Search results for: conventional activated sludge WWTPs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4571

Search results for: conventional activated sludge WWTPs

3461 Experimental Measurements of Evacuated Enclosure Thermal Insulation Effectiveness for Vacuum Flat Plate Solar Thermal Collectors

Authors: Paul Henshall, Philip Eames, Roger Moss, Stan Shire, Farid Arya, Trevor Hyde

Abstract:

Encapsulating the absorber of a flat plate solar thermal collector in vacuum by an enclosure that can be evacuated can result in a significant increase in collector performance and achievable operating temperatures. This is a result of the thermal insulation effectiveness of the vacuum layer surrounding the absorber, as less heat is lost during collector operation. This work describes experimental thermal insulation characterization tests of prototype vacuum flat plate solar thermal collectors that demonstrate the improvement in absorber heat loss coefficients. Furthermore, this work describes the selection and sizing of a getter, suitable for maintaining the vacuum inside the enclosure for the lifetime of the collector, which can be activated at low temperatures.

Keywords: vacuum, thermal, flat-plate solar collector, insulation

Procedia PDF Downloads 394
3460 Developing Alternative Recovery Technology of Waste Heat in Automobile Factory

Authors: Kun-Ping Cheng, Dong-Shang Chang, Rou-Wen Wang

Abstract:

Pre-treatment of automobile paint-shop procedures are the preparation of warm water rinsing tank, hot water rinsing tank, degreasing tank, phosphate tank. The conventional boiler steam fuel is natural gas, producing steam to supply the heat exchange of each tank sink. In this study, the high-frequency soldering economizer is developed for recovering waste heat in the automotive paint-shop (RTO, Regenerative Thermal Oxidation). The heat recovery rate of the new economizer is 20% to 30% higher than the conventional embedded heat pipe. The adaptive control system responded to both RTO furnace exhaust gas and heat demands. In order to maintain the temperature range of the tanks, pre-treatment tanks are directly heated by waste heat recovery device (gas-to-water heat exchanger) through the hot water cycle of heat transfer. The performance of developed waste heat recovery system shows the annual recovery achieved to 1,226,411,483 Kcal of heat (137.8 thousand cubic meters of natural gas). Boiler can reduce fuel consumption by 20 to 30 percent compared to without waste heat recovery. In order to alleviate environmental impacts, the temperature at the end of the flue is further reduced from 160 to 110°C. The innovative waste heat recovery is helpful to energy savings and sustainable environment.

Keywords: waste heat recovery system, sustainability, RTO (Regenerative Thermal Oxidation), economizer, automotive industry

Procedia PDF Downloads 262
3459 Photo-Fenton Degradation of Organic Compounds by Iron(II)-Embedded Composites

Authors: Marius Sebastian Secula, Andreea Vajda, Benoit Cagnon, Ioan Mamaliga

Abstract:

One of the most important classes of pollutants is represented by dyes. The synthetic character and complex molecular structure make them more stable and difficult to be biodegraded in water. The treatment of wastewaters containing dyes in order to separate/degrade dyes is of major importance. Various techniques have been employed to remove and/or degrade dyes in water. Advanced oxidation processes (AOPs) are known as among the most efficient ones towards dye degradation. The aim of this work is to investigate the efficiency of a cheap Iron-impregnated activated carbon Fenton-like catalyst in order to degrade organic compounds in aqueous solutions. In the presented study an anionic dye, Indigo Carmine, is considered as a model pollutant. Various AOPs are evaluated for the degradation of Indigo Carmine to establish the effect of the prepared catalyst. It was found that the Iron(II)-embedded activated carbon composite enhances significantly the degradation process of Indigo Carmine. Using the wet impregnation procedure, 5 g of L27 AC material were contacted with Fe(II) solutions of FeSO4 precursor at a theoretical iron content in the resulted composite of 1 %. The L27 AC was impregnated for 3h at 45°C, then filtered, washed several times with water and ethanol and dried at 55 °C for 24 h. Thermogravimetric analysis, Fourier transform infrared, X-ray diffraction, and transmission electron microscopy were employed to investigate the structural, textural, and micromorphology of the catalyst. Total iron content in the obtained composites and iron leakage were determined by spectrophotometric method using phenantroline. Photo-catalytic tests were performed using an UV - Consulting Peschl Laboratory Reactor System. UV light irradiation tests were carried out to determine the performance of the prepared Iron-impregnated composite towards the degradation of Indigo Carmine in aqueous solution using different conditions (17 W UV lamps, with and without in-situ generation of O3; different concentrations of H2O2, different initial concentrations of Indigo Carmine, different values of pH, different doses of NH4-OH enhancer). The photocatalytic tests were performed after the adsorption equilibrium has been established. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. The investigated process obeys the pseudo-first order kinetics. The photo-Fenton degradation of IC was tested at different values of initial concentration. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. Acknowledgments: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.

Keywords: photodegradation, heterogeneous Fenton, anionic dye, carbonaceous composite, screening factorial design

Procedia PDF Downloads 257
3458 Co-Composting of Poultry Manure with Different Organic Amendments

Authors: M. E. Silva, I. Brás

Abstract:

To study the influence of different organic amendments on the quality of poultry manure compost, three pilot composting trials were carried out with different mixes: poultry manure/carcasse meal/ashes/grape pomace (Pile 1), poultry manure/ cellulosic sludge (Pile 2) and poultry manure (Pile 3). For all piles, wood chips were applied as bulking agent. The process was monitored, over time, by evaluating standard physical and chemical parameters, such as, pH, electric conductivity, moisture, organic matter and ash content, total carbon and total nitrogen content, carbon/nitrogen ratio (C/N) and content in mineral elements. Piles 1 and 2 reached a thermophilic phase, however having different trends. Pile 1 reached this phase earlier than Pile 2. For both, the pH showed a slight alkaline character and the electric conductivity was lower than 2 mS/cm. Also, the initial C/N value was 22 and reached values lower than 15 at the end of composting process. The total N content of the Pile 1 increased slightly during composting, in contrast with the others piles. At the end of composting process, the phosphorus content ranged between 54 and 236 mg/kg dry matter, for Pile 2 and 3, respectively. Generally, the Piles 1 and 3 exhibited similar heavy metals content. This study showed that organic amendments can be used as carbon source, given that the final composts presented parameters within the range of those recommended in the 2nd Draft of EU regulation proposal (DG Env.A.2 2001) for compost quality.

Keywords: co-composting, compost quality, organic ammendment, poultry manure

Procedia PDF Downloads 305
3457 Integration from Laboratory to Industrialization for Hybrid Printed Electronics

Authors: Ahmed Moulay, Mariia Zhuldybina, Mirko Torres, Mike Rozel, Ngoc Duc Trinh, Chloé Bois

Abstract:

Hybrid printed electronics technology (HPE) provides innovative opportunities to enhance conventional electronics applications, which are often based on printed circuit boards (PCB). By combining the best of both performance from conventional electronic components and the flexibility from printed circuits makes it possible to manufacture HPE at high volumes using roll-to-roll printing processes. However, several challenges must be overcome in order to accurately integrate an electronic component on a printed circuit. In this presentation, we will demonstrate the integration process of electronic components from the lab scale to the industrialization. Both the printing quality and the integration technique must be studied to define the optimal conditions. To cover the parameters that influence the print quality of the printed circuit, different printing processes, flexible substrates, and conductive inks will be used to determine the optimized printing process/ink/substrate system. After the systems is selected, an electronic component of 2.5 mm2 chip size will be integrated to validate the functionality of the printed, electronic circuit. Critical information such as the conductive adhesive, the curing conditions, and the chip encapsulation will be determined. Thanks to these preliminary results, we are able to demonstrate the chip integration on a printed circuit using industrial equipment, showing the potential of industrialization, compatible using roll-to-roll printing and integrating processes.

Keywords: flat bed screen-printing, hybrid printed electronics, integration, large-scale production, roll-to-roll printing, rotary screen printing

Procedia PDF Downloads 177
3456 Pressure-Detecting Method for Estimating Levitation Gap Height of Swirl Gripper

Authors: Kaige Shi, Chao Jiang, Xin Li

Abstract:

The swirl gripper is an electrically activated noncontact handling device that uses swirling airflow to generate a lifting force. This force can be used to pick up a workpiece placed underneath the swirl gripper without any contact. It is applicable, for example, in the semiconductor wafer production line, where contact must be avoided during the handling and moving of a workpiece to minimize damage. When a workpiece levitates underneath a swirl gripper, the gap height between them is crucial for safe handling. Therefore, in this paper, we propose a method to estimate the levitation gap height by detecting pressure at two points. The method is based on theoretical model of the swirl gripper, and has been experimentally verified. Furthermore, the force between the gripper and the workpiece can also be estimated using the detected pressure. As a result, the nonlinear relationship between the force and gap height can be linearized by adjusting the rotating speed of the fan in the swirl gripper according to the estimated force and gap height. The linearized relationship is expected to enhance handling stability of the workpiece.

Keywords: swirl gripper, noncontact handling, levitation, gap height estimation

Procedia PDF Downloads 133
3455 Wheat Yield and Yield Components under Raised Bed Planting System

Authors: Hamidreza Miri, Farahnaz Momtazi

Abstract:

Wheat is one of the most important crops in Fars province, and because of water shortage, there is a great emphasis on its water use efficiency in the production field. A field experiment was conducted in 2021 and 2022 in order to evaluate wheat yield and its components in raised planting system in Arsanjan, Fars province. The experiment was conducted as a split plot with three irrigation treatments (irrigation equal to evapotranspiration, 80% of evapotranspiration irrigation (moderate drought stress), and 60% of evapotranspiration irrigation (severe drought stress)) as the main plot and three planting methods (conventional flat planting, 60 cm raised bed planting and 120 cm raised bed planting) as a subplot. The results indicated that drought stress significantly decreased traits such as plant height, grain yield, ear number, seed number, and biological yield while increasing seed protein. Raised bed planting significantly increased the traits in comparison with conventional flat planting. So that plating with a 120 cm raised bed increased grain yield by 22.1% and 25.9% in the first and second years, respectively. This increase was 17% for biological, 75 for ear number, and 21% for seed number. Planting in raised bed system reduced the adverse effect of drought stress on wheat traits. In conclusion, based on the observed results planting in raised bed system can be adopted as an appropriate planting pattern for improving yield and water productivity in experimental regions and similar climates.

Keywords: wheat, raised bed planting, drought stress, yield, water use

Procedia PDF Downloads 65
3454 Block N Lvi from the Northern Side of Parthenon Frieze: A Case Study of Augmented Reality for Museum Application

Authors: Donato Maniello, Alessandra Cirafici, Valeria Amoretti

Abstract:

This paper aims to present a new method that consists in the use of video mapping techniques – that is a particular form of augmented reality, which could produce new tools - different from the ones that are actually in use - for an interactive Museum experience. With the words 'augmented reality', we mean the addition of more information than what the visitor would normally perceive; this information is mediated by the use of computer and projector. The proposed application involves the creation of a documentary that depicts and explains the history of the artifact and illustrates its features; this must be projected on the surface of the faithful copy of the freeze (obtained in full-scale with a 3D printer). This mode of operation uses different techniques that allow passing from the creation of the model to the creation of contents through an accurate historical and artistic analysis, and finally to the warping phase, that will permit to overlap real and virtual models. The ultimate step, that is still being studied, includes the creation of interactive contents that would be activated by visitors through appropriate motion sensors.

Keywords: augmented reality, multimedia, parthenon frieze, video mapping

Procedia PDF Downloads 387
3453 Multiple Approaches for Ultrasonic Cavitation Monitoring of Oxygen-Loaded Nanodroplets

Authors: Simone Galati, Adriano Troia

Abstract:

Ultrasound (US) is widely used in medical field for a variety diagnostic techniques but, in recent years, it has also been creating great interest for therapeutic aims. Regarding drug delivery, the use of US as an activation source provides better spatial delivery confinement and limits the undesired side effects. However, at present there is no complete characterization at a fundamental level of the different signals produced by sono-activated nanocarriers. Therefore, the aim of this study is to obtain a metrological characterization of the cavitation phenomena induced by US through three parallel investigation approaches. US was focused into a channel of a customized phantom in which a solution with oxygen-loaded nanodroplets (OLNDs) was led to flow and the cavitation activity was monitored. Both quantitative and qualitative real-time analysis were performed giving information about the dynamics of bubble formation, oscillation and final implosion with respect to the working acoustic pressure and the type of nanodroplets, compared with pure water. From this analysis a possible interpretation of the observed results is proposed.

Keywords: cavitation, drug delivery, nanodroplets, ultra-sound

Procedia PDF Downloads 110
3452 Kinetic Evaluation of Biodegradability of Paint Shop Wastewater of a Bus Production Factory

Authors: Didem Güven, Oytun Hanhan, Elif Ceren Aksoy, Emine Ubay Çokgör

Abstract:

This paper presents a biological treatability study ofpaintshopwastewaterof a bus factory by an anoxic/aerobic sequencing batch reactor.A lab scale 14L SBR system was implementedto investigate carbon and nitrogen removal performance frompaint shop waste streams combined with domestic and process wastewater of a bus production factory in Istanbul (Turkey).The wastewater collected from decanters of the paint boots and pre-treatmentplant was usedforthefeeding of SBR. The reactor was operated with a total hydraulic retention time of 24 hrs, and a total sludge age of 18.7 days. Initially the efficiency and stability of the reactor were studied when fed with main wastewater stream to simulate the current wastewater treatment plant. Removal efficiency of 57% nitrogen and 90% COD were obtained. Once the paint shop wastewater was introduced to mainstream feeding with a ratio of 1:5, nitrification completely, carbon removal were partially inhibited. SBR system was successful to handle even at very high COD concentrations of paint shop wastewater after feeding of 2 months, with an average effluent COD of 100 mg/L. For the determination of kinetic parameters, respirometric analysis was also conducted with/without paint shop wastewater addition. Model simulation indicated lower maximum specific growth and hydrolysis rates when paint shop wastewater was mixed with the mainstream wastewater of the factory.

Keywords: biological treatability, nitrogen removal, paint shop wastewater, sequencing batch reactor

Procedia PDF Downloads 295
3451 Influence Study of the Molar Ratio between Solvent and Initiator on the Reaction Rate of Polyether Polyols Synthesis

Authors: María José Carrero, Ana M. Borreguero, Juan F. Rodríguez, María M. Velencoso, Ángel Serrano, María Jesús Ramos

Abstract:

Flame-retardants are incorporated in different materials in order to reduce the risk of fire, either by providing increased resistance to ignition, or by acting to slow down combustion and thereby delay the spread of flames. In this work, polyether polyols with fire retardant properties were synthesized due to their wide application in the polyurethanes formulation. The combustion of polyurethanes is primarily dependent on the thermal properties of the polymer, the presence of impurities and formulation residue in the polymer as well as the supply of oxygen. There are many types of flame retardants, most of them are phosphorous compounds of different nature and functionality. The addition of these compounds is the most common method for the incorporation of flame retardant properties. The employment of glycerol phosphate sodium salt as initiator for the polyol synthesis allows obtaining polyols with phosphate groups in their structure. However, some of the critical points of the use of glycerol phosphate salt are: the lower reactivity of the salt and the necessity of a solvent (dimethyl sulfoxide, DMSO). Thus, the main aim in the present work was to determine the amount of the solvent needed to get a good solubility of the initiator salt. Although the anionic polymerization mechanism of polyether formation is well known, it seems convenient to clarify the role that DMSO plays at the starting point of the polymerization process. Regarding the fact that the catalyst deprotonizes the hydroxyl groups of the initiator and as a result of this, two water molecules and glycerol phosphate alkoxide are formed. This alkoxide, together with DMSO, has to form a homogeneous mixture where the initiator (solid) and the propylene oxide (PO) are soluble enough to mutually interact. The addition rate of PO increased when the solvent/initiator ratios studied were increased, observing that it also made the initiation step shorter. Furthermore, the molecular weight of the polyol decreased when higher solvent/initiator ratios were used, what revealed that more amount of salt was activated, initiating more chains of lower length but allowing to react more phosphate molecules and to increase the percentage of phosphorous in the final polyol. However, the final phosphorous content was lower than the theoretical one because only a percentage of salt was activated. On the other hand, glycerol phosphate disodium salt was still partially insoluble in DMSO studied proportions, thus, the recovery and reuse of this part of the salt for the synthesis of new flame retardant polyols was evaluated. In the recovered salt case, the rate of addition of PO remained the same than in the commercial salt but a shorter induction period was observed, this is because the recovered salt presents a higher amount of deprotonated hydroxyl groups. Besides, according to molecular weight, polydispersity index, FT-IR spectrum and thermal stability, there were no differences between both synthesized polyols. Thus, it is possible to use the recovered glycerol phosphate disodium salt in the same way that the commercial one.

Keywords: DMSO, fire retardants, glycerol phosphate disodium salt, recovered initiator, solvent

Procedia PDF Downloads 278
3450 Aquatic Therapy Improving Balance Function of Individuals with Stroke: A Systematic Review with Meta-Analysis

Authors: Wei-Po Wu, Wen-Yu Liu, Wei−Ting Lin, Hen-Yu Lien

Abstract:

Introduction: Improving balance function for individuals after stroke is a crucial target in physiotherapy. Aquatic therapy which challenges individual’s postural control in an unstable fluid environment may be beneficial in enhancing balance functions. The purposes of the systematic review with meta-analyses were to validate the effects of aquatic therapy in improving balance functions for individuals with strokes in contrast to conventional physiotherapy. Method: Available studies were explored from three electronic databases: PubMed, Scopus, and Web of Science. During literature search, the published date of studies was not limited. The study design of the included studies should be randomized controlled trials (RCTs) and the studies should contain at least one outcome measurement of balance function. The PEDro scale was adopted to assess the quality of included studies, while the 'Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence' was used to evaluate the level of evidence. After the data extraction, studies with same outcome measures were pooled together for meta-analysis. Result: Ten studies with 282 participants were included in analyses. The research qualities of the studies were ranged from fair to good (4 to 8 points). Levels of evidence of the included studies were graded as level 2 and 3. Finally, scores of Berg Balance Scale (BBS), Eye closed force plate center of pressure velocity (anterior-posterior, medial-lateral axis) and Timed up and Go test were pooled and analyzed separately. The pooled results shown improvement in balance function (BBS mean difference (MD): 1.39 points; 95% confidence interval (CI): 0.05-2.29; p=0.002) (Eye closed force plate center of pressure velocity (anterior-posterior axis) MD: 1.39 mm/s; 95% confidence interval (CI): 0.93-1.86; p<0.001) (Eye closed force plate center of pressure velocity (medial-lateral) MD: 1.48 mm/s; 95% confidence interval (CI): 0.15-2.82; p=0.03) and mobility (MD: 0.9 seconds; 95% CI: 0.07-1.73; p=0.03) of stroke individuals after aquatic therapy compared to conventional therapy. Although there were significant differences between two treatment groups, the differences in improvement were relatively small. Conclusion: The aquatic therapy improved general balance function and mobility in the individuals with stroke better than conventional physiotherapy.

Keywords: aquatic therapy, balance function, meta-analysis, stroke, systematic review

Procedia PDF Downloads 201
3449 Polysulfide as Active ‘Stealth’ Polymers with Additional Anti-Inflammatory Activity

Authors: Farah El Mohtadi, Richard d'Arcy, Nicola Tirelli

Abstract:

Since 40 years, poly (ethylene glycol) (PEG) has been the gold standard in biomaterials and drug delivery, because of its combination of chemical and biological inertness. However, the possibility of its breakdown under oxidative conditions and the demonstrated development of anti-PEG antibodies highlight the necessity to develop carriers based on materials with increased stability in a challenging biological environment. Here, we describe the synthesis of polysulfide via anionic ring-opening polymerization. In vitro, the synthesized polymer was characterized by low toxicity and a level of complement activation (in human plasma) and macrophage uptake slightly lower than PEG and poly (2‐methyl-2‐oxazoline) (PMOX), of a similar size. Importantly, and differently from PEG, on activated macrophages, the synthesized polymer showed a strong and dose-dependent ROS scavenging activity, which resulted in the corresponding reduction of cytokine production. Therefore, the results from these studies show that polysulfide is highly biocompatible and are potential candidates to be used as an alternative to PEG for various applications in nanomedicine.

Keywords: PEG, low toxicity, ROS scavenging, biocompatible

Procedia PDF Downloads 129
3448 Study of First Hydrogenation Kinetics at Different Temperatures of BCC Alloy 52Ti-12V-36Cr + x wt% Zr (x = 4, 8 & 12)

Authors: Ravi Prakash

Abstract:

The effects of Zr addition on kinetics and hydrogen absorption characteristics of BCC alloy 52Ti-12V-36Cr doped with x wt% of Zr (x = 0, 4, 8 & 12) was investigated. The samples have been characterized by X-ray diffraction, and activation study were made at four different temperatures- 100 oC, 200 oC, 300 oC and 400 oC. First hydrogenation kinetics of alloys were studied at 20 bar of hydrogen pressure and room temperature after giving heat treatment at different temperatures for 6 hours. Among the various Zr doped alloys studied, the composition 52Ti-12V-36Cr + 4wt% Zr shows maximum hydrogen storage capacity of 3.6wt%. Small amount of Zr shows advantageous effects on kinetics of alloy. It was also found out that alloys with the higher Zr concentration can be activated by giving heat treatment at lower temperatures. There is reduction in hydrogen storage capacity with increasing Zr content in the alloy primarily due to increasing abundance of secondary phase as established by X-Ray Diffraction and Scanning Electron Microscope results.

Keywords: hydrogen storage, metal hydrides, bcc alloy, heat treatment

Procedia PDF Downloads 73
3447 Using Building Information Modeling in Green Building Design and Performance Optimization

Authors: Moataz M. Hamed, Khalid S. M. Al Hagla, Zeyad El Sayad

Abstract:

Thinking in design energy-efficiency and high-performance green buildings require a different design mechanism and design approach than conventional buildings to achieve more sustainable result. By reasoning about specific issues at the correct time in the design process, the design team can minimize negative impacts, maximize building performance and keep both first and operation costs low. This paper attempts to investigate and exploit the sustainable dimension of building information modeling (BIM) in designing high-performance green buildings that require less energy for operation, emit less carbon dioxide and provide a conducive indoor environment for occupants through early phases of the design process. This objective was attained by a critical and extensive literature review that covers the following issues: the value of considering green strategies in the early design stage, green design workflow, and BIM-based performance analysis. Then the research proceeds with a case study that provides an in-depth comparative analysis of building performance evaluation between an office building in Alexandria, Egypt that was designed by the conventional design process with the same building if taking into account sustainability consideration and BIM-based sustainable analysis integration early through the design process. Results prove that using sustainable capabilities of building information modeling (BIM) in early stages of the design process side by side with green design workflow promote buildings performance and sustainability outcome.

Keywords: BIM, building performance analysis, BIM-based sustainable analysis, green building design

Procedia PDF Downloads 343
3446 Adsorption of Lead and Zinc Ions Onto Chemical Activated Millet Husk: Equilibrium and Kinetics Studies

Authors: Hilary Rutto, Linda Sibali

Abstract:

In this study, the adsorption of lead and zinc ions from aqueous solutions by modified millet husk has been investigated. The effects of different parameters, such as pH, adsorbent dosage, concentration, temperature, and contact time, have been investigated. The results of the experiments showed that the adsorption of both metal ions increased by increasing pH values up to 11. Adsorption process was initially fast. The adsorption rate decreased then until it reached to equilibrium time of 120 min for both lead and zinc ions. The Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and thermodynamic models (Gibbs free energy) were used to determine the isotherm parameters associated with the adsorption process. The positive values of Gibbs free energy change indicated that reaction is not spontaneous. Experimental data were also evaluated in terms of kinetic characteristics of adsorption, and it was found that adsorption process for both metal ions followed pseudo-first order for zinc and pseudo-second-order for lead.

Keywords: zinc, lead, adsorption, millet husks

Procedia PDF Downloads 166
3445 Evaluation of the Effectiveness of a HAWK Signal on Compliance in Las Vegas Nevada

Authors: A. Paz, M. Khadka, N. Veeramisti, B. Morris

Abstract:

There is a continuous large number of crashes involving pedestrians in Nevada despite the numerous safety mechanisms currently used at roadway crossings. Hence, additional as well as more effective mechanisms are required to reduce crashes in Las Vegas, in particular, and Nevada in general. A potential mechanism to reduce conflicts between pedestrians and vehicles is a High-intensity Activated crossWalK (HAWK) signal. This study evaluates the effects of such signals at a particular site in Las Vegas. Video data were collected using two cameras, facing the eastbound and westbound traffic. One week of video data before and after the deployment of the signal were collected to capture the behavior of both pedestrians and drivers. T-test analyses of pedestrian waiting time at the curb, curb-to-curb crossing time, total crossing time, jaywalking events, and near-crash events show that the HAWK system provides significant benefits.

Keywords: pedestrian crashes, HAWK signal, traffic safety, pedestrian danger index

Procedia PDF Downloads 341
3444 Resonant Fluorescence in a Two-Level Atom and the Terahertz Gap

Authors: Nikolai N. Bogolubov, Andrey V. Soldatov

Abstract:

Terahertz radiation occupies a range of frequencies somewhere from 100 GHz to approximately 10 THz, just between microwaves and infrared waves. This range of frequencies holds promise for many useful applications in experimental applied physics and technology. At the same time, reliable, simple techniques for generation, amplification, and modulation of electromagnetic radiation in this range are far from been developed enough to meet the requirements of its practical usage, especially in comparison to the level of technological abilities already achieved for other domains of the electromagnetic spectrum. This situation of relative underdevelopment of this potentially very important range of electromagnetic spectrum is known under the name of the 'terahertz gap.' Among other things, technological progress in the terahertz area has been impeded by the lack of compact, low energy consumption, easily controlled and continuously radiating terahertz radiation sources. Therefore, development of new techniques serving this purpose as well as various devices based on them is of obvious necessity. No doubt, it would be highly advantageous to employ the simplest of suitable physical systems as major critical components in these techniques and devices. The purpose of the present research was to show by means of conventional methods of non-equilibrium statistical mechanics and the theory of open quantum systems, that a thoroughly studied two-level quantum system, also known as an one-electron two-level 'atom', being driven by external classical monochromatic high-frequency (e.g. laser) field, can radiate continuously at much lower (e.g. terahertz) frequency in the fluorescent regime if the transition dipole moment operator of this 'atom' possesses permanent non-equal diagonal matrix elements. This assumption contradicts conventional assumption routinely made in quantum optics that only the non-diagonal matrix elements persist. The conventional assumption is pertinent to natural atoms and molecules and stems from the property of spatial inversion symmetry of their eigenstates. At the same time, such an assumption is justified no more in regard to artificially manufactured quantum systems of reduced dimensionality, such as, for example, quantum dots, which are often nicknamed 'artificial atoms' due to striking similarity of their optical properties to those ones of the real atoms. Possible ways to experimental observation and practical implementation of the predicted effect are discussed too.

Keywords: terahertz gap, two-level atom, resonant fluorescence, quantum dot, resonant fluorescence, two-level atom

Procedia PDF Downloads 271
3443 Anti-Corruption in Adverse Contexts: A Strategic Approach

Authors: Mushtaq H. Khan, Antonio Andreoni, Pallavi Roy

Abstract:

Developing countries are characterized by political settlements where formal rules are generally weakly enforced and widely violated. Conventional anti-corruption strategies that focus on improving the general enforcement of a rule of law and raising the costs of corruption facing individual public officials have typically delivered poor results in these contexts. Our alternative approach is to identify anti-corruption strategies that have a high impact and that are feasible to implement in these contexts. Our alternative approach identifies anti-corruption strategies from the bottom up. This involves identifying the characteristics of the corruption constraining particular development outcomes. By drawing on theories of rents and rent seeking, and theories of political settlements, we can assess the developmental impact of particular anti-corruption strategies and the feasibility of implementing these strategies. We argue that feasible anti-corruption in these contexts cannot be solely based on conventional anti-corruption strategies. In societies that have widespread rule violations, high-impact anti-corruption is only likely to be feasible if the overall strategy succeeds in aligning the interests and capabilities of powerful organizations at the sectoral level to support the enforcement of particular sets of rules. We examine four related strategies for changing these incentives and capabilities of critical stakeholders at the local or sectoral level, and we argue that this can provide a framework for organizing research on the impact and feasibility of anti-corruption activities in different priority areas in particular countries.

Keywords: anti-corruption, development, political settlements analysis, rule of law

Procedia PDF Downloads 418
3442 Design and Modeling of a Green Building Energy Efficient System

Authors: Berhane Gebreslassie

Abstract:

Conventional commericial buildings are among the highest unwisely consumes enormous amount of energy and as consequence produce significant amount Carbon Dioxide (CO2). Traditional/conventional buildings have been built for years without consideration being given to their impact on the global warming issues as well as their CO2 contributions. Since 1973, simulation of Green Building (GB) for Energy Efficiency started and many countries in particular the US showed a positive response to minimize the usage of energy in respect to reducing the CO2 emission. As a consequence many software companies developed their own unique building energy efficiency simulation software, interfacing interoperability with Building Information Modeling (BIM). The last decade has witnessed very rapid growing number of researches on GB energy efficiency system. However, the study also indicates that the results of current GB simulation are not yet satisfactory to meet the objectives of GB. In addition most of these previous studies are unlikely excluded the studies of ultimate building energy efficiencies simulation. The aim of this project is to meet the objectives of GB by design, modeling and simulation of building ultimate energy efficiencies system. This research project presents multi-level, L-shape office building in which every particular part of the building materials has been tested for energy efficiency. An overall of 78.62% energy is saved, approaching to NetZero energy saving. Furthermore, the building is implements with distributed energy resources like renewable energies and integrating with Smart Building Automation System (SBAS) for controlling and monitoring energy usage.

Keywords: ultimate energy saving, optimum energy saving, green building, sustainable materials and renewable energy

Procedia PDF Downloads 275
3441 Constructed Wetlands: A Sustainable Approach for Waste Water Treatment

Authors: S. Sehar, S. Khan, N. Ali, S. Ahmed

Abstract:

In the last decade, the hunt for cost-effective, eco-friendly and energy sustainable technologies for waste water treatment are gaining much attention due to emerging water crisis and rapidly depleting existing water reservoirs all over the world. In this scenario, constructed wetland being a “green technology” could be a reliable mean for waste water treatment especially in small communities due to cost-effectiveness, ease in management, less energy consumption and sludge production. Therefore, a low cost, lab-scale sub-surface flow hybrid constructed wetland (SS-HCW) was established for domestic waste water treatment.It was observed that not only the presence but also choice of suitable vegetation along with hydraulic retention time (HRT) are key intervening ingredients which directly influence pollutant removals in constructed wetlands. Another important aspect of vegetation is that it may facilitate microbial attachment in rhizosphere, thus promote biofilm formation via microbial interactions. The major factors that influence initial aggregation and subsequent biofilm formation i.e. divalent cations (Ca2+) and extra cellular DNA (eDNA) were also studied in detail. The presence of Ca2+ in constructed wetland demonstrate superior performances in terms of effluent quality, i.e BOD5, COD, TDS, TSS, and PO4- than in absence of Ca2+. Finally, light and scanning electron microscopies coupled with EDS were carried out to get more insights into the mechanics of biofilm formation with or without Ca addition. Therefore, the same strategy can be implemented in other waste water treatment technologies.

Keywords: hybrid constructed wetland, biofilm formation, waste water treatment, waste water

Procedia PDF Downloads 402
3440 Human Identification Using Local Roughness Patterns in Heartbeat Signal

Authors: Md. Khayrul Bashar, Md. Saiful Islam, Kimiko Yamashita, Yano Midori

Abstract:

Despite having some progress in human authentication, conventional biometrics (e.g., facial features, fingerprints, retinal scans, gait, voice patterns) are not robust against falsification because they are neither confidential nor secret to an individual. As a non-invasive tool, electrocardiogram (ECG) has recently shown a great potential in human recognition due to its unique rhythms characterizing the variability of human heart structures (chest geometry, sizes, and positions). Moreover, ECG has a real-time vitality characteristic that signifies the live signs, which ensure legitimate individual to be identified. However, the detection accuracy of the current ECG-based methods is not sufficient due to a high variability of the individual’s heartbeats at a different instance of time. These variations may occur due to muscle flexure, the change of mental or emotional states, and the change of sensor positions or long-term baseline shift during the recording of ECG signal. In this study, a new method is proposed for human identification, which is based on the extraction of the local roughness of ECG heartbeat signals. First ECG signal is preprocessed using a second order band-pass Butterworth filter having cut-off frequencies of 0.00025 and 0.04. A number of local binary patterns are then extracted by applying a moving neighborhood window along the ECG signal. At each instant of the ECG signal, the pattern is formed by comparing the ECG intensities at neighboring time points with the central intensity in the moving window. Then, binary weights are multiplied with the pattern to come up with the local roughness description of the signal. Finally, histograms are constructed that describe the heartbeat signals of individual subjects in the database. One advantage of the proposed feature is that it does not depend on the accuracy of detecting QRS complex, unlike the conventional methods. Supervised recognition methods are then designed using minimum distance to mean and Bayesian classifiers to identify authentic human subjects. An experiment with sixty (60) ECG signals from sixty adult subjects from National Metrology Institute of Germany (NMIG) - PTB database, showed that the proposed new method is promising compared to a conventional interval and amplitude feature-based method.

Keywords: human identification, ECG biometrics, local roughness patterns, supervised classification

Procedia PDF Downloads 404
3439 Empirical Superpave Mix-Design of Rubber-Modified Hot-Mix Asphalt in Railway Sub-Ballast

Authors: Fernando M. Soto, Gaetano Di Mino

Abstract:

The design of an unmodified bituminous mixture and three rubber-aggregate mixtures containing rubber-aggregate by a dry process (RUMAC) was evaluated, using an empirical-analytical approach based on experimental findings obtained in the laboratory with the volumetric mix design by gyratory compaction. A reference dense-graded bituminous sub-ballast mixture (3% of air voids and a bitumen 4% over the total weight of the mix), and three rubberized mixtures by dry process (1,5 to 3% of rubber by total weight and 5-7% of binder) were used applying the Superpave mix-design for a level 3 (high-traffic) design rail lines. The railway trackbed section analyzed was a granular layer of 19 cm compacted, while for the sub-ballast a thickness of 12 cm has been used. In order to evaluate the effect of increasing the specimen density (as a percent of its theoretical maximum specific gravity), in this article, are illustrated the results obtained after different comparative analysis into the influence of varying the binder-rubber percentages under the sub-ballast layer mix-design. This work demonstrates that rubberized blends containing crumb and ground rubber in bituminous asphalt mixtures behave at least similar or better than conventional asphalt materials. By using the same methodology of volumetric compaction, the densification curves resulting from each mixture have been studied. The purpose is to obtain an optimum empirical parameter multiplier of the number of gyrations necessary to reach the same compaction energy as in conventional mixtures. It has provided some experimental parameters adopting an empirical-analytical method, evaluating the results obtained from the gyratory-compaction of bituminous mixtures with an HMA and rubber-aggregate blends. An extensive integrated research has been carried out to assess the suitability of rubber-modified hot mix asphalt mixtures as a sub-ballast layer in railway underlayment trackbed. Design optimization of the mixture was conducted for each mixture and the volumetric properties analyzed. Also, an improved and complete manufacturing process, compaction and curing of these blends are provided. By adopting this increase-parameters of compaction, called 'beta' factor, mixtures modified with rubber with uniform densification and workability are obtained that in the conventional mixtures. It is found that considering the usual bearing capacity requirements in rail track, the optimal rubber content is 2% (by weight) or 3.95% (by volumetric substitution) and a binder content of 6%.

Keywords: empirical approach, rubber-asphalt, sub-ballast, superpave mix-design

Procedia PDF Downloads 368
3438 Water Resources Crisis in Saudi Arabia, Challenges and Possible Management Options: An Analytic Review

Authors: A. A. Ghanim

Abstract:

The Kingdom of Saudi Arabia (KSA) is heading towards a severe and rapidly expanding water crisis, which can have negative impacts on the country’s environment and economy. Of the total water consumption in KSA, the agricultural sector accounts for nearly 87% of the total water use and, therefore, any attempt that overlooks this sector will not help in improving the sustainability of the country’s water resources. KSA Vision 2030 gives priority of water use in the agriculture sector for the regions that have natural renewable water resources. It means that there is little concern for making reuse of municipal wastewater for irrigation purposes in any region in general and in water-scarce regions in particular. The use of treated wastewater is very limited in Saudi Arabia, but it has very considerable potential for future expansion due its numerous beneficial uses. This study reviews the current situation of water resources in Saudi Arabia, providing more highlights on agriculture and wastewater reuse. The reviewed study is proposing some corrective measures for development and better management of water resources in the Kingdom. Suggestions also include consideration of treated water as an alternative source for irrigation in some regions of the country. The study concluded that a sustainable solution for the water crisis in KSA requires implementation of multiple measures in an integrated manner. The integrated solution plan should focus on two main directions: first, improving the current management practices of the existing water resources; second, developing new water supplies from both conventional and non-conventional sources.

Keywords: Saudia Arabia, water resources, water crises, wastewater reuse

Procedia PDF Downloads 170
3437 Effect of Formative Evaluation with Feedback on Students Economics Achievement in Secondary Education

Authors: Salihu Abdullahi Galle

Abstract:

Students' performance in Economics in schools and on standardized exams in Nigeria has been worrying throughout the years, owing to some teachers' use of conventional and lecture teaching methods. Other obstacles include a lack of training, standardized testing pressure, and aversion to change, all of which can have an impact on students' cognitive ability in Economics and future careers. The researchers employed formative evaluation with feedback (FEFB) to support the teaching and learning process by providing constant feedback to both teachers and students. The researchers employed a quasi-experimental research design to examine two teaching methods (FEFB and traditional). The pre-test and post-test interaction effects were evaluated between students in the experimental group (FEFB) and those in the conventional group. The interaction effects of pre-test and post-test on male and female in the two groups were also examined, with 90 participants. The findings show that students exposed to a FEFB-based teaching approach outperform pupils taught in a traditional classroom setting, and there is no gender interaction effect between the two groups. In light of these findings, the researchers urge that Economics teachers employ FEFB during teaching and learning to ensure timely feedback, and that policymakers ensure that Economics teachers receive training and re-training on FEFB approaches.

Keywords: formative evaluation with feedback (FEFB), students, economics achievement, secondary education

Procedia PDF Downloads 49
3436 A Study on How Domestic Cats' Nutritional Behavior is Affected by Adjustment Stress

Authors: Maria Magdy Danial Riad

Abstract:

The hypothalamic-pituitary-adrenal axis is activated by the adaptation stress, and this might result in the alteration of certain behavioral signs. The primary purpose of this paper is the adaptive stress effect on dietary behavior, which is directly correlated with changes in plasma cortisol levels. Physiological factors have a role in systems of adaptation and stress. Objectives: Ten clinically healthy cats were included in the study, and they were all kept in the same setting. Methods: On days 1, 5, 9, and 10 of the stay, each cat's behavior was observed through ethograms, and the serum cortisol levels were also measured at the same time. Significant behavioral changes in terms of nutrition were seen on the first day, with 50% of the participants not feeding and all participants not watering. Toward the study's conclusion, between days 5 and 9, there were no longer any discernible changes in the dietary habits, which might be attributed to the adaptation to the new living conditions. Cortisol variations in serological levels were consistent with behavioral changes; in 50% of the participants under observation, there was a substantial increase in values (p<0.05), which gradually declined as the study came to an end.

Keywords: domestic cats, ewes, nutritional behavior, adjustment stress, plasma cortisol levels

Procedia PDF Downloads 41
3435 Role of Moderate Intensity Exercises in the Amelioration of Oxidant-Antioxidant Status and the Levels of Inflammatory Cytokines in Rheumatoid Arthritis Patients

Authors: Somaiya Mateen, Shagufta Moin, Abdul Qayyum, Atif Zafar

Abstract:

Cytokines and reactive species play an important role in the pathophysiology of rheumatoid arthritis (RA). This study was done to determine the levels of reactive oxygen and nitrogen species (ROS and RNS), inflammatory cytokines and the markers of protein, DNA and lipid oxidation in the blood of RA patients, with the aim to study the antioxidant and anti-inflammatory role of moderate intensity exercises in the management of RA. RA patients were subdivided into two groups- first group (n=30) received treatment with conventional RA drugs while the second group (n=30) received moderate exercise therapy along with the conventional drugs for a period of 12 weeks. The levels of ROS, RNS, inflammatory cytokines and markers of biomolecule oxidation were monitored before and after 12 weeks of treatment. RA patients showed a marked increase in the levels of ROS, RNS, inflammatory cytokines, lipid, protein and DNA oxidation as compared to the healthy controls. These parameters were ameliorated after treatment with drugs alone and exercise combined with drugs, with the amelioration being more significant in patients given drugs along with the moderate intensity exercise treatment. In conclusion, the role of ROS, RNS and inflammatory cytokines in the pathogenesis of RA has been confirmed by this study. These may also serve as potential biomarker for assessing the disease severity. Finally, the addition of moderate intensity exercises in the management of RA may be of great value.

Keywords: rheumatoid arthritis, reactive oxygen species, inflammatory cytokines, moderate intensity exercises

Procedia PDF Downloads 333
3434 Systems Approach on Thermal Analysis of an Automatic Transmission

Authors: Sinsze Koo, Benjin Luo, Matthew Henry

Abstract:

In order to increase the performance of an automatic transmission, the automatic transmission fluid is required to be warm up to an optimal operating temperature. In a conventional vehicle, cold starts result in friction loss occurring in the gear box and engine. The stop and go nature of city driving dramatically affect the warm-up of engine oil and automatic transmission fluid and delay the time frame needed to reach an optimal operating temperature. This temperature phenomenon impacts both engine and transmission performance but also increases fuel consumption and CO2 emission. The aim of this study is to develop know-how of the thermal behavior in order to identify thermal impacts and functional principles in automatic transmissions. Thermal behavior was studied using models and simulations, developed using GT-Suit, on a one-dimensional thermal and flow transport. A power train of a conventional vehicle was modeled in order to emphasis the thermal phenomena occurring in the various components and how they impact the automatic transmission performance. The simulation demonstrates the thermal model of a transmission fluid cooling system and its component parts in warm-up after a cold start. The result of these analyses will support the future designs of transmission systems and components in an attempt to obtain better fuel efficiency and transmission performance. Therefore, these thermal analyses could possibly identify ways that improve existing thermal management techniques with prioritization on fuel efficiency.

Keywords: thermal management, automatic transmission, hybrid, and systematic approach

Procedia PDF Downloads 377
3433 Effects of Tillage and Crop Residues Management in Improving Rainfall-Use Efficiency in Dryland Crops under Sandy Soils

Authors: Cosmas Parwada, Ronald Mandumbu, Handseni Tibugari, Trust Chinyama

Abstract:

A 3-yr field experiment to evaluate effects of tillage and residue management on soil water storage (SWS), grain yield, harvest index (HI) and water use efficiency (WUE) of sorghum was done in sandy soils. Treatments were conventional (CT) and minimum (MT) tillage without residue retention and conventional (CT × RT) and minimum (MT × RT) tillage with residue retention. Change in SWS was higher under CT and MT than in CT × RT and MT × RT, especially in the 0-10 cm soil layer. Grain yield and HI were significantly (P < 0.05) lower in CT and MT than CT × RT and MT × RT. Grain yield and HI were significantly (P < 0.05) positively correlated to WUE but WUE significantly (P < 0.05) negatively correlated to sand (%) particle content. The SWS was lower in winter but higher in summer and was significantly correlated to soil organic carbon (SOC), sand (%), grain yield (t/ha), HI and WUE. The WUE linearly increasing from first to last cropping seasons in tillage with returned residues; higher in CT × RT and MT × RT that promoted SOC buildup than where crop residues were removed. Soil tillage decreased effects of residues on SWS, WUE, grain yield and HI. Minimum tillage coupled to residue retention sustainably enhanced WUE but further research to investigate the interaction effects of the tillage on WUE and soil fertility management is required. Understanding and considering the WUE in crops can be a primary condition for cropping system designs. The findings pave way for further research and crop management programmes, allowing to valorize the water in crop production.

Keywords: evapotranspiration, infiltration rate, organic mulch, sand, water use efficiency

Procedia PDF Downloads 215
3432 Ab-initio Calculations on the Mechanism of Action of Platinum and Ruthenium Complexes in Phototherapy

Authors: Eslam Dabbish, Fortuna Ponte, Stefano Scoditti, Emilia Sicilia, Gloria Mazzone

Abstract:

The medical techniques based on the use of light for activating the drug are occupying a prominent place in the cancer treatment due to their selectivity that contributes to reduce undesirable side effects of conventional chemotherapy. Among these therapeutic treatments, photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) are emerging as complementary approaches for selective destruction of neoplastic tissue through direct cellular damage. Both techniques rely on the employment of a molecule, photosensitizer (PS), able to absorb within the so-called therapeutic window. Thus, the exposure to light of otherwise inert molecules promotes the population of excited states of the drug, that in PDT are able to produce the cytotoxic species, such as 1O2 and other ROS, in PACT can be responsible of the active species release or formation. Following the success of cisplatin in conventional treatments, many other transition metal complexes were explored as anticancer agents for applications in different medical approaches, including PDT and PACT, in order to improve their chemical, biological and photophysical properties. In this field, several crucial characteristics of candidate PSs can be accurately predicted from first principle calculations, especially in the framework of density functional theory and its time-dependent formulation, contributing to the understanding of the entire photochemical pathways involved which can ultimately help in improving the efficiency of a drug. A brief overview of the outcomes on some platinum and ruthenium-based PSs proposed for the application in the two phototherapies will be provided.

Keywords: TDDFT, metal complexes, PACT, PDT

Procedia PDF Downloads 103