Search results for: energy efficiency assessment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18103

Search results for: energy efficiency assessment

16993 Early Childhood Education: Teachers Ability to Assess

Authors: Ade Dwi Utami

Abstract:

Pedagogic competence is the basic competence of teachers to perform their tasks as educators. The ability to assess has become one of the demands in teachers pedagogic competence. Teachers ability to assess is related to curriculum instructions and applications. This research is aimed at obtaining data concerning teachers ability to assess that comprises of understanding assessment, determining assessment type, tools and procedure, conducting assessment process, and using assessment result information. It uses mixed method of explanatory technique in which qualitative data is used to verify the quantitative data obtained through a survey. The technique of quantitative data collection is by test whereas the qualitative data collection is by observation, interview and documentation. Then, the analyzed data is processed through a proportion study technique to be categorized into high, medium and low. The result of the research shows that teachers ability to assess can be grouped into 3 namely, 2% of high, 4% of medium and 94% of low. The data shows that teachers ability to assess is still relatively low. Teachers are lack of knowledge and comprehension in assessment application. The statement is verified by the qualitative data showing that teachers did not state which aspect was assessed in learning, record children’s behavior, and use the data result as a consideration to design a program. Teachers have assessment documents yet they only serve as means of completing teachers administration for the certification program. Thus, assessment documents were not used with the basis of acquired knowledge. The condition should become a consideration of the education institution of educators and the government to improve teachers pedagogic competence, including the ability to assess.

Keywords: assessment, early childhood education, pedagogic competence, teachers

Procedia PDF Downloads 246
16992 Wind Energy Resources Assessment and Micrositting on Different Areas of Libya: The Case Study in Darnah

Authors: F. Ahwide, Y. Bouker, K. Hatem

Abstract:

This paper presents long term wind data analysis in terms of annual and diurnal variations at different areas of Libya. The data of the wind speed and direction are taken each ten minutes for a period, at least two years, are used in the analysis. ‘WindPRO’ software and Excel workbook were used for the wind statistics and energy calculations. As for Derna, average speeds are 10 m, 20 m, and 40 m, and respectively 6.57 m/s, 7.18 m/s, and 8.09 m/s. Highest wind speeds are observed at SSW, followed by S, WNW and NW sectors. Lowest wind speeds are observed between N and E sectors. Most frequent wind directions are NW and NNW. Hence, wind turbines can be installed against these directions. The most powerful sector is NW (29.4 % of total expected wind energy), followed by 19.9 % SSW, 11.9% NNW, 8.6% WNW and 8.2% S. Furthermore in Al-Maqrun: the most powerful sector is W (26.8 % of total expected wind energy), followed by 12.3 % WSW and 9.5% WNW. While in Goterria: the most powerful sector is S (14.8 % of total expected wind energy), followed by SSE, SE, and WSW. And Misalatha: the most powerful sector is S, by far represents 28.5% of the expected power, followed by SSE and SE. As for Tarhuna, it is by far SSE and SE, representing each one two times the expected energy of the third powerful sector (NW). In Al-Asaaba: it is SSE by far represents 50% of the expected power, followed by S. It can to be noted that the high frequency of the south direction winds, that come from the desert could cause a high frequency of dust episodes. This fact then, should be taken into account in order to take appropriate measures to prevent wind turbine deterioration. In Excel workbook, an estimation of annual energy yield at position of Derna, Al-Maqrun, Tarhuna, and Al-Asaaba meteorological mast has been done, considering a generic wind turbine of 1.65 MW. (mtORRES, TWT 82-1.65MW) in position of meteorological mast. Three other turbines have been tested. At 80 m, the estimation of energy yield for Derna, Al-Maqrun, Tarhuna, and Asaaba is 6.78 GWh or 3390 equivalent hours, 5.80 GWh or 2900 equivalent hours, 4.91 GWh or 2454 equivalent hours and 5.08 GWh or 2541 equivalent hours respectively. It seems a fair value in the context of a possible development of a wind energy project in the areas, considering a value of 2400 equivalent hours as an approximate limit to consider a wind warm economically profitable. Furthermore, an estimation of annual energy yield at positions of Misalatha, Azizyah and Goterria meteorological mast has been done, considering a generic wind turbine of 2 MW. We found that, at 80 m, the estimation of energy yield is 3.12 GWh or 1557 equivalent hours, 4.47 GWh or 2235 equivalent hours and 4.07GWh or 2033 respectively . It seems a very poor value in the context of possible development of a wind energy project in the areas, considering a value of 2400 equivalent hours as an approximate limit to consider a wind warm economically profitable. Anyway, more data and a detailed wind farm study would be necessary to draw conclusions.

Keywords: wind turbines, wind data, energy yield, micrositting

Procedia PDF Downloads 188
16991 Referrals to Occupational Therapy Driving Assessors: A Qualitative Study of General Practitioners

Authors: Mary Butler

Abstract:

Background: Screening programmes for older drivers in Europe (though not the UK), and in many states in the US and in Australia are based on medical assessment of fitness to drive. These programmes require physicians (including general practitioners) to carry out an assessment of fitness to drive in their offices. In 2006, New Zealand changed from doing on-road driving tests with all older drivers from the age of 80, to a screening programme that uses medical assessment of fitness to drive only. Aim: This study set out to understand the experience of New Zealand GPs as they manage the process of medical assessment of fitness to drive assessments for older people. In particular, it aimed to establish how GPs understand the role of specialist driving assessment and rehabilitation carried out by occupational therapists. Design and setting: The study used an interpretive descriptive approach to analyze data from ten interviews with GPs in New Zealand. Results: The results indicated that GPs lack understanding about how occupational therapists can assist their patients, and tend to refer only when there is a disagreement with the patient. Conclusion: There are problems with the medical assessment of fitness to drive carried out by GPs, and there is a need for a more comprehensive community approach to driving cessation. Patients, families and the multidisciplinary team all have a role in deciding when driving cessation should occur. Occupational therapists have a particular responsibility for strategic leadership in this area of practice.

Keywords: assessment, driving, older people, occupational therapy

Procedia PDF Downloads 139
16990 Biochemical Approach to Renewable Energy: Enhancing Students' Perception and Understanding of Science of Energy through Integrated Hands-On Laboratory

Authors: Samina Yasmin, Anzar Khaliq, Zareen Tabassum

Abstract:

Acute power shortage in Pakistan requires an urgent attention to take preliminary steps to spread energy awareness at all levels. One such initiative is taken at Habib University (HU), Pakistan, through renewable energy course, one of the core offerings, where students are trained to investigate various aspects of renewable energy concepts. The course is offered to all freshmen enrolled at HU regardless of their academic backgrounds and degree programs. A four-credit modular course includes both theory and laboratory elements. Hands-on laboratories play an important role in science classes, particularly to enhance the motivation and deep understanding of energy science. A set of selected hands-on activities included in course introduced students to explore the latest developments in the field of renewable energy such as dye-sensitized solar cells, gas chromatography, global warming, climate change, fuel cell energy and power of biomass etc. These projects not only helped HU freshmen to build on energy fundamentals but also provided them greater confidence in investigating, questioning and experimenting with renewable energy related conceptions. A feedback survey arranged during and end of term revealed the effectiveness of the hands-on laboratory to enhance the common understanding of real world problems related to energy such as awareness of energy saving, the level of concern about global climate change, environmental pollution and science of energy behind the energy usage.

Keywords: biochemical approaches, energy curriculum, hands-on laboratory, renewable energy

Procedia PDF Downloads 256
16989 Cleaner Production Options for Fishery Wastes around Lake Tana-Ethiopia

Authors: Demisash, Abate Getnet, Gudisa, Ababo Geleta, Daba, Berhane Olani

Abstract:

As consumption trends of fish are rising in Ethiopia, assessment of the environmental performance of Fisheries becomes vital. Hence, Cleaner Production Assessment was conducted on Lake Tana No.1 Fish Supply Association. This paper focuses on determining the characteristics, quantity, and setting up cleaner production options for the site with the experimental investigation. The survey analysis showed that illegal waste dumping in Lake Tana is common practice in the area, and some of the main reasons raised were they have no option than doing this for dis-charging fish wastes. Quantifying a fish waste by examination of records at the point of generation resulted in a generation rate of 72,822.61 kg per year, which is a significant amount of waste and needs management system. The result of the proximate analysis showed high free fat content of about 12.33%, and this was a good candidate for the production of biodiesel that has been set as an option for fish waste utilization. Among the different waste management options, waste reduction by product optimization, which involves biodiesel production, was chosen as a potential method. Laboratory scale experiments were performed to produce a renewable energy source from the wastes. The resulting biodiesel was characterized and found to have a density of 0.756kg/L, viscosity 0.24p, and 153°C flashpoints, which shows the product has values in compliance with the American Society for Testing and Materials (ASTM) standards.

Keywords: biodiesel, cleaner production, renewable energy, waste management

Procedia PDF Downloads 151
16988 Effect of Birks Constant and Defocusing Parameter on Triple-to-Double Coincidence Ratio Parameter in Monte Carlo Simulation-GEANT4

Authors: Farmesk Abubaker, Francesco Tortorici, Marco Capogni, Concetta Sutera, Vincenzo Bellini

Abstract:

This project concerns with the detection efficiency of the portable triple-to-double coincidence ratio (TDCR) at the National Institute of Metrology of Ionizing Radiation (INMRI-ENEA) which allows direct activity measurement and radionuclide standardization for pure-beta emitter or pure electron capture radionuclides. The dependency of the simulated detection efficiency of the TDCR, by using Monte Carlo simulation Geant4 code, on the Birks factor (kB) and defocusing parameter has been examined especially for low energy beta-emitter radionuclides such as 3H and 14C, for which this dependency is relevant. The results achieved in this analysis can be used for selecting the best kB factor and the defocusing parameter for computing theoretical TDCR parameter value. The theoretical results were compared with the available ones, measured by the ENEA TDCR portable detector, for some pure-beta emitter radionuclides. This analysis allowed to improve the knowledge of the characteristics of the ENEA TDCR detector that can be used as a traveling instrument for in-situ measurements with particular benefits in many applications in the field of nuclear medicine and in the nuclear energy industry.

Keywords: Birks constant, defocusing parameter, GEANT4 code, TDCR parameter

Procedia PDF Downloads 148
16987 Environmental Sustainability and Energy Consumption: The Role of Financial Development in OPEC-1 Countries

Authors: Isah Wada

Abstract:

The current research investigates the role of financial development in an environmental sustainability-energy consumption nexus for OPEC-1 member countries. The empirical findings suggest that financial development increases environmental sustainability but energy consumption and real output expansion diminishes environmental sustainability, generally. Thus, whilst real output and financial development accelerates energy consumption, environmental sustainability quality diminishes clean energy initiatives. Even more so, energy consumption and financial development stimulates real output growth. The result empirically demonstrates that policy advocates must address broader issues relating to financial development whilst seeking to achieve environmental sustainability due largely to energy consumption.

Keywords: energy consumption, environmental sustainability, financial development, OPEC, real output

Procedia PDF Downloads 195
16986 Kazakh Language Assessment in a New Multilingual Kazakhstan

Authors: Karlygash Adamova

Abstract:

This article is focused on the KazTest as one of the most important high-stakes tests and the key tool in Kazakh language assessment. The research will also include the brief introduction to the language policy in Kazakhstan. Particularly, it is going to be changed significantly and turn from bilingualism (Kazakh, Russian) to multilingual policy (three languages - Kazakh, Russian, English). Therefore, the current status of the abovementioned languages will be described. Due to the various educational reforms in the country, the language evaluation system should also be improved and moderated. The research will present the most significant test of Kazakhstan – the KazTest, which is aimed to evaluate the Kazakh language proficiency. Assessment is an ongoing process that encompasses a wide area of knowledge upon the productive performance of the learners. Test is widely defined as a standardized or standard method of research, testing, diagnostics, verification, etc. The two most important characteristics of any test, as the main element of the assessment - validity and reliability - will also be described in this paper. Therefore, the preparation and design of the test, which is assumed to be an indicator of knowledge, and it is highly important to take into account all these properties.

Keywords: multilingualism, language assessment, testing, language policy

Procedia PDF Downloads 137
16985 The Appropriate Number of Test Items That a Classroom-Based Reading Assessment Should Include: A Generalizability Analysis

Authors: Jui-Teng Liao

Abstract:

The selected-response (SR) format has been commonly adopted to assess academic reading in both formal and informal testing (i.e., standardized assessment and classroom assessment) because of its strengths in content validity, construct validity, as well as scoring objectivity and efficiency. When developing a second language (L2) reading test, researchers indicate that the longer the test (e.g., more test items) is, the higher reliability and validity the test is likely to produce. However, previous studies have not provided specific guidelines regarding the optimal length of a test or the most suitable number of test items or reading passages. Additionally, reading tests often include different question types (e.g., factual, vocabulary, inferential) that require varying degrees of reading comprehension and cognitive processes. Therefore, it is important to investigate the impact of question types on the number of items in relation to the score reliability of L2 reading tests. Given the popularity of the SR question format and its impact on assessment results on teaching and learning, it is necessary to investigate the degree to which such a question format can reliably measure learners’ L2 reading comprehension. The present study, therefore, adopted the generalizability (G) theory to investigate the score reliability of the SR format in L2 reading tests focusing on how many test items a reading test should include. Specifically, this study aimed to investigate the interaction between question types and the number of items, providing insights into the appropriate item count for different types of questions. G theory is a comprehensive statistical framework used for estimating the score reliability of tests and validating their results. Data were collected from 108 English as a second language student who completed an English reading test comprising factual, vocabulary, and inferential questions in the SR format. The computer program mGENOVA was utilized to analyze the data using multivariate designs (i.e., scenarios). Based on the results of G theory analyses, the findings indicated that the number of test items had a critical impact on the score reliability of an L2 reading test. Furthermore, the findings revealed that different types of reading questions required varying numbers of test items for reliable assessment of learners’ L2 reading proficiency. Further implications for teaching practice and classroom-based assessments are discussed.

Keywords: second language reading assessment, validity and reliability, Generalizability theory, Academic reading, Question format

Procedia PDF Downloads 88
16984 Efficiency of the Slovak Commercial Banks Applying the DEA Window Analysis

Authors: Iveta Řepková

Abstract:

The aim of this paper is to estimate the efficiency of the Slovak commercial banks employing the Data Envelopment Analysis (DEA) window analysis approach during the period 2003-2012. The research is based on unbalanced panel data of the Slovak commercial banks. Undesirable output was included into analysis of banking efficiency. It was found that most efficient banks were Postovabanka, UniCredit Bank and Istrobanka in CCR model and the most efficient banks were Slovenskasporitelna, Istrobanka and UniCredit Bank in BCC model. On contrary, the lowest efficient banks were found Privatbanka and CitiBank. We found that the largest banks in the Slovak banking market were lower efficient than medium-size and small banks. Results of the paper is that during the period 2003-2008 the average efficiency was increasing and then during the period 2010-2011 the average efficiency decreased as a result of financial crisis.

Keywords: data envelopment analysis, efficiency, Slovak banking sector, window analysis

Procedia PDF Downloads 357
16983 Numerical Simulation of a Point Absorber Wave Energy Converter Using OpenFOAM in Indian Scenario

Authors: Pooja Verma, Sumana Ghosh

Abstract:

There is a growing need for alternative way of power generation worldwide. The reason can be attributed to limited resources of fossil fuels, environmental pollution, increasing cost of conventional fuels, and lower efficiency of conversion of energy in existing systems. In this context, one of the potential alternatives for power generation is wave energy. However, it is difficult to estimate the amount of electrical energy generation in an irregular sea condition by experiment and or analytical methods. Therefore in this work, a numerical wave tank is developed using the computational fluid dynamics software Open FOAM. In this software a specific utility known as waves2Foam utility is being used to carry out the simulation work. The computational domain is a tank of dimension: 5m*1.5m*1m with a floating object of dimension: 0.5m*0.2m*0.2m. Regular waves are generated at the inlet of the wave tank according to Stokes second order theory. The main objective of the present study is to validate the numerical model against existing experimental data. It shows a good matching with the existing experimental data of floater displacement. Later the model is exploited to estimate energy extraction due to the movement of such a point absorber in real sea conditions. Scale down the wave properties like wave height, wave length, etc. are used as input parameters. Seasonal variations are also considered.

Keywords: OpenFOAM, numerical wave tank, regular waves, floating object, point absorber

Procedia PDF Downloads 352
16982 A Microwave Heating Model for Endothermic Reaction in the Cement Industry

Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Microwave technology has been gaining importance in contributing to decarbonization processes in high energy demand industries. Despite the several numerical models presented in the literature, a proper Verification and Validation exercise is still lacking. This is important and required to evaluate the physical process model accuracy and adequacy. Another issue addresses impedance matching, which is an important mechanism used in microwave experiments to increase electromagnetic efficiency. Such mechanism is not available in current computational tools, thus requiring an external numerical procedure. A numerical model was implemented to study the continuous processing of limestone with microwave heating. This process requires the material to be heated until a certain temperature that will prompt a highly endothermic reaction. Both a 2D and 3D model were built in COMSOL Multiphysics to solve the two-way coupling between Maxwell and Energy equations, along with the coupling between both heat transfer phenomena and limestone endothermic reaction. The 2D model was used to study and evaluate the required numerical procedure, being also a benchmark test, allowing other authors to implement impedance matching procedures. To achieve this goal, a controller built in MATLAB was used to continuously matching the cavity impedance and predicting the required energy for the system, thus successfully avoiding energy inefficiencies. The 3D model reproduces realistic results and therefore supports the main conclusions of this work. Limestone was modeled as a continuous flow under the transport of concentrated species, whose material and kinetics properties were taken from literature. Verification and Validation of the coupled model was taken separately from the chemical kinetic model. The chemical kinetic model was found to correctly describe the chosen kinetic equation by comparing numerical results with experimental data. A solution verification was made for the electromagnetic interface, where second order and fourth order accurate schemes were found for linear and quadratic elements, respectively, with numerical uncertainty lower than 0.03%. Regarding the coupled model, it was demonstrated that the numerical error would diverge for the heat transfer interface with the mapped mesh. Results showed numerical stability for the triangular mesh, and the numerical uncertainty was less than 0.1%. This study evaluated limestone velocity, heat transfer, and load influence on thermal decomposition and overall process efficiency. The velocity and heat transfer coefficient were studied with the 2D model, while different loads of material were studied with the 3D model. Both models demonstrated to be highly unstable when solving non-linear temperature distributions. High velocity flows exhibited propensity to thermal runways, and the thermal efficiency showed the tendency to stabilize for the higher velocities and higher filling ratio. Microwave efficiency denoted an optimal velocity for each heat transfer coefficient, pointing out that electromagnetic efficiency is a consequence of energy distribution uniformity. The 3D results indicated the inefficient development of the electric field for low filling ratios. Thermal efficiencies higher than 90% were found for the higher loads and microwave efficiencies up to 75% were accomplished. The 80% fill ratio was demonstrated to be the optimal load with an associated global efficiency of 70%.

Keywords: multiphysics modeling, microwave heating, verification and validation, endothermic reactions modeling, impedance matching, limestone continuous processing

Procedia PDF Downloads 140
16981 Intellectual Property Risk Assessment in Planning Market Entry to China

Authors: Qing Cao

Abstract:

Generally speaking, China has a relatively high level of intellectual property (IP) infringement. Risk assessment is indispensable in the strategic planning process. To complement the current literature in international business, the paper sheds the light on how to assess IP risk for foreign companies in planning market entry to China. Evaluating internal and external IP environment, proposed in the paper, consists of external analysis, internal analysis and further internal analysis. Through position the company’s IP environment, the risk assessment approach enables the foreign companies to either build the corresponding IP strategies or abort the entry plan beforehand to minimize the IP risks.

Keywords: intellectual property, IP environment, risk assessment

Procedia PDF Downloads 560
16980 Unified Assessment of Power System Reserve-based Reliability Levels

Authors: B. M. Alshammari, M. A. El-Kady

Abstract:

This paper presents a unified framework for assessment of reserve-based reliability levels in electric power systems. The unified approach is based on reserve-based analysis and assessment of the relationship between available generation capacities and required demand levels. The developed approach takes into account the load variations as well as contingencies which occur randomly causing some generation and/or transmission capacities to be lost (become unavailable). The calculated reserve based indices, which are important to assess the reserve capabilities of the power system for various operating scenarios are therefore probabilistic in nature. They reflect the fact that neither the load levels nor the generation or transmission capacities are known with absolute certainty. They are rather subjects to random variations and consequently. The calculated reserve-based reliability indices are all subjects to random variations where only expected values of these indices can be evaluated. This paper presents a unified approach to reserve-based reliability assessment of power systems using various reserve assessment criteria. Practical applications are also presented for demonstration purposes to the Saudi electricity power grid.

Keywords: assessment, power system, reserve, reliability

Procedia PDF Downloads 617
16979 Navigating the Assessment Landscape in English Language Teaching: Strategies, Challengies and Best Practices

Authors: Saman Khairani

Abstract:

Assessment is a pivotal component of the teaching and learning process, serving as a critical tool for evaluating student progress, diagnosing learning needs, and informing instructional decisions. In the context of English Language Teaching (ELT), effective assessment practices are essential to promote meaningful learning experiences and foster continuous improvement in language proficiency. This paper delves into various assessment strategies, explores associated challenges, and highlights best practices for assessing student learning in ELT. The paper begins by examining the diverse forms of assessment, including formative assessments that provide timely feedback during the learning process and summative assessments that evaluate overall achievement. Additionally, alternative methods such as portfolios, self-assessment, and peer assessment play a significant role in capturing various aspects of language learning. Aligning assessments with learning objectives is crucial. Educators must ensure that assessment tasks reflect the desired language skills, communicative competence, and cultural awareness. Validity, reliability, and fairness are essential considerations in assessment design. Challenges in assessing language skills—such as speaking, listening, reading, and writing—are discussed, along with practical solutions. Constructive feedback, tailored to individual learners, guides their language development. In conclusion, this paper synthesizes research findings and practical insights, equipping ELT practitioners with the knowledge and tools necessary to design, implement, and evaluate effective assessment practices. By fostering meaningful learning experiences, educators contribute significantly to learners’ language proficiency and overall success.

Keywords: ELT, formative, summative, fairness, validity, reliability

Procedia PDF Downloads 56
16978 Energy Efficiency of Secondary Refrigeration with Phase Change Materials and Impact on Greenhouse Gases Emissions

Authors: Michel Pons, Anthony Delahaye, Laurence Fournaison

Abstract:

Secondary refrigeration consists of splitting large-size direct-cooling units into volume-limited primary cooling units complemented by secondary loops for transporting and distributing cold. Such a design reduces the refrigerant leaks, which represents a source of greenhouse gases emitted into the atmosphere. However, inserting the secondary circuit between the primary unit and the ‘users’ heat exchangers (UHX) increases the energy consumption of the whole process, which induces an indirect emission of greenhouse gases. It is thus important to check whether that efficiency loss is sufficiently limited for the change to be globally beneficial to the environment. Among the likely secondary fluids, phase change slurries offer several advantages: they transport latent heat, they stabilize the heat exchange temperature, and the formerly evaporators still can be used as UHX. The temperature level can also be adapted to the desired cooling application. Herein, the slurry {ice in mono-propylene-glycol solution} (melting temperature Tₘ of 6°C) is considered for food preservation, and the slurry {mixed hydrate of CO₂ + tetra-n-butyl-phosphonium-bromide in aqueous solution of this salt + CO₂} (melting temperature Tₘ of 13°C) is considered for air conditioning. For the sake of thermodynamic consistency, the analysis encompasses the whole process, primary cooling unit plus secondary slurry loop, and the various properties of the slurries, including their non-Newtonian viscosity. The design of the whole process is optimized according to the properties of the chosen slurry and under explicit constraints. As a first constraint, all the units must deliver the same cooling power to the user. The other constraints concern the heat exchanges areas, which are prescribed, and the flow conditions, which prevent deposition of the solid particles transported in the slurry, and their agglomeration. Minimization of the total energy consumption leads to the optimal design. In addition, the results are analyzed in terms of exergy losses, which allows highlighting the couplings between the primary unit and the secondary loop. One important difference between the ice-slurry and the mixed-hydrate one is the presence of gaseous carbon dioxide in the latter case. When the mixed-hydrate crystals melt in the UHX, CO₂ vapor is generated at a rate that depends on the phase change kinetics. The flow in the UHX, and its heat and mass transfer properties are significantly modified. This effect has never been investigated before. Lastly, inserting the secondary loop between the primary unit and the users increases the temperature difference between the refrigerated space and the evaporator. This results in a loss of global energy efficiency, and therefore in an increased energy consumption. The analysis shows that this loss of efficiency is not critical in the first case (Tₘ = 6°C), while the second case leads to more ambiguous results, partially because of the higher melting temperature.The consequences in terms of greenhouse gases emissions are also analyzed.

Keywords: exergy, hydrates, optimization, phase change material, thermodynamics

Procedia PDF Downloads 131
16977 Hydrodynamic Analysis on the Body of a Solar Autonomous Underwater Vehicle by Numerical Method

Authors: Mohammad Moonesun, Ehsan Asadi Asrami, Julia Bodnarchuk

Abstract:

In the case of Solar Autonomous Underwater Vehicle, which uses photovoltaic panels to provide its required power, due to limitation of energy, accurate estimation of resistance and energy has major sensitivity. In this work, hydrodynamic calculations by numerical method for a solar autonomous underwater vehicle equipped by two 50 W photovoltaic panels has been studied. To evaluate the required power and energy, hull hydrodynamic resistance in several velocities should be taken into account. To do this assessment, the ANSYS FLUENT 18 applied as Computational Fluid Dynamics (CFD) tool that solves Reynolds Average Navier Stokes (RANS) equations around AUV hull, and K-ω SST is used as turbulence model. To validate of solution method and modeling approach, the model of Myring submarine that it’s experimental data was available, is simulated. There is good agreement between numerical and experimental results. Also, these results showed that the K-ω SST Turbulence model is an ideal method to simulate the AUV motion in low velocities.

Keywords: underwater vehicle, hydrodynamic resistance, numerical modelling, CFD, RANS

Procedia PDF Downloads 205
16976 De Broglie Wavelength Defined by the Rest Energy E0 and Its Velocity

Authors: K. Orozović, B. Balon

Abstract:

In this paper, we take a different approach to de Broglie wavelength, as we relate it to relativistic physics. The quantum energy of the photon radiated by a body with de Broglie wavelength, as it moves with velocity v, can be defined within relativistic physics by rest energy E₀. In this way, we can show the connection between the quantum of radiation energy of the body and the rest of energy E₀ and thus combine what has been incompatible so far, namely relativistic and quantum physics. So, here we discuss the unification of relativistic and quantum physics by introducing the factor k that is analog to the Lorentz factor in Einstein's theory of relativity.

Keywords: de Brogli wavelength, relativistic physics, rest energy, quantum physics

Procedia PDF Downloads 156
16975 Detailed Feasibility and Design of a Grid-Tied PV and Building Integrated Photovoltaic System for a Commercial Healthcare Building

Authors: Muhammad Ali Tariq

Abstract:

Grid-connected PV systems have drawn tremendous attention of researchers in the past recent years. The report elucidates the development of efficient and stable solar PV energy conversion systems after thorough analysis at various facets like PV module characteristics, its arrangement, power electronics and MPPT topologies, the stability of the grid, and economic viability over its lifetime. This report and feasibility study will try to bring all optimizing approaches and design calculations which are required for generating energy from BIPV and roof-mounted solar PV in a convenient, sustainable, and user-friendly way.

Keywords: building integrated photovoltaic system, grid integration, solar resource assessment, return on investment, multi MPPT-inverter, levelised cost of electricity

Procedia PDF Downloads 139
16974 Forster Energy Transfer and Optoelectronic Properties of (PFO/TiO2)/Fluorol 7GA Hybrid Thin Films

Authors: Bandar Ali Al-Asbahi, Mohammad Hafizuddin Haji Jumali

Abstract:

Forster energy transfer between poly (9,9'-di-n-octylfluorenyl-2,7-diyl) (PFO)/TiO2 nanoparticles (NPs) as a donor and Fluorol 7GA as an acceptor has been studied. The energy transfer parameters were calculated by using mathematical models. The dominant mechanism responsible for the energy transfer between the donor and acceptor molecules was Forster-type, as evidenced by large values of quenching rate constant, energy transfer rate constant and critical distance of energy transfer. Moreover, these composites which were used as an emissive layer in organic light emitting diodes, were investigated in terms of current density–voltage and electroluminescence spectra.

Keywords: energy transfer parameters, forster-type, electroluminescence, organic light emitting diodes

Procedia PDF Downloads 427
16973 Real-Time Optimisation and Minimal Energy Use for Water and Environment Efficient Irrigation

Authors: Kanya L. Khatri, Ashfaque A. Memon, Rod J. Smith, Shamas Bilal

Abstract:

The viability and sustainability of crop production is currently threatened by increasing water scarcity. Water scarcity problems can be addressed through improved water productivity and the options usually presumed in this context are efficient water use and conversion of surface irrigation to pressurized systems. By replacing furrow irrigation with drip or centre pivot systems, the water efficiency can be improved by up to 30 to 45%. However, the installation and application of pumps and pipes, and the associated fuels needed for these alternatives increase energy consumption and cause significant greenhouse gas emissions. Hence, a balance between the improvement in water use and the potential increase in energy consumption is required keeping in view adverse impact of increased carbon emissions on the environment. When surface water is used, pressurized systems increase energy consumption substantially, by between 65% to 75%, and produce greenhouse gas emissions around 1.75 times higher than that of gravity based irrigation. With gravity based surface irrigation methods the energy consumption is assumed to be negligible. This study has shown that a novel real-time infiltration model REIP has enabled implementation of real-time optimization and control of surface irrigation and surface irrigation with real-time optimization has potential to bring significant improvements in irrigation performance along with substantial water savings of 2.92 ML/ha which is almost equivalent to that given by pressurized systems. Thus real-time optimization and control offers a modern, environment friendly and water efficient system with close to zero increase in energy consumption and minimal greenhouse gas emissions.

Keywords: pressurised irrigation, carbon emissions, real-time, environmentally-friendly, REIP

Procedia PDF Downloads 503
16972 Robust Heart Rate Estimation from Multiple Cardiovascular and Non-Cardiovascular Physiological Signals Using Signal Quality Indices and Kalman Filter

Authors: Shalini Rankawat, Mansi Rankawat, Rahul Dubey, Mazad Zaveri

Abstract:

Physiological signals such as electrocardiogram (ECG) and arterial blood pressure (ABP) in the intensive care unit (ICU) are often seriously corrupted by noise, artifacts, and missing data, which lead to errors in the estimation of heart rate (HR) and incidences of false alarm from ICU monitors. Clinical support in ICU requires most reliable heart rate estimation. Cardiac activity, because of its relatively high electrical energy, may introduce artifacts in Electroencephalogram (EEG), Electrooculogram (EOG), and Electromyogram (EMG) recordings. This paper presents a robust heart rate estimation method by detection of R-peaks of ECG artifacts in EEG, EMG & EOG signals, using energy-based function and a novel Signal Quality Index (SQI) assessment technique. SQIs of physiological signals (EEG, EMG, & EOG) were obtained by correlation of nonlinear energy operator (teager energy) of these signals with either ECG or ABP signal. HR is estimated from ECG, ABP, EEG, EMG, and EOG signals from separate Kalman filter based upon individual SQIs. Data fusion of each HR estimate was then performed by weighing each estimate by the Kalman filters’ SQI modified innovations. The fused signal HR estimate is more accurate and robust than any of the individual HR estimate. This method was evaluated on MIMIC II data base of PhysioNet from bedside monitors of ICU patients. The method provides an accurate HR estimate even in the presence of noise and artifacts.

Keywords: ECG, ABP, EEG, EMG, EOG, ECG artifacts, Teager-Kaiser energy, heart rate, signal quality index, Kalman filter, data fusion

Procedia PDF Downloads 696
16971 Bounds on the Laplacian Vertex PI Energy

Authors: Ezgi Kaya, A. Dilek Maden

Abstract:

A topological index is a number related to graph which is invariant under graph isomorphism. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds. Let G be a graph with n vertices and m edges. For a given edge uv, the quantity nu(e) denotes the number of vertices closer to u than v, the quantity nv(e) is defined analogously. The vertex PI index defined as the sum of the nu(e) and nv(e). Here the sum is taken over all edges of G. The energy of a graph is defined as the sum of the eigenvalues of adjacency matrix of G and the Laplacian energy of a graph is defined as the sum of the absolute value of difference of laplacian eigenvalues and average degree of G. In theoretical chemistry, the π-electron energy of a conjugated carbon molecule, computed using the Hückel theory, coincides with the energy. Hence results on graph energy assume special significance. The Laplacian matrix of a graph G weighted by the vertex PI weighting is the Laplacian vertex PI matrix and the Laplacian vertex PI eigenvalues of a connected graph G are the eigenvalues of its Laplacian vertex PI matrix. In this study, Laplacian vertex PI energy of a graph is defined of G. We also give some bounds for the Laplacian vertex PI energy of graphs in terms of vertex PI index, the sum of the squares of entries in the Laplacian vertex PI matrix and the absolute value of the determinant of the Laplacian vertex PI matrix.

Keywords: energy, Laplacian energy, laplacian vertex PI eigenvalues, Laplacian vertex PI energy, vertex PI index

Procedia PDF Downloads 245
16970 An Investigation on the Energy Absorption of Sandwich Panels With Aluminium Foam Core under Perforation Test

Authors: Minoo Tavakoli, Mojtaba Zebarjad, Golestanipour

Abstract:

Metallic sandwich structures with aluminum foam core are good energy absorbers. In this paper, perforation test were carried out on different samples to study energy absorption. In the experiments, effect of several parameters, i.e. skin thickness and thickness of foam core, on the energy absorption, delamination zone of back faces and deformation strain(φ) are discussed. Results show that increasing plates thickness will results in more absorbed energy and delamination. Moreover, thickening foam core has the same effect.

Keywords: sandwich panel, aluminium foam, perforation, energy absorption

Procedia PDF Downloads 423
16969 Transient and Persistent Efficiency Estimation for Electric Grid Utilities Based on Meta-Frontier: Comparative Analysis of China and Japan

Authors: Bai-Chen Xie, Biao Li

Abstract:

With the deepening of international exchanges and investment, the international comparison of power grid firms has become the focus of regulatory authorities. Ignoring the differences in the economic environment, resource endowment, technology, and other aspects of different countries or regions may lead to efficiency bias. Based on the Meta-frontier model, this paper divides China and Japan into two groups by using the data of China and Japan from 2006 to 2020. While preserving the differences between the two countries, it analyzes and compares the efficiency of the transmission and distribution industries of the two countries. Combined with the four-component stochastic frontier model, the efficiency is divided into transient and persistent efficiency. We found that there are obvious differences between the transmission and distribution sectors in China and Japan. On the one hand, the inefficiency of the two countries is mostly caused by long-term and structural problems. The key to improve the efficiency of the two countries is to focus more on solving long-term and structural problems. On the other hand, the long-term and structural problems that cause the inefficiency of the two countries are not the same. Quality factors have different effects on the efficiency of the two countries, and this different effect is captured by the common frontier model but is offset in the overall model. Based on these findings, this paper proposes some targeted policy recommendations.

Keywords: transmission and distribution industries, transient efficiency, persistent efficiency, meta-frontier, international comparison

Procedia PDF Downloads 100
16968 Integrated Steering Method for Mitigating Performance Degradation in Six-Wheel Robot Caused by Obstacle Traversing

Authors: Saleh Kasiri Bidhendi, Shiva Tashakori

Abstract:

With the increasing application of six-wheel robots in various industries, including agriculture and environmental monitoring, there is a growing demand for efficient and reliable control systems that can improve manoeuvrability and at the same time reduce energy consumption. Moving on uneven terrains, various factors such as obstacles or soil heterogeneity can cause the robot to slip. There is limited research addressing this issue. Although the robot is supposed to track a predetermined path, sudden lateral deviation necessitates path planning. To further address this issue, explicit steering is added by activating actuators on steerable wheels, while the SMC controller still commands differential traction forces on all wheels. This integration improves energy efficiency and obstacle traversability while maintaining the merits of skid-steering, such as tight turning manoeuvrability. However, achieving the desired steer angles presents certain challenges. Inverse kinematics was initially employed to achieve the needed steering angles from the desired position, but this approach led to excessive steering without yawing the body. Switching to desired velocity values instead of position limited over-steering but caused zero lateral velocity on horizontal paths, which was problematic for unforeseen skidding. To overcome this, a proportional controller has been employed, using lateral error as its input and providing a proportional yaw angle as output, the P-controller contributes to modifying the steering angles. The controller's robustness has been verified through sensitivity analyses under critical speeds and turning radius conditions. Our findings offer valuable insights into designing more efficient steering controls for rocker-bogie mechanisms in challenging situations, emphasizing the importance of reducing energy¬ consumption.

Keywords: six-wheel robots, inverse kinematics, integrated steering, path following, manoeuvrability, energy efficiency, uneven terrains

Procedia PDF Downloads 32
16967 Juvenile Justice in Maryland: The Evidence Based Approach to Youth with History of Victimization and Trauma

Authors: Gabriela Wasileski, Debra L. Stanley

Abstract:

Maryland efforts to decrease the juvenile criminality and recidivism shifts towards evidence based sentencing. While in theory the evidence based sentencing has an impact on the reduction of juvenile delinquency and drug abuse; the assessment of juveniles’ risk and needs usually lacks crucial information about juvenile’s prior victimization. The Maryland Comprehensive Assessment and Service Planning (MCASP) Initiative is the primary tool for developing and delivering a treatment service plan for juveniles at risk. Even though it consists of evidence-based screening and assessment instruments very little is currently known regarding the effectiveness and the impact of the assessment in general. In keeping with Maryland’s priority to develop successful evidence-based recidivism reduction programs, this study examined results of assessments based on MCASP using a representative sample of the juveniles at risk and their assessment results. Specifically, it examined: (1) the results of the assessments in an electronic database (2) areas of need that are more frequent among delinquent youth in a system/agency, (3) the overall progress of youth in an agency’s care (4) the impact of child victimization and trauma experiences reported in the assessment. The project will identify challenges regarding the use of MCASP in Maryland, and will provide a knowledge base to support future research and practices.

Keywords: Juvenile Justice, assessment of risk and need, victimization and crime, recidivism

Procedia PDF Downloads 319
16966 Comparative Study of Vertical and Horizontal Triplex Tube Latent Heat Storage Units

Authors: Hamid El Qarnia

Abstract:

This study investigates the impact of the eccentricity of the central tube on the thermal and fluid characteristics of a triplex tube used in latent heat energy storage technologies. Two triplex tube orientations are considered in the proposed study: vertical and horizontal. The energy storage material, which is a phase change material (PCM), is placed in the space between the inside and outside tubes. During the thermal energy storage period, a heat transfer fluid (HTF) flows inside the two tubes, transmitting the heat to the PCM through two heat exchange surfaces instead of one heat exchange surface as it is the case for double tube heat storage systems. A CFD model is developed and validated against experimental data available in the literature. The mesh independency study is carried out to select the appropriate mesh. In addition, different time steps are examined to determine a time step ensuring accuracy of the numerical results and reduction in the computational time. The numerical model is then used to conduct numerical investigations of the thermal behavior and thermal performance of the storage unit. The effects of eccentricity of the central tube and HTF mass flow rate on thermal characteristics and performance indicators are examined for two flow arrangements: co-current and counter current flows. The results are given in terms of isotherm plots, streamlines, melting time and thermal energy storage efficiency.

Keywords: energy storage, heat transfer, melting, solidification

Procedia PDF Downloads 56
16965 Perspectives of Renewable Energy in 21st Century in India: Statistics and Estimation

Authors: Manoj Kumar, Rajesh Kumar

Abstract:

With the favourable geographical conditions at Indian-subcontinent, it is suitable for flourishing renewable energy. Increasing amount of dependence on coal and other conventional sources is driving the world into pollution and depletion of resources. This paper presents the statistics of energy consumption and energy generation in Indian Sub-continent, which notifies us with the increasing energy demands surpassing energy generation. With the aggrandizement in demand for energy, usage of coal has increased, since the major portion of energy production in India is from thermal power plants. The increase in usage of thermal power plants causes pollution and depletion of reserves; hence, a paradigm shift to renewable sources is inevitable. In this work, the capacity and potential of renewable sources in India are analyzed. Based on the analysis of this work, future potential of these sources is estimated.

Keywords: depletion of reserves, energy consumption and generation, emmissions, global warming, renewable sources

Procedia PDF Downloads 432
16964 Micro-Oculi Facades as a Sustainable Urban Facade

Authors: Ok-Kyun Im, Kyoung Hee Kim

Abstract:

We live in an era that faces global challenges of climate changes and resource depletion. With the rapid urbanization and growing energy consumption in the built environment, building facades become ever more important in architectural practice and environmental stewardship. Furthermore, building facade undergoes complex dynamics of social, cultural, environmental and technological changes. Kinetic facades have drawn attention of architects, designers, and engineers in the field of adaptable, responsive and interactive architecture since 1980’s. Materials and building technologies have gradually evolved to address the technical implications of kinetic facades. The kinetic façade is becoming an independent system of the building, transforming the design methodology to sustainable building solutions. Accordingly, there is a need for a new design methodology to guide the design of a kinetic façade and evaluate its sustainable performance. The research objectives are two-fold: First, to establish a new design methodology for kinetic facades and second, to develop a micro-oculi façade system and assess its performance using the established design method. The design approach to the micro-oculi facade is comprised of 1) façade geometry optimization and 2) dynamic building energy simulation. The façade geometry optimization utilizes multi-objective optimization process, aiming to balance the quantitative and qualitative performances to address the sustainability of the built environment. The dynamic building energy simulation was carried out using EnergyPlus and Radiance simulation engines with scripted interfaces. The micro-oculi office was compared with an office tower with a glass façade in accordance with ASHRAE 90.1 2013 to understand its energy efficiency. The micro-oculi facade is constructed with an array of circular frames attached to a pair of micro-shades called a micro-oculus. The micro-oculi are encapsulated between two glass panes to protect kinetic mechanisms with longevity. The micro-oculus incorporates rotating gears that transmit the power to adjacent micro-oculi to minimize the number of mechanical parts. The micro-oculus rotates around its center axis with a step size of 15deg depending on the sun’s position while maximizing daylighting potentials and view-outs. A 2 ft by 2ft prototyping was undertaken to identify operational challenges and material implications of the micro-oculi facade. In this research, a systematic design methodology was proposed, that integrates multi-objectives of kinetic façade design criteria and whole building energy performance simulation within a holistic design process. This design methodology is expected to encourage multidisciplinary collaborations between designers and engineers to collaborate issues of the energy efficiency, daylighting performance and user experience during design phases. The preliminary energy simulation indicated that compared to a glass façade, the micro-oculi façade showed energy savings due to its improved thermal properties, daylighting attributes, and dynamic solar performance across the day and seasons. It is expected that the micro oculi façade provides a cost-effective, environmentally-friendly, sustainable, and aesthetically pleasing alternative to glass facades. Recommendations for future studies include lab testing to validate the simulated data of energy and optical properties of the micro-oculi façade. A 1:1 performance mock-up of the micro-oculi façade can suggest in-depth understanding of long-term operability and new development opportunities applicable for urban façade applications.

Keywords: energy efficiency, kinetic facades, sustainable architecture, urban facades

Procedia PDF Downloads 257