords: prostate cancer, prostate volume, prostate specific antigen, free/total PSA ratio

Procedia PDF Downloads 149
2691 Numerical Analysis of the Response of Thin Flexible Membranes to Free Surface Water Flow

Authors: Mahtab Makaremi Masouleh, Günter Wozniak

Abstract:

This work is part of a major research project concerning the design of a light temporary installable textile flood control structure. The motivation for this work is the great need of applying light structures for the protection of coastal areas from detrimental effects of rapid water runoff. The prime objective of the study is the numerical analysis of the interaction among free surface water flow and slender shaped pliable structures, playing a key role in safety performance of the intended system. First, the behavior of down scale membrane is examined under hydrostatic pressure by the Abaqus explicit solver, which is part of the finite element based commercially available SIMULIA software. Then the procedure to achieve a stable and convergent solution for strongly coupled media including fluids and structures is explained. A partitioned strategy is imposed to make both structures and fluids be discretized and solved with appropriate formulations and solvers. In this regard, finite element method is again selected to analyze the structural domain. Moreover, computational fluid dynamics algorithms are introduced for solutions in flow domains by means of a commercial package of Star CCM+. Likewise, SIMULIA co-simulation engine and an implicit coupling algorithm, which are available communication tools in commercial package of the Star CCM+, enable powerful transmission of data between two applied codes. This approach is discussed for two different cases and compared with available experimental records. In one case, the down scale membrane interacts with open channel flow, where the flow velocity increases with time. The second case illustrates, how the full scale flexible flood barrier behaves when a massive flotsam is accelerated towards it.

Keywords: finite element formulation, finite volume algorithm, fluid-structure interaction, light pliable structure, VOF multiphase model

Procedia PDF Downloads 186
2690 Outcomes of the Gastrocnemius Flap Performed by Orthopaedic Surgeons in Salvage Revision Knee Arthroplasty: A Retrospective Study at a Tertiary Orthopaedic Centre

Authors: Amirul Adlan, Robert McCulloch, Scott Evans, Michael Parry, Jonathan Stevenson, Lee Jeys

Abstract:

Background and Objectives: The gastrocnemius myofascial flap is used to manage soft-tissue defects over the anterior aspect of the knee in the context of a patient presenting with a sinus and periprosthetic joint infection (PJI) or extensor mechanism failure. The aim of this study was twofold: firstly, to evaluate the outcomes of gastrocnemius flaps performed by appropriately trained orthopaedic surgeons in the context of PJI and, secondly, to evaluate the infection-free survival of this patient group. Methods: We retrospectively reviewed 30 patients who underwent gastrocnemius flap reconstruction during staged revision total knee arthroplasty for prosthetic joint infection (PJI). All flaps were performed by an orthopaedic surgeon with orthoplastics training. Patients had a mean age of 68.9 years (range 50–84) and were followed up for a mean of 50.4 months (range 2–128 months). A total of 29 patients (97 %) were categorized into Musculoskeletal Infection Society (MSIS) local extremity grade 3 (greater than two compromising factors), and 52 % of PJIs were polymicrobial. The primary outcome measure was flap failure, and the secondary outcome measure was a recurrent infection. Results: Flap survival was 100% with no failures or early returns to theatre for flap problems such as necrosis or haematoma. Overall infection-free survival during the study period was 48% (13 of 27 infected cases). Using limb salvage as the outcome, 77% (23 of 30 patients) retained the limb. Infection recurrence occurred in 48% (10 patients) in the type B3 cohort and 67% (4 patients) in the type C3 cohort (p = 0.65). Conclusion: The surgical technique for a gastrocnemius myofascial flap is reliable and reproducible when performed by appropriately trained orthopaedic surgeons, even in high-risk groups. However, the risks of recurrent infection and amputation remain high within our series due to poor host and extremity factors.

Keywords: gastrocnemius flap, limb salvage, revision arthroplasty, outcomes

Procedia PDF Downloads 111
2689 Reconstruction of Complex Post Oncologic Maxillectomy Defects

Authors: Vinay Kant Shankhdhar

Abstract:

Purpose: Maxillary defects are three dimensional and require complex bone and soft tissue reconstruction. Maxillary reconstruction using fibula osteocutaneous flaps in situation requiring orbital floor, orbital wall, palatal defects, and external skin, all at the same time require special planning and multiple osteotomies. We tried to improvise our reconstruction using multiple osteotomies and skin paddle designs for fibula and Flexor Hallucis Longus Muscle. This study aims at discussing the planning and outcome in complex maxillary reconstructions using fibula flaps and soft tissue flaps with or without bone grafts. Material and Methods: From 2011 to 2017 a total of 129 Free fibula flaps were done, 67 required two or more struts, 164 Anterolateral Thigh Flaps, 11 Deep Inferior Epigastric Artery perforator flaps and 3 vertical rectus abdominis muscle flaps with iliac crest bone graft. The age range was 2 to 70 years. The reconstruction was evaluated based on the post-operative rehabilitation including orbital support (prevention of diplopia), oral diet, speech and cosmetic appearance. Results: The follow- up is from 5 years to 1 year. In this series, we observed that the common complications were the de-vascularisation of most distal segment of osteotomised fibula and native skin necrosis. Commonest area of breakdown is the medial canthal region. Plate exposure occurs most commonly at the pyriform sinus. There was extrusion of one non-vascularized bone graft. All these complications were noticed post-radiotherapy. Conclusions: The use of free fibula osteocutaneous flap gives very good results when only alveolar reconstruction is required. The reconstruction of orbital floor with extensive skin loss with post operative radiotherapy has maximum complication rate in long term follow up. A soft tissue flap with non vascularized bone graft may be the best option in such cases.

Keywords: maxilla reconstruction, fibula maxilla, post cancer maxillary reconstruction

Procedia PDF Downloads 134
2688 Kriging-Based Global Optimization Method for Bluff Body Drag Reduction

Authors: Bingxi Huang, Yiqing Li, Marek Morzynski, Bernd R. Noack

Abstract:

We propose a Kriging-based global optimization method for active flow control with multiple actuation parameters. This method is designed to converge quickly and avoid getting trapped into local minima. We follow the model-free explorative gradient method (EGM) to alternate between explorative and exploitive steps. This facilitates a convergence similar to a gradient-based method and the parallel exploration of potentially better minima. In contrast to EGM, both kinds of steps are performed with Kriging surrogate model from the available data. The explorative step maximizes the expected improvement, i.e., favors regions of large uncertainty. The exploitive step identifies the best location of the cost function from the Kriging surrogate model for a subsequent weight-biased linear-gradient descent search method. To verify the effectiveness and robustness of the improved Kriging-based optimization method, we have examined several comparative test problems of varying dimensions with limited evaluation budgets. The results show that the proposed algorithm significantly outperforms some model-free optimization algorithms like genetic algorithm and differential evolution algorithm with a quicker convergence for a given budget. We have also performed direct numerical simulations of the fluidic pinball (N. Deng et al. 2020 J. Fluid Mech.) on three circular cylinders in equilateral-triangular arrangement immersed in an incoming flow at Re=100. The optimal cylinder rotations lead to 44.0% net drag power saving with 85.8% drag reduction and 41.8% actuation power. The optimal results for active flow control based on this configuration have achieved boat-tailing mechanism by employing Coanda forcing and wake stabilization by delaying separation and minimizing the wake region.

Keywords: direct numerical simulations, flow control, kriging, stochastic optimization, wake stabilization

Procedia PDF Downloads 106
2687 Sustainable Landscape Strategies For The 21st Century Suburb

Authors: William Batson, Yunsik Song, Abel Simie

Abstract:

Recent trends in suburban design and planning have centered on economic efficiency in construction and completion. In doing so, developers, builders, and architects have bypassed free and reliable sustainable solutions to minimize the carbon footprint and improve the environment. Often, suburban areas are designed without landscape features, sidewalks, parks, adequate lighting, or walking space. Much of the design concern involves minimizing construction costs and streamlining streets and utilities. A new development in creating retention ponds to mitigate flooding and slow runoff is one step in the positive direction. However, "if you build them (suburbs), they (fauna) will come." The inevitable flora and fauna that soon propagate and take refuge within these artificial retention ponds create an additional dilemma. Architects, planners, and developers know the requirements and current strategies to provide residents and wildlife with a viable and sustainable environment. This includes habitat for hibernating animals and facilitating opportunities, especially for cold-blooded mammals. Many species that migrate to these artificial ponds struggle to survive, especially during flooding and when the water table drains below the artificial rim, preventing aquatic mammals from climbing on land. This flooding often results from large areas of impervious asphalt and concrete. These impervious surfaces retain and dispense large amounts of rainwater and contaminants that carry industrial pollutants, oil, plastics, animal waste, and fertilizers into storm drains and then deposited in these retention ponds. This paper will identify and show how simple and logical solutions are used to create a sustainable suburb and reduce the carbon footprint using landscape architectural strategies and cost-free design solutions. We will also demonstrate simple changes in the present suburban design model to provide a viable and sustainable suburb for the 21st century.

Keywords: sustainavilty, suburban, flora, fauna, carbon footprint

Procedia PDF Downloads 70
2686 Solving Mean Field Problems: A Survey of Numerical Methods and Applications

Authors: Amal Machtalay

Abstract:

In this survey, we aim to review the rapidly growing literature on numerical methods to solve different forms of mean field problems, namely mean field games (MFG), mean field controls (MFC), potential MFGs, and master equations, as well as their corresponding recent applications. Here, we distinguish two families of numerical methods: iterative methods based on mesh generation and those called mesh-free, normally related to neural networking and learning frameworks.

Keywords: mean-field games, numerical schemes, partial differential equations, complex systems, machine learning

Procedia PDF Downloads 113
2685 Alternative Housing Systems: Influence on Blood Profile of Egg-Type Chickens in Humid Tropics

Authors: Olufemi M. Alabi, Foluke A. Aderemi, Adebayo A. Adewumi, Banwo O. Alabi

Abstract:

General well-being of animals is of paramount interest in some developed countries and of global importance hence the shift onto alternative housing systems for egg-type chickens as replacement for conventional battery cage system. However, there is paucity of information on the effect of this shift on physiological status of the hens to judge their health via the blood profile. Therefore, investigation was carried out on two strains of hen kept in three different housing systems in humid tropics to evaluate changes in their blood parameters. 108, 17-weeks old super black (SBL) hens and 108, 17-weeks old super brown (SBR) hens were randomly allotted to three different intensive systems Partitioned Conventional Cage (PCC), Extended Conventional Cage (ECC) and Deep Litter System (DLS) in a randomized complete block design with 36 hens per housing system, each with three replicates. The experiment lasted 37 weeks during which blood samples were collected at 18th week of age and bi-weekly thereafter for analyses. Parameters measured are packed cell volume (PCV), hemoglobin concentration (Hb), red blood counts (RBC), white blood counts (WBC) and serum metabolites such as total protein (TP), albumin (Alb), globulin (Glb), glucose, cholesterol, urea, bilirubin, serum cortisol while blood indices such as mean corpuscular hemoglobin (MCH), mean cell volume (MCV) and mean corpuscular hemoglobin concentration (MCHC) were calculated. The hematological values of the hens were not significantly (p>0.05) affected by the housing system and strain, so also the serum metabolites except for the serum cortisol which was significantly (p<0.05) affected by the housing system only. Hens housed on PCC had higher values (20.05 ng/ml for SBL and 20.55 ng/ml for SBR) followed by hens on ECC (18.15ng/ml for SBL and 18.38ng/ml for SBL) while hens on DLS had the lowest value (16.50ng/ml for SBL and 16.00ng/ml for SBR) thereby confirming indication of stress with conventionally caged birds. Alternative housing systems can also be adopted for egg-type chickens in the humid tropics from welfare point of view with the results of this work confirming stress among caged hens.

Keywords: blood, housing, humid-tropics, layers

Procedia PDF Downloads 468
2684 Carbon-Foam Supported Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells

Authors: Albert Mufundirwa, Satoru Yoshioka, K. Ogi, Takeharu Sugiyama, George F. Harrington, Bretislav Smid, Benjamin Cunning, Kazunari Sasaki, Akari Hayashi, Stephen M. Lyth

Abstract:

Polymer electrolyte membrane fuel cells (PEMFCs) are electrochemical energy conversion devices used for portable, residential and vehicular applications due to their low emissions, high efficiency, and quick start-up characteristics. However, PEMFCs generally use expensive, Pt-based electrocatalysts as electrode catalysts. Due to the high cost and limited availability of platinum, research and development to either drastically reduce platinum loading, or replace platinum with alternative catalysts is of paramount importance. A combination of high surface area supports and nano-structured active sites is essential for effective operation of catalysts. We synthesize carbon foam supports by thermal decomposition of sodium ethoxide, using a template-free, gram scale, cheap, and scalable pyrolysis method. This carbon foam has a high surface area, highly porous, three-dimensional framework which is ideal for electrochemical applications. These carbon foams can have surface area larger than 2500 m²/g, and electron microscopy reveals that they have micron-scale cells, separated by few-layer graphene-like carbon walls. We applied this carbon foam as a platinum catalyst support, resulting in the improved electrochemical surface area and mass activity for the oxygen reduction reaction (ORR), compared to carbon black. Similarly, silver-decorated carbon foams showed higher activity and efficiency for electrochemical carbon dioxide conversion than silver-decorated carbon black. A promising alternative to Pt-catalysts for the ORR is iron-impregnated nitrogen-doped carbon catalysts (Fe-N-C). Doping carbon with nitrogen alters the chemical structure and modulates the electronic properties, allowing a degree of control over the catalytic properties. We have adapted our synthesis method to produce nitrogen-doped carbon foams with large surface area, using triethanolamine as a nitrogen feedstock, in a novel bottom-up protocol. These foams are then infiltrated with iron acetate (FeAc) and pyrolysed to form Fe-N-C foams. The resulting Fe-N-C foam catalysts have high initial activity (half-wave potential of 0.68 VRHE), comparable to that of commercially available Pt-free catalysts (e.g., NPC-2000, Pajarito Powder) in acid solution. In alkaline solution, the Fe-N-C carbon foam catalysts have a half-wave potential of 0.89 VRHE, which is higher than that of NPC-2000 by almost 10 mVRHE, and far out-performing platinum. However, the durability is still a problem at present. The lessons learned from X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements will be used to carefully design Fe-N-C catalysts for higher performance PEMFCs.

Keywords: carbon-foam, polymer electrolyte membrane fuel cells, platinum, Pt-free, Fe-N-C, ORR

Procedia PDF Downloads 180
2683 Inventory and Pollinating Role of Bees (Hymenoptera: apoidea) on Turnip (Brassica rapa L.) and Radish (Raphanus sativus L.) (Brassicaceae) in Constantine Area (Algeria)

Authors: Benachour Karima

Abstract:

Pollination is a key factor in crop production and the presence of insect pollinators, mainly wild bees, is essential for improving yields. In this work, visiting apoids of two vegetable crops, the turnip (Brassica rapa L.) and the radish (Raphanus sativus L.) (Brassicaceae) were recorded during flowering times of 2003 and 2004 in Constantine area (36°22’N 06°37’E, 660 m). The observations were conducted in a plot of approximately 308 m2 of the Institute of Nutrition, Food and Food Technology (University of Mentouri Brothers). To estimate the density of bees (per 100 flowers or m2), 07 plots (01m2 for each one) are defined from the edge of the culture and in the first two rows. From flowering and every two days, foraging insects are recorded from 09 am until 17 pm (Gmt+1).The purpose of visit (collecting nectar, pollen or both) and pollinating efficiency (estimated by the number of flowers visited per minute and the number of positive visits) were noted for the most abundant bees on flowers. The action of pollinating insects is measured by comparing seed yields of 07 plots covered with tulle with 07 other accessible to pollinators. 04 families of Apoidea: Apidae, Halictidae, Andrenidae and Megachilidae were observed on the two plants. On turnip, the honeybee is the most common visitor (on average 214visites/ m2), it is followed by the Halictidae Lasioglossum mediterraneum whose visits are less intense (20 individuals/m2). Visits by Andrenidae, represented by several species such as Andrena lagopus, A.flavipes, A.agilissima and A.rhypara were episodic. The honeybee collected mainly nectar, its visits were all potentially fertilizing (contact with stigma) and more frequent (on average 14 flowers/min. L.mediterraneum visited only 05 flrs/min, it collected mostly the two products together and all its visits were also positive. On radish, the wild bee Ceratina cucurbitina recorded the highest number of visits (on average 06 individuals/100flo wers), the Halictidae represented mainly by L.mediterraneum, and L.malachurum, L.pauxillum were less abundant. C.cucurbitina visited on average 10 flowers /min and all its visits are positive. Visits of Halictidae were less frequent (05-06 flowers/min) and not all fertilizing. Seed yield of Brassica rapa (average number of pods /plant, seeds/ pods and average weight of 1000 seeds) was significantly higher in the presence of pollinators. Similarly, the pods of caged plants gave a percentage of aborted seeds (10.3%) significantly higher than that obtained on free plants (4.12%), the pods of caged plants also gave a percentage of malformed seeds (1.9%) significantly higher than that of the free plants (0.9%). For radish, the seed yield in the presence and absence of insects are almost similar. Only the percentage of malformed seeds (3.8%) obtained from the pods of caged plants was significantly higher in comparison with pods of free plants (1.9%). Following these results, it is clear that pollinators especially bees are essential for the production and improvement of crop yields and therefore it is necessary to protect this fauna increasingly threatened.

Keywords: foraging behavior, honey bee, radish, seed yield, turnip, wild bee

Procedia PDF Downloads 213
2682 COVID-19 Infection in Children Admitted to Academic Hospitals in Central South Africa

Authors: Olive P. Khaliq, Stephen C. Brown, Boitumelo Pitso, Nomakhuwa E. Tabane

Abstract:

Context: The research focuses on the prevalence of SARS-CoV-2 infection in hospitalized children during the Omicron variant wave in South Africa, specifically in the Free State Province. Research Aim: This study aimed to investigate the prevalence of COVID-19 infection in asymptomatic, unvaccinated children during the Omicron variant wave in the Free State Province of South Africa. Methods: A prospective cross-sectional study was conducted on children aged 0-12 admitted to hospitals using nucleocapsid antibody rapid testing for SARS-CoV-2 presence. Data on parent/caregiver vaccination and patient conditions were collected. Results: 46.8% of hospitalized children tested positive for SARS-CoV-2, with the highest rates in neonates. Most infected children had unrelated conditions and were asymptomatic. The Omicron variant was characterized as highly infectious but less virulent, leading to mild disease. Theoretical Importance: The study highlights the significant SARS-CoV-2 infection rates in hospitalized children during the Omicron variant surge, emphasizing the variant's unique characteristics in causing mild or asymptomatic infections. Data Collection: Data were collected through nucleocapsid antibody rapid testing for SARS-CoV-2 and the compilation of parent/caregiver vaccination status and patient conditions. Analysis Procedures: The data were analyzed to determine the prevalence of SARS-CoV-2 infection in hospitalized children, focusing on demographics, infection rates, and associated conditions. Questions Addressed: The study addressed the prevalence of SARS-CoV-2 in hospitalized children, the impact of the Omicron variant, the asymptomatic nature of infections, and the potential role of vaccination status in transmission. Conclusion: The research revealed a high rate of SARS-CoV-2 infections among hospitalized children, mostly asymptomatic and with unrelated conditions, indicating the unique infectiousness and clinical presentation of the Omicron variant in this demographic.

Keywords: SARS-CoV-2, Omicron variant, antibodies, children, admission diagnosis

Procedia PDF Downloads 28
2681 Biosorption Kinetics, Isotherms, and Thermodynamic Studies of Copper (II) on Spirogyra sp.

Authors: Diwan Singh

Abstract:

The ability of non-living Spirogyra sp. biomass for biosorption of copper(II) ions from aqueous solutions was explored. The effect of contact time, pH, initial copper ion concentration, biosorbent dosage and temperature were investigated in batch experiments. Both the Freundlich and Langmuir Isotherms were found applicable on the experimental data (R2>0.98). Qmax obtained from the Langmuir Isotherms was found to be 28.7 mg/g of biomass. The values of Gibbs free energy (ΔGº) and enthalpy change (ΔHº) suggest that the sorption is spontaneous and endothermic at 20ºC-40ºC.

Keywords: biosorption, Spirogyra sp., contact time, pH, dose

Procedia PDF Downloads 426
2680 Nonequilibrium Effects in Photoinduced Ultrafast Charge Transfer Reactions

Authors: Valentina A. Mikhailova, Serguei V. Feskov, Anatoly I. Ivanov

Abstract:

In the last decade the nonequilibrium charge transfer have attracted considerable interest from the scientific community. Examples of such processes are the charge recombination in excited donor-acceptor complexes and the intramolecular electron transfer from the second excited electronic state. In these reactions the charge transfer proceeds predominantly in the nonequilibrium mode. In the excited donor-acceptor complexes the nuclear nonequilibrium is created by the pump pulse. The intramolecular electron transfer from the second excited electronic state is an example where the nuclear nonequilibrium is created by the forward electron transfer. The kinetics of these nonequilibrium reactions demonstrate a number of peculiar properties. Most important from them are: (i) the absence of the Marcus normal region in the free energy gap law for the charge recombination in excited donor-acceptor complexes, (ii) extremely low quantum yield of thermalized charge separated state in the ultrafast charge transfer from the second excited state, (iii) the nonexponential charge recombination dynamics in excited donor-acceptor complexes, (iv) the dependence of the charge transfer rate constant on the excitation pulse frequency. This report shows that most of these kinetic features can be well reproduced in the framework of stochastic point-transition multichannel model. The model involves an explicit description of the nonequilibrium excited state formation by the pump pulse and accounts for the reorganization of intramolecular high-frequency vibrational modes, for their relaxation as well as for the solvent relaxation. The model is able to quantitatively reproduce complex nonequilibrium charge transfer kinetics observed in modern experiments. The interpretation of the nonequilibrium effects from a unified point of view in the terms of the multichannel point transition stochastic model allows to see similarities and differences of electron transfer mechanism in various molecular donor-acceptor systems and formulates general regularities inherent in these phenomena. The nonequilibrium effects in photoinduced ultrafast charge transfer which have been studied for the last 10 years are analyzed. The methods of suppression of the ultrafast charge recombination, similarities and dissimilarities of electron transfer mechanism in different molecular donor-acceptor systems are discussed. The extremely low quantum yield of the thermalized charge separated state observed in the ultrafast charge transfer from the second excited state in the complex consisting of 1,2,4-trimethoxybenzene and tetracyanoethylene in acetonitrile solution directly demonstrates that its effectiveness can be close to unity. This experimental finding supports the idea that the nonequilibrium charge recombination in the excited donor-acceptor complexes can be also very effective so that the part of thermalized complexes is negligible. It is discussed the regularities inherent to the equilibrium and nonequilibrium reactions. Their fundamental differences are analyzed. Namely the opposite dependencies of the charge transfer rates on the dynamical properties of the solvent. The increase of the solvent viscosity results in decreasing the thermal rate and vice versa increasing the nonequilibrium rate. The dependencies of the rates on the solvent reorganization energy and the free energy gap also can considerably differ. This work was supported by the Russian Science Foundation (Grant No. 16-13-10122).

Keywords: Charge recombination, higher excited states, free energy gap law, nonequilibrium

Procedia PDF Downloads 325
2679 Comparative Efficacy of Prolene and Polyester Mesh for the Repair of Abdominal Wall Defect in Pigeons (Columba livia)

Authors: Muhammad Naveed Ali, Hamad Bin Rashid, Muhammad Arif Khan, Abdul Basit, Hafiz Muhammad Arshad

Abstract:

Abdominal defects are very common in pigeons. A new technique is known as intraabdominal mesh transplant that give better protection for herniorrhaphy. The aim of this study was to determine the performance of hernia mesh. In this study, an efficacy of two synthetic hernia mesh implants viz. conventional Prolene and a lightweight mesh monofilament polyester were assessed for the abdominal wall repair in pigeons. Twenty four healthy pigeons were selected and randomly distributed into three groups, A, B and C (n=8). In all groups, experimental laparotomy was performed; thereafter, abdominal muscles and peritoneum were sutured together, while, a 2 x 2 cm defect was created in the abdominal muscles. For onlay hernioplasty, the hernia mesh (Prolene mesh: group A; Polyester mesh: group B) was implanted over the external oblique muscles of the abdomen. In group C (control), the mesh was not implanted; instead, the laparotomy incision was closed after a herniorrhaphy. Post-operative pain wound healing, adhesion formation, histopathological findings and formation of hematoma, abscess and seroma were assessed as short-term complications. Post-operatively, pain at surgical site was significantly less (P < 0.001) in group B (Polyester mesh); wound healing was also significantly better and rapid in group B (P < 0.05) than in group A (Prolene mesh). Group B (Polyester mesh) also depicted less than 25% adhesions when assessed on the basis of a Quantitative Modified Diamond scale; a Qualitative Adhesion Tenacity scale also depicted either no adhesions or flimsy adhesions (n=2) in group B (Polyester mesh), in contrast to group A (Prolene), which manifested greater adhesion formation and presence of dense adhesions requiring blunt dissection. There were observed hematoma, seroma and abscess formations in birds treated by Prolene mesh only. Conclusively, the polyester mesh proved superior to the Prolene mesh regarding lesser adhesion, better in wound healing, and no short-term follow-up complications.

Keywords: adhesion, mesh, polyester, prolene

Procedia PDF Downloads 247
2678 Hybrid Nanostructures of Acrylonitrile Copolymers

Authors: A. Sezai Sarac

Abstract:

Acrylonitrile (AN) copolymers with typical comonomers of vinyl acetate (VAc) or methyl acrylate (MA) exhibit better mechanical behaviors than its homopolymer. To increase processability of conjugated polymer, and to obtain a hybrid nano-structure multi-stepped emulsion polymerization was applied. Such products could be used in, i.e., drug-delivery systems, biosensors, gas-sensors, electronic compounds, etc. Incorporation of a number of flexible comonomers weakens the dipolar interactions among CN and thereby decreases melting point or increases decomposition temperatures of the PAN based copolymers. Hence, it is important to consider the effect of comonomer on the properties of PAN-based copolymers. Acrylonitrile vinylacetate (AN–VAc ) copolymers have the significant effect to their thermal behavior and are also of interest as precursors in the production of high strength carbon fibers. AN is copolymerized with one or two comonomers, particularly with vinyl acetate The copolymer of AN and VAc can be used either as a plastic (VAc > 15 wt %) or as microfibers (VAc < 15 wt %). AN provides the copolymer with good processability, electrochemical and thermal stability; VAc provides the mechanical stability. The free radical copolymerization of AN and VAc copolymer and core Shell structure of polyprrole composites,and nanofibers of poly(m-anthranilic acid)/polyacrylonitrile blends were recently studied. Free radical copolymerization of acrylonitrile (AN) – with different comonomers, i.e. acrylates, and styrene was realized using ammonium persulfate (APS) in the presence of a surfactant and in-situ polymerization of conjugated polymers was performed in this reaction medium to obtain core-shell nano particles. Nanofibers of such nanoparticles were obtained by electrospinning. Morphological properties of nanofibers are investigated by scanning electron microscopy (SEM) and atomic force spectroscopy (AFM). Nanofibers are characterized using Fourier Transform Infrared - Attenuated Total Reflectance spectrometer (FTIR-ATR), Nuclear Magnetic Resonance Spectroscopy (1H-NMR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA), and Electrochemical Impedance Spectroscopy. The electrochemical Impedance results of the nanofibers were fitted to an equivalent curcuit by modelling (ECM).

Keywords: core shell nanoparticles, nanofibers, ascrylonitile copolymers, hybrid nanostructures

Procedia PDF Downloads 383