Search results for: curriculum models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7791

Search results for: curriculum models

6681 Interrogation of the Role of First Year Student Experiences in Student Success at a University of Technology in South Africa

Authors: Livingstone Makondo

Abstract:

This ongoing research explores what could be the components of a comprehensive First-Year Student Experience (FYSE) at the Durban University of Technology (DUT) and the preferred implementation modalities. In light of the Siyaphumelela project, this interrogation is premised on the need to glean data for the institution that could be used to ascertain the role of FYSE towards enhancing student success. The research proceeds by examining prevalent models from other South African Universities and beyond in its quest to get at pragmatic comprehensive FYSE programme for DUT. As DUT is a student centered institution and amidst the ever shrinking economy, this research would aid higher education practitioners to ascertain if the hard earned finances are being channelled to a worthy academic venture. This research seeks to get inputs from a) students who participated in FYSE and are now in second and third years at DUT b) students who are currently participating in FYSE c) former and present Tutors d) departmental coordinators e) academics and support staff working with the participating students. This exploratory approach is preferred since 2010 DUT has grappled with how to implement an integrated institution-wide FYSE. This findings of this research could provide the much-needed data to ascertain if the current FYSE package is pivotal towards attainment of DUT Strategic Focus Area 1: Building sustainable student communities of living and learning. The ideal is to have DUT FYSE programme become an institution-wide programme that lays the foundation for consolidated and focused student development programmes for subsequent undergraduate and postgraduate levels of study. Also, armed with data from this research, DUT could develop the capacity and systems to ensure that all students get diverse on-time support to enhance their retention and academic success in their tertiary studies. In essence, the preferred FYSE curriculum woven around DUT graduate attributes should contribute towards the reduction in the first-year students’ dropout rates and subsequently in undergraduate studies. Therefore, this on-going research will feed into Siyaphumelela project and would help position 2018-2020 FYSE initiatives at DUT.

Keywords: challenges, comprehensive, dropout, transition

Procedia PDF Downloads 161
6680 Seismic Hazard Assessment of Offshore Platforms

Authors: F. D. Konstandakopoulou, G. A. Papagiannopoulos, N. G. Pnevmatikos, G. D. Hatzigeorgiou

Abstract:

This paper examines the effects of pile-soil-structure interaction on the dynamic response of offshore platforms under the action of near-fault earthquakes. Two offshore platforms models are investigated, one with completely fixed supports and one with piles which are clamped into deformable layered soil. The soil deformability for the second model is simulated using non-linear springs. These platform models are subjected to near-fault seismic ground motions. The role of fault mechanism on platforms’ response is additionally investigated, while the study also examines the effects of different angles of incidence of seismic records on the maximum response of each platform.

Keywords: hazard analysis, offshore platforms, earthquakes, safety

Procedia PDF Downloads 148
6679 A Biometric Template Security Approach to Fingerprints Based on Polynomial Transformations

Authors: Ramon Santana

Abstract:

The use of biometric identifiers in the field of information security, access control to resources, authentication in ATMs and banking among others, are of great concern because of the safety of biometric data. In the general architecture of a biometric system have been detected eight vulnerabilities, six of them allow obtaining minutiae template in plain text. The main consequence of obtaining minutia templates is the loss of biometric identifier for life. To mitigate these vulnerabilities several models to protect minutiae templates have been proposed. Several vulnerabilities in the cryptographic security of these models allow to obtain biometric data in plain text. In order to increase the cryptographic security and ease of reversibility, a minutiae templates protection model is proposed. The model aims to make the cryptographic protection and facilitate the reversibility of data using two levels of security. The first level of security is the data transformation level. In this level generates invariant data to rotation and translation, further transformation is irreversible. The second level of security is the evaluation level, where the encryption key is generated and data is evaluated using a defined evaluation function. The model is aimed at mitigating known vulnerabilities of the proposed models, basing its security on the impossibility of the polynomial reconstruction.

Keywords: fingerprint, template protection, bio-cryptography, minutiae protection

Procedia PDF Downloads 170
6678 Segregation Patterns of Trees and Grass Based on a Modified Age-Structured Continuous-Space Forest Model

Authors: Jian Yang, Atsushi Yagi

Abstract:

Tree-grass coexistence system is of great importance for forest ecology. Mathematical models are being proposed to study the dynamics of tree-grass coexistence and the stability of the systems. However, few of the models concentrates on spatial dynamics of the tree-grass coexistence. In this study, we modified an age-structured continuous-space population model for forests, obtaining an age-structured continuous-space population model for the tree-grass competition model. In the model, for thermal competitions, adult trees can out-compete grass, and grass can out-compete seedlings. We mathematically studied the model to make sure tree-grass coexistence solutions exist. Numerical experiments demonstrated that a fraction of area that trees or grass occupies can affect whether the coexistence is stable or not. We also tried regulating the mortality of adult trees with other parameters and the fraction of area trees and grass occupies were fixed; results show that the mortality of adult trees is also a factor affecting the stability of the tree-grass coexistence in this model.

Keywords: population-structured models, stabilities of ecosystems, thermal competitions, tree-grass coexistence systems

Procedia PDF Downloads 160
6677 Comparison of Applicability of Time Series Forecasting Models VAR, ARCH and ARMA in Management Science: Study Based on Empirical Analysis of Time Series Techniques

Authors: Muhammad Tariq, Hammad Tahir, Fawwad Mahmood Butt

Abstract:

Purpose: This study attempts to examine the best forecasting methodologies in the time series. The time series forecasting models such as VAR, ARCH and the ARMA are considered for the analysis. Methodology: The Bench Marks or the parameters such as Adjusted R square, F-stats, Durban Watson, and Direction of the roots have been critically and empirically analyzed. The empirical analysis consists of time series data of Consumer Price Index and Closing Stock Price. Findings: The results show that the VAR model performed better in comparison to other models. Both the reliability and significance of VAR model is highly appreciable. In contrary to it, the ARCH model showed very poor results for forecasting. However, the results of ARMA model appeared double standards i.e. the AR roots showed that model is stationary and that of MA roots showed that the model is invertible. Therefore, the forecasting would remain doubtful if it made on the bases of ARMA model. It has been concluded that VAR model provides best forecasting results. Practical Implications: This paper provides empirical evidences for the application of time series forecasting model. This paper therefore provides the base for the application of best time series forecasting model.

Keywords: forecasting, time series, auto regression, ARCH, ARMA

Procedia PDF Downloads 348
6676 Use of SUDOKU Design to Assess the Implications of the Block Size and Testing Order on Efficiency and Precision of Dulce De Leche Preference Estimation

Authors: Jéssica Ferreira Rodrigues, Júlio Silvio De Sousa Bueno Filho, Vanessa Rios De Souza, Ana Carla Marques Pinheiro

Abstract:

This study aimed to evaluate the implications of the block size and testing order on efficiency and precision of preference estimation for Dulce de leche samples. Efficiency was defined as the inverse of the average variance of pairwise comparisons among treatments. Precision was defined as the inverse of the variance of treatment means (or effects) estimates. The experiment was originally designed to test 16 treatments as a series of 8 Sudoku 16x16 designs being 4 randomized independently and 4 others in the reverse order, to yield balance in testing order. Linear mixed models were assigned to the whole experiment with 112 testers and all their grades, as well as their partially balanced subgroups, namely: a) experiment with the four initial EU; b) experiment with EU 5 to 8; c) experiment with EU 9 to 12; and b) experiment with EU 13 to 16. To record responses we used a nine-point hedonic scale, it was assumed a mixed linear model analysis with random tester and treatments effects and with fixed test order effect. Analysis of a cumulative random effects probit link model was very similar, with essentially no different conclusions and for simplicity, we present the results using Gaussian assumption. R-CRAN library lme4 and its function lmer (Fit Linear Mixed-Effects Models) was used for the mixed models and libraries Bayesthresh (default Gaussian threshold function) and ordinal with the function clmm (Cumulative Link Mixed Model) was used to check Bayesian analysis of threshold models and cumulative link probit models. It was noted that the number of samples tested in the same session can influence the acceptance level, underestimating the acceptance. However, proving a large number of samples can help to improve the samples discrimination.

Keywords: acceptance, block size, mixed linear model, testing order, testing order

Procedia PDF Downloads 321
6675 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors

Authors: Sudhir Kumar Singh, Debashish Chakravarty

Abstract:

Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.

Keywords: finite element method, geotechnical engineering, machine learning, slope stability

Procedia PDF Downloads 101
6674 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 43
6673 Churn Prediction for Savings Bank Customers: A Machine Learning Approach

Authors: Prashant Verma

Abstract:

Commercial banks are facing immense pressure, including financial disintermediation, interest rate volatility and digital ways of finance. Retaining an existing customer is 5 to 25 less expensive than acquiring a new one. This paper explores customer churn prediction, based on various statistical & machine learning models and uses under-sampling, to improve the predictive power of these models. The results show that out of the various machine learning models, Random Forest which predicts the churn with 78% accuracy, has been found to be the most powerful model for the scenario. Customer vintage, customer’s age, average balance, occupation code, population code, average withdrawal amount, and an average number of transactions were found to be the variables with high predictive power for the churn prediction model. The model can be deployed by the commercial banks in order to avoid the customer churn so that they may retain the funds, which are kept by savings bank (SB) customers. The article suggests a customized campaign to be initiated by commercial banks to avoid SB customer churn. Hence, by giving better customer satisfaction and experience, the commercial banks can limit the customer churn and maintain their deposits.

Keywords: savings bank, customer churn, customer retention, random forests, machine learning, under-sampling

Procedia PDF Downloads 143
6672 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 429
6671 Signs-Only Compressed Row Storage Format for Exact Diagonalization Study of Quantum Fermionic Models

Authors: Michael Danilov, Sergei Iskakov, Vladimir Mazurenko

Abstract:

The present paper describes a high-performance parallel realization of an exact diagonalization solver for quantum-electron models in a shared memory computing system. The proposed algorithm contains a storage format for efficient computing eigenvalues and eigenvectors of a quantum electron Hamiltonian matrix. The results of the test calculations carried out for 15 sites Hubbard model demonstrate reduction in the required memory and good multiprocessor scalability, while maintaining performance of the same order as compressed row storage.

Keywords: sparse matrix, compressed format, Hubbard model, Anderson model

Procedia PDF Downloads 402
6670 Optimizing the Passenger Throughput at an Airport Security Checkpoint

Authors: Kun Li, Yuzheng Liu, Xiuqi Fan

Abstract:

High-security standard and high efficiency of screening seem to be contradictory to each other in the airport security check process. Improving the efficiency as far as possible while maintaining the same security standard is significantly meaningful. This paper utilizes the knowledge of Operation Research and Stochastic Process to establish mathematical models to explore this problem. We analyze the current process of airport security check and use the M/G/1 and M/G/k models in queuing theory to describe the process. Then we find the least efficient part is the pre-check lane, the bottleneck of the queuing system. To improve passenger throughput and reduce the variance of passengers’ waiting time, we adjust our models and use Monte Carlo method, then put forward three modifications: adjust the ratio of Pre-Check lane to regular lane flexibly, determine the optimal number of security check screening lines based on cost analysis and adjust the distribution of arrival and service time based on Monte Carlo simulation results. We also analyze the impact of cultural differences as the sensitivity analysis. Finally, we give the recommendations for the current process of airport security check process.

Keywords: queue theory, security check, stochatic process, Monte Carlo simulation

Procedia PDF Downloads 200
6669 Application of Signature Verification Models for Document Recognition

Authors: Boris M. Fedorov, Liudmila P. Goncharenko, Sergey A. Sybachin, Natalia A. Mamedova, Ekaterina V. Makarenkova, Saule Rakhimova

Abstract:

In modern economic conditions, the question of the possibility of correct recognition of a signature on digital documents in order to verify the expression of will or confirm a certain operation is relevant. The additional complexity of processing lies in the dynamic variability of the signature for each individual, as well as in the way information is processed because the signature refers to biometric data. The article discusses the issues of using artificial intelligence models in order to improve the quality of signature confirmation in document recognition. The analysis of several possible options for using the model is carried out. The results of the study are given, in which it is possible to correctly determine the authenticity of the signature on small samples.

Keywords: signature recognition, biometric data, artificial intelligence, neural networks

Procedia PDF Downloads 148
6668 Educating the Educators: Interdisciplinary Approaches to Enhance Science Teaching

Authors: Denise Levy, Anna Lucia C. H. Villavicencio

Abstract:

In a rapid-changing world, science teachers face considerable challenges. In addition to the basic curriculum, there must be included several transversal themes, which demand creative and innovative strategies to be arranged and integrated to traditional disciplines. In Brazil, nuclear science is still a controversial theme, and teachers themselves seem to be unaware of the issue, most often perpetuating prejudice, errors and misconceptions. This article presents the authors’ experience in the development of an interdisciplinary pedagogical proposal to include nuclear science in the basic curriculum, in a transversal and integrating way. The methodology applied was based on the analysis of several normative documents that define the requirements of essential learning, competences and skills of basic education for all schools in Brazil. The didactic materials and resources were developed according to the best practices to improve learning processes privileging constructivist educational techniques, with emphasis on active learning process, collaborative learning and learning through research. The material consists of an illustrated book for students, a book for teachers and a manual with activities that can articulate nuclear science to different disciplines: Portuguese, mathematics, science, art, English, history and geography. The content counts on high scientific rigor and articulate nuclear technology with topics of interest to society in the most diverse spheres, such as food supply, public health, food safety and foreign trade. Moreover, this pedagogical proposal takes advantage of the potential value of digital technologies, implementing QR codes that excite and challenge students of all ages, improving interaction and engagement. The expected results include the education of the educators for nuclear science communication in a transversal and integrating way, demystifying nuclear technology in a contextualized and significant approach. It is expected that the interdisciplinary pedagogical proposal contributes to improving attitudes towards knowledge construction, privileging reconstructive questioning, fostering a culture of systematic curiosity and encouraging critical thinking skills.

Keywords: science education, interdisciplinary learning, nuclear science, scientific literacy

Procedia PDF Downloads 133
6667 Acoustic Analysis of Psycho-Communication Disorders within Moroccan Students

Authors: Brahim Sabir

Abstract:

Psycho-Communication disorders negatively affect the academic curriculum for students in higher education. Thus, understanding these disorders, their causes and effects will give education specialists a tool for the decision, which will lead to the resolution of problems related to the integration of students with Psycho-Communication disorders. It is in this context that a statistical study was conducted, targeting the population object of study, namely Moroccan students. Pathological voice samples were recorded and analyzed acoustically with PRAAT software, in order to build a model that will be the basis for the objective diagnostic.

Keywords: psycho-communication disorders, acoustic analysis, PRAAT

Procedia PDF Downloads 390
6666 Analog Input Output Buffer Information Specification Modelling Techniques for Single Ended Inter-Integrated Circuit and Differential Low Voltage Differential Signaling I/O Interfaces

Authors: Monika Rawat, Rahul Kumar

Abstract:

Input output Buffer Information Specification (IBIS) models are used for describing the analog behavior of the Input Output (I/O) buffers of a digital device. They are widely used to perform signal integrity analysis. Advantages of using IBIS models include simple structure, IP protection and fast simulation time with reasonable accuracy. As design complexity of driver and receiver increases, capturing exact behavior from transistor level model into IBIS model becomes an essential task to achieve better accuracy. In this paper, an improvement in existing methodology of generating IBIS model for complex I/O interfaces such as Inter-Integrated Circuit (I2C) and Low Voltage Differential Signaling (LVDS) is proposed. Furthermore, the accuracy and computational performance of standard method and proposed approach with respect to SPICE are presented. The investigations will be useful to further improve the accuracy of IBIS models and to enhance their wider acceptance.

Keywords: IBIS, signal integrity, open-drain buffer, low voltage differential signaling, behavior modelling, transient simulation

Procedia PDF Downloads 196
6665 An As-Is Analysis and Approach for Updating Building Information Models and Laser Scans

Authors: Rene Hellmuth

Abstract:

Factory planning has the task of designing products, plants, processes, organization, areas, and the construction of a factory. The requirements for factory planning and the building of a factory have changed in recent years. Regular restructuring of the factory building is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity & Ambiguity) lead to more frequent restructuring measures within a factory. A building information model (BIM) is the planning basis for rebuilding measures and becomes an indispensable data repository to be able to react quickly to changes. Use as a planning basis for restructuring measures in factories only succeeds if the BIM model has adequate data quality. Under this aspect and the industrial requirement, three data quality factors are particularly important for this paper regarding the BIM model: up-to-dateness, completeness, and correctness. The research question is: how can a BIM model be kept up to date with required data quality and which visualization techniques can be applied in a short period of time on the construction site during conversion measures? An as-is analysis is made of how BIM models and digital factory models (including laser scans) are currently being kept up to date. Industrial companies are interviewed, and expert interviews are conducted. Subsequently, the results are evaluated, and a procedure conceived how cost-effective and timesaving updating processes can be carried out. The availability of low-cost hardware and the simplicity of the process are of importance to enable service personnel from facility mnagement to keep digital factory models (BIM models and laser scans) up to date. The approach includes the detection of changes to the building, the recording of the changing area, and the insertion into the overall digital twin. Finally, an overview of the possibilities for visualizations suitable for construction sites is compiled. An augmented reality application is created based on an updated BIM model of a factory and installed on a tablet. Conversion scenarios with costs and time expenditure are displayed. A user interface is designed in such a way that all relevant conversion information is available at a glance for the respective conversion scenario. A total of three essential research results are achieved: As-is analysis of current update processes for BIM models and laser scans, development of a time-saving and cost-effective update process and the conception and implementation of an augmented reality solution for BIM models suitable for construction sites.

Keywords: building information modeling, digital factory model, factory planning, restructuring

Procedia PDF Downloads 114
6664 Students’ learning Effects in Physical Education between Sport Education Model with TPSR and Traditional Teaching Model with TPSR

Authors: Yi-Hsiang Pan, Chen-Hui Huang, Ching-Hsiang Chen, Wei-Ting Hsu

Abstract:

The purposes of the study were to explore the students' learning effect of physical education curriculum between merging Teaching Personal and Social Responsibility (TPSR) with sport education model and TPSR with traditional teaching model, which these learning effects included sport self-efficacy, sport enthusiastic, group cohesion, responsibility and game performance. The participants include 3 high school physical education teachers and 6 physical education classes, 133 participants with experience group 75 students and control group 58 students, and each teacher taught an experimental group and a control group for 16 weeks. The research methods used questionnaire investigation, interview, focus group meeting. The research instruments included personal and social responsibility questionnaire, sport enthusiastic scale, group cohesion scale, sport self-efficacy scale and game performance assessment instrument. Multivariate Analysis of covariance and Repeated measure ANOVA were used to test difference of students' learning effects between merging TPSR with sport education model and TPSR with traditional teaching model. The findings of research were: 1) The sport education model with TPSR could improve students' learning effects, including sport self-efficacy, game performance, sport enthusiastic, group cohesion and responsibility. 2) The traditional teaching model with TPSR could improve students' learning effect, including sport self-efficacy, responsibility and game performance. 3) the sport education model with TPSR could improve more learning effects than traditional teaching model with TPSR, including sport self-efficacy, sport enthusiastic,responsibility and game performance. 4) Based on qualitative data about learning experience of teachers and students, sport education model with TPSR significant improve learning motivation, group interaction and game sense. The conclusions indicated sport education model with TPSR could improve more learning effects in physical education curriculum. On other hand, the curricular projects of hybrid TPSR-Sport Education model and TPSR-Traditional Teaching model are both good curricular projects of moral character education, which may be applied in school physical education.

Keywords: character education, sport season, game performance, sport competence

Procedia PDF Downloads 452
6663 An Exploratory Factor Analysis Approach to Explore Barriers to Oracy Proficiency among Thai EFL Learners

Authors: Patsawut Sukserm

Abstract:

Oracy proficiency, encompassing both speaking and listening skills, is vital for EFL learners, yet Thai university students often face significant challenges in developing these abilities. This study aims to identify and analyze the barriers that hinder oracy proficiency in EFL learners. To achieve this, a questionnaire was developed based on a comprehensive review of the literature and administered to a large cohort of Thai EFL students. The data were subjected to exploratory factor analysis (EFA) to validate the questionnaire and uncover the underlying factors influencing learners’ performance. The results revealed that the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy was 0.912, and Bartlett’s test of sphericity was significant at 2345.423 (p < 0.05), confirming the suitability for factor analysis. There are five main barriers in oracy proficiency, namely Listening and Comprehension Obstacles (LCO), Accent and Speech Understanding (ASU), Speaking Anxiety and Confidence Issues (SACI), Fluency and Expression Issues (FEI), and Grammar and Conversational Understanding (GCU), with eigenvalues ranging from 1.066 to 12.990, explaining 60.305 % of the variance of the 32 variables. These findings highlight the complexity of the challenges faced by Thai EFL learners and emphasize the need for diverse and authentic listening experiences, a supportive classroom environment, or balanced grammar instruction. The findings of the study suggest that educators, curriculum developers, and policy makers should implement evidence-based strategies to address these barriers in order to improve Thai EFL learners’ oral proficiency and enhance their overall academic and professional success. Also, this study will discuss these findings in depth, offering evidence-based strategies for addressing these barriers. Recommendations include integrating diverse and authentic listening experiences, fostering a supportive classroom environment, and providing targeted instruction in both speaking fluency and grammar. The study’s implications extend to educators, curriculum developers, and policymakers, offering practical solutions to enhance learners’ oracy proficiency and support their academic and professional development.

Keywords: exploratory factor analysis, barriers, oracy proficiency, EFL learners

Procedia PDF Downloads 22
6662 Surface-Enhanced Raman Spectroscopy on Gold Nanoparticles in the Kidney Disease

Authors: Leonardo C. Pacheco-Londoño, Nataly J Galan-Freyle, Lisandro Pacheco-Lugo, Antonio Acosta-Hoyos, Elkin Navarro, Gustavo Aroca-Martinez, Karin Rondón-Payares, Alberto C. Espinosa-Garavito, Samuel P. Hernández-Rivera

Abstract:

At the Life Science Research Center at Simon Bolivar University, a primary focus is the diagnosis of various diseases, and the use of gold nanoparticles (Au-NPs) in diverse biomedical applications is continually expanding. In the present study, Au-NPs were employed as substrates for Surface-Enhanced Raman Spectroscopy (SERS) aimed at diagnosing kidney diseases arising from Lupus Nephritis (LN), preeclampsia (PC), and Hypertension (H). Discrimination models were developed for distinguishing patients with and without kidney diseases based on the SERS signals from urine samples by partial least squares-discriminant analysis (PLS-DA). A comparative study of the Raman signals across the three conditions was conducted, leading to the identification of potential metabolite signals. Model performance was assessed through cross-validation and external validation, determining parameters like sensitivity and specificity. Additionally, a secondary analysis was performed using machine learning (ML) models, wherein different ML algorithms were evaluated for their efficiency. Models’ validation was carried out using cross-validation and external validation, and other parameters were determined, such as sensitivity and specificity; the models showed average values of 0.9 for both parameters. Additionally, it is not possible to highlight this collaborative effort involved two university research centers and two healthcare institutions, ensuring ethical treatment and informed consent of patient samples.

Keywords: SERS, Raman, PLS-DA, kidney diseases

Procedia PDF Downloads 45
6661 Plot Scale Estimation of Crop Biophysical Parameters from High Resolution Satellite Imagery

Authors: Shreedevi Moharana, Subashisa Dutta

Abstract:

The present study focuses on the estimation of crop biophysical parameters like crop chlorophyll, nitrogen and water stress at plot scale in the crop fields. To achieve these, we have used high-resolution satellite LISS IV imagery. A new methodology has proposed in this research work, the spectral shape function of paddy crop is employed to get the significant wavelengths sensitive to paddy crop parameters. From the shape functions, regression index models were established for the critical wavelength with minimum and maximum wavelengths of multi-spectrum high-resolution LISS IV data. Moreover, the functional relationships were utilized to develop the index models. From these index models crop, biophysical parameters were estimated and mapped from LISS IV imagery at plot scale in crop field level. The result showed that the nitrogen content of the paddy crop varied from 2-8%, chlorophyll from 1.5-9% and water content variation observed from 40-90% respectively. It was observed that the variability in rice agriculture system in India was purely a function of field topography.

Keywords: crop parameters, index model, LISS IV imagery, plot scale, shape function

Procedia PDF Downloads 168
6660 Learners' Perception of Digitalization of Medical Education in a Low Middle-Income Country – A Case Study of the Lecturio Platform

Authors: Naomi Nathan

Abstract:

Introduction Digitalization of medical education can revolutionize how medical students learn and interact with the medical curriculum across contexts. With the increasing availability of the internet and mobile connectivity in LMICs, online medical education platforms and digital learning tools are becoming more widely available, providing new opportunities for learners to access high-quality medical education and training. However, the adoption and integration of digital technologies in medical education in LMICs is a complex process influenced by various factors, including learners' perceptions and attitudes toward digital learning. In Ethiopia, the adoption of digital platforms for medical education has been slow, with traditional face-to-face teaching methods still being the norm. However, as access to technology improves and more universities adopt digital platforms, it is crucial to understand how medical students perceive this shift. Methodology This study investigated medical students' perception of the digitalization of medical education in relation to their access to the Lecturio Digital Medical Education Platform through a capacity-building project. 740 medical students from over 20 medical universities participated in the study. The students were surveyed using a questionnaire that included their attitudes toward the digitalization of medical education, their frequency of use of the digital platform, and their perceived benefits and challenges. Results The study results showed that most medical students had a positive attitude toward digitalizing medical education. The most commonly cited benefit was the convenience and flexibility of accessing course material/curriculum online. Many students also reported that they found the platform more interactive and engaging, leading to a more meaningful learning experience. The study also identified several challenges medical students faced when using the platform. The most commonly reported challenge was the need for more reliable internet access, which made it difficult for students to access content consistently. Overall, the results of this study suggest that medical students in Ethiopia have a positive perception of the digitalization of medical education. Over 97% of students continuously expressed a need for access to the Lecturio platform throughout their studies. Conclusion Significant challenges still need to be addressed to fully realize the Lecturio digital platform's benefits. Universities, relevant ministries, and various stakeholders must work together to address these challenges to ensure that medical students fully participate in and benefit from digitalized medical education - sustainably and effectively.

Keywords: digital medical education, EdTech, LMICs, e-learning

Procedia PDF Downloads 92
6659 Application of Data Driven Based Models as Early Warning Tools of High Stream Flow Events and Floods

Authors: Mohammed Seyam, Faridah Othman, Ahmed El-Shafie

Abstract:

The early warning of high stream flow events (HSF) and floods is an important aspect in the management of surface water and rivers systems. This process can be performed using either process-based models or data driven-based models such as artificial intelligence (AI) techniques. The main goal of this study is to develop efficient AI-based model for predicting the real-time hourly stream flow (Q) and apply it as early warning tool of HSF and floods in the downstream area of the Selangor River basin, taken here as a paradigm of humid tropical rivers in Southeast Asia. The performance of AI-based models has been improved through the integration of the lag time (Lt) estimation in the modelling process. A total of 8753 patterns of Q, water level, and rainfall hourly records representing one-year period (2011) were utilized in the modelling process. Six hydrological scenarios have been arranged through hypothetical cases of input variables to investigate how the changes in RF intensity in upstream stations can lead formation of floods. The initial SF was changed for each scenario in order to include wide range of hydrological situations in this study. The performance evaluation of the developed AI-based model shows that high correlation coefficient (R) between the observed and predicted Q is achieved. The AI-based model has been successfully employed in early warning throughout the advance detection of the hydrological conditions that could lead to formations of floods and HSF, where represented by three levels of severity (i.e., alert, warning, and danger). Based on the results of the scenarios, reaching the danger level in the downstream area required high RF intensity in at least two upstream areas. According to results of applications, it can be concluded that AI-based models are beneficial tools to the local authorities for flood control and awareness.

Keywords: floods, stream flow, hydrological modelling, hydrology, artificial intelligence

Procedia PDF Downloads 248
6658 The Prediction of Effective Equation on Drivers' Behavioral Characteristics of Lane Changing

Authors: Khashayar Kazemzadeh, Mohammad Hanif Dasoomi

Abstract:

According to the increasing volume of traffic, lane changing plays a crucial role in traffic flow. Lane changing in traffic depends on several factors including road geometrical design, speed, drivers’ behavioral characteristics, etc. A great deal of research has been carried out regarding these fields. Despite of the other significant factors, the drivers’ behavioral characteristics of lane changing has been emphasized in this paper. This paper has predicted the effective equation based on personal characteristics of lane changing by regression models.

Keywords: effective equation, lane changing, drivers’ behavioral characteristics, regression models

Procedia PDF Downloads 450
6657 Developing and Evaluating Clinical Risk Prediction Models for Coronary Artery Bypass Graft Surgery

Authors: Mohammadreza Mohebbi, Masoumeh Sanagou

Abstract:

The ability to predict clinical outcomes is of great importance to physicians and clinicians. A number of different methods have been used in an effort to accurately predict these outcomes. These methods include the development of scoring systems based on multivariate statistical modelling, and models involving the use of classification and regression trees. The process usually consists of two consecutive phases, namely model development and external validation. The model development phase consists of building a multivariate model and evaluating its predictive performance by examining calibration and discrimination, and internal validation. External validation tests the predictive performance of a model by assessing its calibration and discrimination in different but plausibly related patients. A motivate example focuses on prediction modeling using a sample of patients undergone coronary artery bypass graft (CABG) has been used for illustrative purpose and a set of primary considerations for evaluating prediction model studies using specific quality indicators as criteria to help stakeholders evaluate the quality of a prediction model study has been proposed.

Keywords: clinical prediction models, clinical decision rule, prognosis, external validation, model calibration, biostatistics

Procedia PDF Downloads 297
6656 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter

Authors: Amartya Hatua, Trung Nguyen, Andrew Sung

Abstract:

In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.

Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter

Procedia PDF Downloads 391
6655 Construction of QSAR Models to Predict Potency on a Series of substituted Imidazole Derivatives as Anti-fungal Agents

Authors: Sara El Mansouria Beghdadi

Abstract:

Quantitative structure–activity relationship (QSAR) modelling is one of the main computer tools used in medicinal chemistry. Over the past two decades, the incidence of fungal infections has increased due to the development of resistance. In this study, the QSAR was performed on a series of esters of 2-carboxamido-3-(1H-imidazole-1-yl) propanoic acid derivatives. These compounds have showed moderate and very good antifungal activity. The multiple linear regression (MLR) was used to generate the linear 2d-QSAR models. The dataset consists of 115 compounds with their antifungal activity (log MIC) against «Candida albicans» (ATCC SC5314). Descriptors were calculated, and different models were generated using Chemoffice, Avogadro, GaussView software. The selected model was validated. The study suggests that the increase in lipophilicity and the reduction in the electronic character of the substituent in R1, as well as the reduction in the steric hindrance of the substituent in R2 and its aromatic character, supporting the potentiation of the antifungal effect. The results of QSAR could help scientists to propose new compounds with higher antifungal activities intended for immunocompromised patients susceptible to multi-resistant nosocomial infections.

Keywords: quantitative structure–activity relationship, imidazole, antifungal, candida albicans (ATCC SC5314)

Procedia PDF Downloads 84
6654 The Design of the Questionnaire of Attitudes in Physics Teaching

Authors: Ricardo Merlo

Abstract:

Attitude is a hypothetical construct that can be significantly measured to know the favorable or unfavorable predisposition that students have towards the teaching of sciences such as Physics. Although the state-of-the-art attitude test used in Physics teaching indicated different design and validation models in different groups of students, the analysis of the weight given to each dimension that supported the attitude was scarcely evaluated. Then, in this work, a methodology of attitude questionnaire construction process was proposed that allowed the teacher to design and validate the measurement instrument for different subjects of Physics at the university level developed in the classroom according to the weight considered to the affective, knowledge, and behavioural dimensions. Finally, questionnaire models were tested for the case of incoming university students, achieving significant results in the improvement of Physics teaching.

Keywords: attitude, physics teaching, motivation, academic performance

Procedia PDF Downloads 71
6653 Educational Audit and Curricular Reforms in the Arabian Context

Authors: Irum Naz

Abstract:

In the Arabian higher education context, linguistic proficiency in the English language is considered crucial for the developmental sustainability, economic growth, and stability of communities and societies. Qatar’s educational reforms package, through the 2030 vision, identifies the acquisition of English at K-12 as an essential survival communication tool for globalization, believing that Qatari students need better preparation to take on the responsibilities of leadership and to participate effectively in the country’s surging economy. The idea of introducing Qatari students to modern curricula benchmarked to high-student-performance curricula in developed countries is one of the components of reformatory design principles of Education for New Era reform project that is mutually consented to and supported by the Office of Shared Services, Communications Office, and Supreme Education Council. In appreciation of the government’s vision, the English Language Centre (ELC) at the Community College of Qatar ran an internal educational audit and conducted evaluative research to understand and appraise the value, impact, and practicality of the existing ELC language development program. This study sought to identify the type of change that could identify and improve the quality of Foundation Program courses and the manners in which second language learners could be assisted to transit smoothly between (ELC) levels. Following the interpretivist paradigm and mixed research method, the data was gathered through a bicyclic research model and a triangular design. The analyses of the data suggested that there was a need for improvement in the ELC program as a whole, and particularly in terms of curriculum, student learning outcomes, and the general learning environment in the department. Key findings suggest that the target program would benefit from significant revisions, which would include narrowing the focus of the courses, providing sets of specific learning objectives, and preventing repetition between levels. Another promising finding was about the assessment tools and process. The data suggested that a set of standardized assessments that more closely suited the programs of study should be devised. It was also recommended that students undergo a more comprehensive placement process to ensure that they begin the program at an appropriate level and get the maximum benefit from their learning experience. Although this ties into the idea of curriculum revamp, it was expected that students could leave the ELC having had exposure to courses in English for specific purposes. The idea of a more reliable exit assessment for students was raised frequently so ELC could regulate itself and ensure optimum learning outcomes. Another important recommendation was the provision of a Student Learning Center for students that would help them to receive personalized tuition, differentiated instruction, and self-driven and self-evaluated learning experience. In addition, an extra study level was recommended to be added to the program to accommodate the different levels of English language proficiency represented among ELC students. The evidence collected in the course of conducting the study suggests that significant change is needed in the structure of the ELC program, specifically about curriculum, the program learning outcomes, and the learning environment in general.

Keywords: educational audit, ESL, optimum learning outcomes, Qatar’s educational reforms, self-driven and self-evaluated learning experience, Student Learning Center

Procedia PDF Downloads 185
6652 Testing and Validation Stochastic Models in Epidemiology

Authors: Snigdha Sahai, Devaki Chikkavenkatappa Yellappa

Abstract:

This study outlines approaches for testing and validating stochastic models used in epidemiology, focusing on the integration and functional testing of simulation code. It details methods for combining simple functions into comprehensive simulations, distinguishing between deterministic and stochastic components, and applying tests to ensure robustness. Techniques include isolating stochastic elements, utilizing large sample sizes for validation, and handling special cases. Practical examples are provided using R code to demonstrate integration testing, handling of incorrect inputs, and special cases. The study emphasizes the importance of both functional and defensive programming to enhance code reliability and user-friendliness.

Keywords: computational epidemiology, epidemiology, public health, infectious disease modeling, statistical analysis, health data analysis, disease transmission dynamics, predictive modeling in health, population health modeling, quantitative public health, random sampling simulations, randomized numerical analysis, simulation-based analysis, variance-based simulations, algorithmic disease simulation, computational public health strategies, epidemiological surveillance, disease pattern analysis, epidemic risk assessment, population-based health strategies, preventive healthcare models, infection dynamics in populations, contagion spread prediction models, survival analysis techniques, epidemiological data mining, host-pathogen interaction models, risk assessment algorithms for disease spread, decision-support systems in epidemiology, macro-level health impact simulations, socioeconomic determinants in disease spread, data-driven decision making in public health, quantitative impact assessment of health policies, biostatistical methods in population health, probability-driven health outcome predictions

Procedia PDF Downloads 7