Search results for: contextual toxicity detection
3681 Distributed Framework for Pothole Detection and Monitoring Using Federated Learning
Authors: Ezil Sam Leni, Shalen S.
Abstract:
Transport service monitoring and upkeep are essential components of smart city initiatives. The main risks to the relevant departments and authorities are the ever-increasing vehicular traffic and the conditions of the roads. In India, the economy is greatly impacted by the road transport sector. In 2021, the Ministry of Road Transport and Highways Transport, Government of India, produced a report with statistical data on traffic accidents. The data included the number of fatalities, injuries, and other pertinent criteria. This study proposes a distributed infrastructure for the monitoring, detection, and reporting of potholes to the appropriate authorities. In a distributed environment, the nodes are the edge devices, and local edge servers, and global servers. The edge devices receive the initial model to be employed from the global server. The YOLOv8 model for pothole detection is used in the edge devices. The edge devices run the pothole detection model, gather the pothole images on their path, and send the updates to the nearby edge server. The local edge server selects the clients for its aggregation process, aggregates the model updates and sends the updates to the global server. The global server collects the updates from the local edge servers, performs aggregation and derives the updated model. The updated model has the information about the potholes received from the local edge servers and notifies the updates to the local edge servers and concerned authorities for monitoring and maintenance of road conditions. The entire process is implemented in FedCV distributed environment with the implementation using the client-server model and aggregation entities. After choosing the clients for its aggregation process, the local edge server gathers the model updates and transmits them to the global server. After gathering the updates from the regional edge servers, the global server aggregates them and creates the updated model. Performance indicators and the experimentation environment are assessed, discussed, and presented. Accelerometer data may be taken into consideration for improved performance in the future development of this study, in addition to the images captured from the transportation routes.Keywords: federated Learning, pothole detection, distributed framework, federated averaging
Procedia PDF Downloads 1043680 Emerging Therapeutic Approach with Dandelion Phytochemicals in Breast Cancer Treatment
Authors: Angel Champion, Sadia Kanwal, Rafat Siddiqui
Abstract:
Harnessing phytochemicals from plant sources presents a novel opportunity to prevent or treat malignant diseases, including breast cancer. Chemotherapy lacks precision in targeting cancerous cells while sparing normal cells, but a phytopharmaceutical approach may offer a solution. Dandelion, a common weed plant, is rich in phytochemicals and provides a safer, more cost-effective alternative with lower toxicity than traditional pharmaceuticals for conditions such as breast cancer. In this study, an in-vitro experiment will be conducted using the ethanol extract of Dandelion on triple-negative MDA-231 breast cancer cell lines. The polyphenolic analysis revealed that the Dandelion extract, particularly from the root and leaf (both cut and sifted), had the most potent antioxidant properties and exhibited the most potent antioxidation activity from the powdered leaf extract. The extract exhibits prospective promising effects for inducing cell proliferation and apoptosis in breast cancer cells, highlighting its potential for targeted therapeutic interventions. Standardizing methods for Dandelion use is crucial for future clinical applications in cancer treatment. Combining plant-derived compounds with cancer nanotechnology holds the potential for effective strategies in battling malignant diseases. Utilizing liposomes as carriers for phytoconstituent anti-cancer agents offers improved solubility, bioavailability, immunoregulatory effects, advancing anticancer immune function, and reducing toxicity. This integrated approach of natural products and nanotechnology has significant potential to revolutionize healthcare globally, especially in underserved communities where herbal medicine is prevalent.Keywords: apoptosis, antioxidant activity, cancer nanotechnology, phytopharmaceutical
Procedia PDF Downloads 543679 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects
Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes
Abstract:
Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction
Procedia PDF Downloads 1493678 MNH-886(Bt.): A Cotton Cultivar (G. Hirsutum L.) for Cultivation in Virus Infested Regions of Pakistan, Having High Seed Cotton Yield and Desirable Fibre Characteristics
Authors: Wajad Nazeer, Saghir Ahmad, Khalid Mahmood, Altaf Hussain, Abid Mahmood, Baoliang Zhou
Abstract:
MNH-886(Bt.) is a upland cotton cultivar (Gossypium hirsutum L.) developed through hybridization of three parents [(FH-207×MNH-770)×Bollgard-1] at Cotton Research Station Multan, Pakistan. It is resistant to CLCuVD with 16.25 % disease incidence (60 DAS, March sowing) whereas moderately susceptible to CLCuVD when planted in June with disease incidence 34 % (60 DAS). This disease reaction was lowest among 25 cotton advanced lines/varieties tested at hot spots of CLCuVD. Its performance was tested during 2009 to 2012 in various indigenous, provincial, and national varietal trials in comparison with the commercial variety IR-3701 and AA-802 & CIM-496. In PCCT trial during 2009-10; 2011-12, MNH-886 surpassed all the existing Bt. strains along with commercial varieties across the Punjab province with seed cotton yield production 2658 kg ha-1 and 2848 kg ha-1 which was 81.31 and 13% higher than checks, respectively. In National Coordinated Bt. Trial, MNH-886(Bt.) produced 3347 kg ha-1 seed cotton at CCRI, Multan; the hot spot of CLCuVD, in comparison to IR-3701 which gave 2556 kg ha-1. It possesses higher lint percentage (41.01%), along with the most desirable fibre traits (staple length 28.210mm, micronaire value 4.95 µg inch-1 and fibre strength 99.5 tppsi, and uniformity ratio 82.0%). The quantification of toxicity level of crystal protein was found positive for Cry1Ab/Ac protein with toxicity level 2.76µg g-1 and Mon 531 event was confirmed. Having tremendous yield potential, good fibre traits, and great tolerance to CLCuVD we can recommended this variety for cultivation in CLCuVD hotspots of Pakistan.Keywords: cotton, cultivar, cotton leaf curl virus, CLCuVD hit districts
Procedia PDF Downloads 3183677 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification
Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang
Abstract:
One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.Keywords: malware detection, network security, targeted attack, computational intelligence
Procedia PDF Downloads 2643676 New Features for Copy-Move Image Forgery Detection
Authors: Michael Zimba
Abstract:
A novel set of features for copy-move image forgery, CMIF, detection method is proposed. The proposed set presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilised to extract robust features. The extracted features are shown to be invariant to additive noise, JPEG compression, and affine transformation. The proposed features can also be used in general object matching.Keywords: virtual electrostatic field, features, affine transformation, copy-move image forgery
Procedia PDF Downloads 5433675 Chemically Modified Chitosan Derivatives with Ameliorated Properties Appropriate for Drug Delivery
Authors: Georgia M. Michailidou, Nina-Maria S. Ainali, Eleftheria C. Xanthopoulou, Dimitrios N. Bikiaris
Abstract:
Polysaccharides are polymeric materials derived from nature. They are extensively used in pharmaceutical technology due to their low cost, their ready availability and their low toxicity. Chitosan is the product derived from the deacetylation of chitin usually obtained from arthropods. It is a linear polysaccharide which is composed of repeated units of N-deacetylated amino groups and some N-acetylated groups residues. Due to its excellent biological properties, it is an attractive natural polymer. It is biocompatible with low toxicity and complete biodegradability. Although it has excellent properties, the chemical modification of its structure results in new derivatives with ameliorated and more improved properties compared to the initial polymer. This is the exact purpose of the present study in which chitosan was modified with three different monomers, namely trans-aconitic acid, succinic anhydride and 2-hydroxyethyl acrylate. In chitosan’s modification with trans aconitic acid, EDC was utilized as an activator of the carboxylic groups of the monomer, and then a coupling reaction with the amino groups took place. Succinic anhydride reacted with chitosan through a ring opening reaction while 2-hydroxyethyl acrylate reacted through the addition of chitosan’s amino group to the double bond of the monomer. Through FTIR and NMR measurements the success of each reaction was confirmed, and the new structures of the derivatives were verified. X-ray diffraction was utilized in order to examine the effect of the modifications in chitosan’s crystallinity. Finally, swelling tests were conducted in order to assess the improved ability of the new polymeric materials to absorb water. Our results support the successful modification of chitosan’s macromolecular chains in all three reactions. Furthermore, the new derivatives appear to be amorphous concerning their crystallinity and have great ability in absorbing water.Keywords: chitosan, derivatives, modification, polysaccharide
Procedia PDF Downloads 1073674 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection
Authors: Yulan Wu
Abstract:
With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 973673 Luminescent Functionalized Graphene Oxide Based Sensitive Detection of Deadly Explosive TNP
Authors: Diptiman Dinda, Shyamal Kumar Saha
Abstract:
In the 21st century, sensitive and selective detection of trace amounts of explosives has become a serious problem. Generally, nitro compound and its derivatives are being used worldwide to prepare different explosives. Recently, TNP (2, 4, 6 trinitrophenol) is the most commonly used constituent to prepare powerful explosives all over the world. It is even powerful than TNT or RDX. As explosives are electron deficient in nature, it is very difficult to detect one separately from a mixture. Again, due to its tremendous water solubility, detection of TNP in presence of other explosives from water is very challenging. Simple instrumentation, cost-effective, fast and high sensitivity make fluorescence based optical sensing a grand success compared to other techniques. Graphene oxide (GO), with large no of epoxy grps, incorporate localized nonradiative electron-hole centres on its surface to give very weak fluorescence. In this work, GO is functionalized with 2, 6-diamino pyridine to remove those epoxy grps. through SN2 reaction. This makes GO into a bright blue luminescent fluorophore (DAP/rGO) which shows an intense PL spectrum at ∼384 nm when excited at 309 nm wavelength. We have also characterized the material by FTIR, XPS, UV, XRD and Raman measurements. Using this as fluorophore, a large fluorescence quenching (96%) is observed after addition of only 200 µL of 1 mM TNP in water solution. Other nitro explosives give very moderate PL quenching compared to TNP. Such high selectivity is related to the operation of FRET mechanism from fluorophore to TNP during this PL quenching experiment. TCSPC measurement also reveals that the lifetime of DAP/rGO drastically decreases from 3.7 to 1.9 ns after addition of TNP. Our material is also quite sensitive to 125 ppb level of TNP. Finally, we believe that this graphene based luminescent material will emerge a new class of sensing materials to detect trace amounts of explosives from aqueous solution.Keywords: graphene, functionalization, fluorescence quenching, FRET, nitroexplosive detection
Procedia PDF Downloads 4403672 Effect of Concentration Level and Moisture Content on the Detection and Quantification of Nickel in Clay Agricultural Soil in Lebanon
Authors: Layan Moussa, Darine Salam, Samir Mustapha
Abstract:
Heavy metal contamination in agricultural soils in Lebanon poses serious environmental and health problems. Intensive efforts are employed to improve existing quantification methods of heavy metals in contaminated environments since conventional detection techniques have shown to be time-consuming, tedious, and costly. The implication of hyperspectral remote sensing in this field is possible and promising. However, factors impacting the efficiency of hyperspectral imaging in detecting and quantifying heavy metals in agricultural soils were not thoroughly studied. This study proposes to assess the use of hyperspectral imaging for the detection of Ni in agricultural clay soil collected from the Bekaa Valley, a major agricultural area in Lebanon, under different contamination levels and soil moisture content. Soil samples were contaminated with Ni, with concentrations ranging from 150 mg/kg to 4000 mg/kg. On the other hand, soil with background contamination was subjected to increased moisture levels varying from 5 to 75%. Hyperspectral imaging was used to detect and quantify Ni contamination in the soil at different contamination levels and moisture content. IBM SPSS statistical software was used to develop models that predict the concentration of Ni and moisture content in agricultural soil. The models were constructed using linear regression algorithms. The spectral curves obtained reflected an inverse correlation between both Ni concentration and moisture content with respect to reflectance. On the other hand, the models developed resulted in high values of predicted R2 of 0.763 for Ni concentration and 0.854 for moisture content. Those predictions stated that Ni presence was well expressed near 2200 nm and that of moisture was at 1900 nm. The results from this study would allow us to define the potential of using the hyperspectral imaging (HSI) technique as a reliable and cost-effective alternative for heavy metal pollution detection in contaminated soils and soil moisture prediction.Keywords: heavy metals, hyperspectral imaging, moisture content, soil contamination
Procedia PDF Downloads 1013671 Toxicity Evaluation of Reduced Graphene Oxide on First Larval Stages of Artemia sp.
Authors: Roberta Pecoraro
Abstract:
The focus of this work was to investigate the potential toxic effect of titanium dioxide-reduced graphene oxide (TiO₂-rGO) nanocomposites on nauplii of microcrustacean Artemia sp. In order to assess the nanocomposite’s toxicity, a short-term test was performed by exposing nauplii to solutions containing TiO₂-rGO. To prepare titanium dioxide-reduced graphene oxide (TiO₂-rGO) nanocomposites, a green procedure based on solar photoreduction was proposed; it allows to obtain the photocatalysts by exploiting the photocatalytic properties of titania activated by the solar irradiation in order to avoid the high temperatures and pressures required for the standard hydrothermal synthesis. Powders of TiO₂-rGO supplied by the Department of Chemical Sciences (University of Catania) are indicated as TiO₂-rGO at 1% and TiO₂-rGO at 2%. Starting from a stock solution (1mg rGO-TiO₂/10 ml ASPM water) of each type, we tested four different concentrations (serial dilutions ranging from 10⁻¹ to 10⁻⁴ mg/ml). All the solutions have been sonicated for 12 min prior to use. Artificial seawater (called ASPM water) was prepared to guarantee the hatching of the cysts and to maintain nauplii; the durable cysts used in this study, marketed by JBL (JBL GmbH & Co. KG, Germany), were hydrated with ASPM water to obtain nauplii (instar II-III larvae). The hatching of the cysts was carried out in the laboratory by immersing them in ASPM water inside a 500 ml beaker and keeping them constantly oxygenated thanks to an aerator for the insufflation of microbubble air: after 24-48 hours, the cysts hatched, and the nauplii appeared. The nauplii in the second and third stages of development were collected one-to-one, using stereomicroscopes, and transferred into 96-well microplates where one nauplius per well was added. The wells quickly have been filled with 300 µl of each specific concentration of the solution used, and control samples were incubated only with ASPM water. Replication was performed for each concentration. Finally, the microplates were placed on an orbital shaker, and the tests were read after 24 and 48 hours from inoculating the solutions to assess the endpoint (immobility/death) for the larvae. Nauplii that appeared motionless were counted as dead, and the percentages of mortality were calculated for each treatment. The results showed a low percentage of immobilization both for TiO₂-rGO at 1% and TiO₂-rGO at 2% for all concentrations tested: for TiO₂-rGO at 1% was below 12% after 24h and below 15% after 48h; for TiO₂-rGO at 2% was below 8% after 24h and below 12% after 48h. According to other studies in the literature, the results have not shown mortality nor toxic effects on the development of larvae after exposure to rGO. Finally, it is important to highlight that the TiO₂-rGO catalysts were tested in the solar photodegradation of a toxic herbicide (2,4-Dichlorophenoxyacetic acid, 2,4-D), obtaining a high percentage of degradation; therefore, this alternative approach could be considered a good strategy to obtain performing photocatalysts.Keywords: Nauplii, photocatalytic properties, reduced GO, short-term toxicity test, titanium dioxide
Procedia PDF Downloads 1833670 Artificial Intelligence and Machine Vision-Based Defect Detection Methodology for Solid Rocket Motor Propellant Grains
Authors: Sandip Suman
Abstract:
Mechanical defects (cracks, voids, irregularities) in rocket motor propellant are not new and it is induced due to various reasons, which could be an improper manufacturing process, lot-to-lot variation in chemicals or just the natural aging of the products. These defects are normally identified during the examination of radiographic films by quality inspectors. However, a lot of times, these defects are under or over-classified by human inspectors, which leads to unpredictable performance during lot acceptance tests and significant economic loss. The human eye can only visualize larger cracks and defects in the radiographs, and it is almost impossible to visualize every small defect through the human eye. A different artificial intelligence-based machine vision methodology has been proposed in this work to identify and classify the structural defects in the radiographic films of rocket motors with solid propellant. The proposed methodology can extract the features of defects, characterize them, and make intelligent decisions for acceptance or rejection as per the customer requirements. This will automatize the defect detection process during manufacturing with human-like intelligence. It will also significantly reduce production downtime and help to restore processes in the least possible time. The proposed methodology is highly scalable and can easily be transferred to various products and processes.Keywords: artificial intelligence, machine vision, defect detection, rocket motor propellant grains
Procedia PDF Downloads 983669 A Survey in Techniques for Imbalanced Intrusion Detection System Datasets
Authors: Najmeh Abedzadeh, Matthew Jacobs
Abstract:
An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms.Keywords: IDS, imbalanced datasets, sampling algorithms, big data
Procedia PDF Downloads 3283668 Acetic Acid Assisted Phytoextraction of Chromium (Cr) by Energy Crop (Arundo donax L.) in Cr Contaminated Soils
Authors: Muhammad Iqbal, Hafiz Muhammad Tauqeer, Hamza Rafaqat, Muhammad Naveed, Muhammad Awais Irshad
Abstract:
Soil pollution with chromium (Cr) has become one of the most important concerns due to its toxicity for humans. To date, various remediation approaches have been employed for the remediation and management of Cr contaminated soils. Phytoextraction is an eco-friendly and emerging remediation approach which has gained attention due to several advantages over conventional remediation approach. The use of energy crops for phytoremediation is an emerging trend worldwide. These energy crops have high tolerance against various environmental stresses, the potential to grow in diverse ecosystems and high biomass production make them a suitable candidate for phytoremediation of contaminated soils. The removal efficiency of plants in phytoextraction depends upon several soil and plant factors including solubility, bioavailability and metal speciation in soils. A pot scale experiment was conducted to evaluate the phytoextraction potential of Arundo donax L. with the application of acetic acid (A.A) in Cr contaminated soils. Plants were grown in pots filled with 5 kg soils for 90 days. After 30 days plants acclimatization in pot conditions, plants were treated with various levels of Cr (2.5 mM, 5 mM, 7.5 mM, 10 mM) and A.A (Cr 2.5 mM + A.A 2.5 mM, Cr 5 mM + A.A 2.5 mM, Cr 7.5 mM + A.A 2.5 mM, Cr 10 mM + A.A 2.5 mM). The application of A.A significantly increased metal uptake and in roots and shoots of A. donax. This increase was observed at Cr 7.5 mM + A.A 2.5 mM but at high concentrations, visual symptoms of Cr toxicity were observed on leaves. Similarly, A.A applications also affect the activities of key enzymes including catalase (CAT), superoxidase dismutase (SOD), and ascorbate peroxidase (APX) in leaves of A. donax. Based on results it is concluded that the applications of A.A acid for phytoextraction is an alternative approach for the management of Cr affected soils and synthetic chelators should be replaced with organic acids.Keywords: acetic acid, A. donax, chromium, energy crop, phytoextraction
Procedia PDF Downloads 3893667 Intelligent Crowd Management Systems in Trains
Authors: Sai S. Hari, Shriram Ramanujam, Unnati Trivedi
Abstract:
The advent of mass transit systems like rail, metro, maglev, and various other rail based transport has pacified the requirement of public transport for the masses to a great extent. However, the abatement of the demand does not necessarily mean it is managed efficiently, eloquently or in an encapsulating manner. The primary problem identified that the one this paper seeks to solve is the dipsomaniac like manner in which the compartments are occupied. This problem is solved by using a comparison of an empty train and an occupied one. The pixel data of an occupied train is compared to the pixel data of an empty train. This is done using canny edge detection technique. After the comparison it intimates the passengers at the consecutive stops which compartments are not occupied or have low occupancy. Thus, redirecting them and preventing overcrowding.Keywords: canny edge detection, comparison, encapsulation, redirection
Procedia PDF Downloads 3343666 Designing a Cyclic Redundancy Checker-8 for 32 Bit Input Using VHDL
Authors: Ankit Shai
Abstract:
CRC or Cyclic Redundancy Check is one of the most common, and one of the most powerful error-detecting codes implemented on modern computers. Most of the modern communication protocols use some error detection algorithms in digital networks and storage devices to detect accidental changes to raw data between transmission and reception. Cyclic Redundancy Check, or CRC, is the most popular one among these error detection codes. CRC properties are defined by the generator polynomial length and coefficients. The aim of this project is to implement an efficient FPGA based CRC-8 that accepts a 32 bit input, taking into consideration optimal chip area and high performance, using VHDL. The proposed architecture is implemented on Xilinx ISE Simulator. It is designed while keeping in mind the hardware design, complexity and cost factor.Keywords: cyclic redundancy checker, CRC-8, 32-bit input, FPGA, VHDL, ModelSim, Xilinx
Procedia PDF Downloads 2923665 Traffic Analysis and Prediction Using Closed-Circuit Television Systems
Authors: Aragorn Joaquin Pineda Dela Cruz
Abstract:
Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction
Procedia PDF Downloads 1023664 Advanced Driver Assistance System: Veibra
Authors: C. Fernanda da S. Sampaio, M. Gabriela Sadith Perez Paredes, V. Antonio de O. Martins
Abstract:
Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle.Keywords: advanced driver assistance systems, tracking, traffic signal detection, vehicle perception system
Procedia PDF Downloads 1553663 Qualitative Detection of HCV and GBV-C Co-infection in Cirrhotic Patients Using a SYBR Green Multiplex Real Time RT-PCR Technique
Authors: Shahzamani Kiana, Esmaeil Lashgarian Hamed, Merat Shahin
Abstract:
HCV and GBV-C belong to the Flaviviridae family of viruses and GBV-C is the closest virus to HCV genetically. Accumulative research is in progress all over the world to clarify clinical aspects of GBV-C. Possibility of interaction between HCV and GBV-C and also its consequence with other liver diseases are the most important clinical aspects which encourage researchers to develop a technique for simultaneous detection of these viruses. In this study a SYBR Green multiplex real time RT-PCR technique as a new economical and sensitive method was optimized for simultaneous detection of HCV/GBV-C in HCV positive plasma samples. After designing and selection of two pairs of specific primers for HCV and GBV-C, SYBR Green Real time RT-PCR technique optimization was performed separately for each virus. Establishment of multiplex PCR was the next step. Finally our technique was performed on positive and negative plasma samples. 89 cirrhotic HCV positive plasma samples (29 of genotype 3 a and 27 of genotype 1a) were collected from patients before receiving treatment. 14% of genotype 3a and 17.1% of genotype 1a showed HCV/GBV-C co-infection. As a result, 13.48% of 89 samples had HCV/GBV-C co-infection that was compatible with other results from all over the world. Data showed no apparent influence of HGV co-infection on the either clinical or virological aspect of HCV infection. Furthermore, with application of multiplex Real time RT-PCR technique, more time and cost could be saved in clinical-research settings.Keywords: HCV, GBV-C, cirrhotic patients, multiplex real time RT- PCR
Procedia PDF Downloads 2953662 Temperature Contour Detection of Salt Ice Using Color Thermal Image Segmentation Method
Authors: Azam Fazelpour, Saeed Reza Dehghani, Vlastimil Masek, Yuri S. Muzychka
Abstract:
The study uses a novel image analysis based on thermal imaging to detect temperature contours created on salt ice surface during transient phenomena. Thermal cameras detect objects by using their emissivities and IR radiance. The ice surface temperature is not uniform during transient processes. The temperature starts to increase from the boundary of ice towards the center of that. Thermal cameras are able to report temperature changes on the ice surface at every individual moment. Various contours, which show different temperature areas, appear on the ice surface picture captured by a thermal camera. Identifying the exact boundary of these contours is valuable to facilitate ice surface temperature analysis. Image processing techniques are used to extract each contour area precisely. In this study, several pictures are recorded while the temperature is increasing throughout the ice surface. Some pictures are selected to be processed by a specific time interval. An image segmentation method is applied to images to determine the contour areas. Color thermal images are used to exploit the main information. Red, green and blue elements of color images are investigated to find the best contour boundaries. The algorithms of image enhancement and noise removal are applied to images to obtain a high contrast and clear image. A novel edge detection algorithm based on differences in the color of the pixels is established to determine contour boundaries. In this method, the edges of the contours are obtained according to properties of red, blue and green image elements. The color image elements are assessed considering their information. Useful elements proceed to process and useless elements are removed from the process to reduce the consuming time. Neighbor pixels with close intensities are assigned in one contour and differences in intensities determine boundaries. The results are then verified by conducting experimental tests. An experimental setup is performed using ice samples and a thermal camera. To observe the created ice contour by the thermal camera, the samples, which are initially at -20° C, are contacted with a warmer surface. Pictures are captured for 20 seconds. The method is applied to five images ,which are captured at the time intervals of 5 seconds. The study shows the green image element carries no useful information; therefore, the boundary detection method is applied on red and blue image elements. In this case study, the results indicate that proposed algorithm shows the boundaries more effective than other edges detection methods such as Sobel and Canny. Comparison between the contour detection in this method and temperature analysis, which states real boundaries, shows a good agreement. This color image edge detection method is applicable to other similar cases according to their image properties.Keywords: color image processing, edge detection, ice contour boundary, salt ice, thermal image
Procedia PDF Downloads 3143661 Unsupervised Neural Architecture for Saliency Detection
Authors: Natalia Efremova, Sergey Tarasenko
Abstract:
We propose a novel neural network architecture for visual saliency detections, which utilizes neuro physiologically plausible mechanisms for extraction of salient regions. The model has been significantly inspired by recent findings from neuro physiology and aimed to simulate the bottom-up processes of human selective attention. Two types of features were analyzed: color and direction of maximum variance. The mechanism we employ for processing those features is PCA, implemented by means of normalized Hebbian learning and the waves of spikes. To evaluate performance of our model we have conducted psychological experiment. Comparison of simulation results with those of experiment indicates good performance of our model.Keywords: neural network models, visual saliency detection, normalized Hebbian learning, Oja's rule, psychological experiment
Procedia PDF Downloads 3483660 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach
Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar
Abstract:
Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI
Procedia PDF Downloads 1533659 Determination of Vinpocetine in Tablets with the Vinpocetine-Selective Electrode and Possibilities of Application in Pharmaceutical Analysis
Authors: Faisal A. Salih
Abstract:
Vinpocetine (Vin) is an ethyl ester of apovincamic acid and is a semisynthetic derivative of vincamine, an alkaloid from plants of the genus Periwinkle (plant) vinca minor. It was found that this compound stimulates cerebral metabolism: it increases the uptake of glucose and oxygen, as well as the consumption of these substances by the brain tissue. Vinpocetine enhances the flow of blood in the brain and has a vasodilating, antihypertensive, and antiplatelet effect. Vinpocetine seems to improve the human ability to acquire new memories and restore memories that have been lost. This drug has been clinically used for the treatment of cerebrovascular disorders such as stroke and dementia memory disorders, as well as in ophthalmology and otorhinolaryngology. It has no side effects, and no toxicity has been reported when using vinpocetine for a long time. For the quantitative determination of Vin in dosage forms, the HPLC methods are generally used. A promising alternative is potentiometry with Vin- selective electrode, which does not require expensive equipment and materials. Another advantage of the potentiometric method is that the pills and solutions for injections can be used directly without separation from matrix components, which reduces both analysis time and cost. In this study, it was found that the choice of a good plasticizer an electrode with the following membrane composition: PVC (32.8 wt.%), ortho-nitrophenyl octyl ether (66.6 wt.%), tetrakis-4-chlorophenyl borate (0.6 wt.%) exhibits excellent analytical performance: lower detection limit (LDL) 1.2•10⁻⁷ M, linear response range (LRR) 1∙10⁻³–3.9∙10⁻⁶ M, the slope of the electrode function 56.2±0.2 mV/decade). Vin masses per average tablet weight determined by direct potentiometry (DP) and potentiometric titration (PT) methods for the two different sets of 10 tablets were (100.35±0.2–100.36±0.1) mg for two sets of blister packs. The mass fraction of Vin in individual tablets, determined using DP, was (9.87 ± 0.02–10.16 ±0.02) mg, while the RSD was (0.13–0.35%). The procedure has very good reproducibility, and excellent compliance with the declared amounts was observed.Keywords: vinpocetine, potentiometry, ion selective electrode, pharmaceutical analysis
Procedia PDF Downloads 763658 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation
Authors: Arian Hosseini, Mahmudul Hasan
Abstract:
To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing
Procedia PDF Downloads 553657 Clustered Regularly Interspaced Short Palindromic Repeat/cas9-Based Lateral Flow and Fluorescence Diagnostics for Rapid Pathogen Detection
Authors: Mark Osborn
Abstract:
Clustered, regularly interspaced short palindromic repeat (CRISPR/Cas) proteins can be designed to bind specified DNA and RNA sequences and hold great promise for the accurate detection of nucleic acids for diagnostics. Commercially available reagents were integrated into a CRISPR/Cas9-based lateral flow assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences with single-base specificity. This approach requires minimal equipment and represents a simplified platform for field-based deployment. A rapid, multiplex fluorescence CRISPR/Cas9 nuclease cleavage assay capable of detecting and differentiating SARS-CoV-2, influenza A and B, and respiratory syncytial virus in a single reaction was also developed. These findings provide proof of principle for CRISPR/Cas9 point-of-care diagnosis that can detect specific SARS-CoV-2 strain(s). Further, Cas9 cleavage allows for a scalable fluorescent platform for identifying respiratory viral pathogens with overlapping symptomology. Collectively, this approach is a facile platform for diagnostics with broad application to user-defined sequence interrogation and detection.Keywords: CRISPR/Cas9, lateral flow assay, SARS-Co-V2, single-nucleotide resolution
Procedia PDF Downloads 1843656 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning
Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza
Abstract:
The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library
Procedia PDF Downloads 1773655 Culture and Religion Informed Perspectives on the Use of Contraceptives among Married Women in Contemporary South Africa
Authors: Malesa Kgashane Johannes
Abstract:
The ineffective use of contraceptives among married couples has always been a challenge. This article discusses the culture-religious normative barriers that infringe on married women’s rights, justice, and dignity. The study was qualitative in nature and focused on understanding how religion and culture contribute to women’s ineffective use of contraceptives within marriage. Exploratory, descriptive, and contextual designs were applied. Twenty-eight (28) participants were interviewed, and the data was analysed through Tesch’s steps of qualitative analysis. The findings of the study highlighted the role played by religion and culture as barriers to women’s effective use of contraceptives within marriage.Keywords: women, contraceptives, religion, culture, marriage
Procedia PDF Downloads 1263654 Study on an Integrated Real-Time Sensor in Droplet-Based Microfluidics
Authors: Tien-Li Chang, Huang-Chi Huang, Zhao-Chi Chen, Wun-Yi Chen
Abstract:
The droplet-based microfluidic are used as micro-reactors for chemical and biological assays. Hence, the precise addition of reagents into the droplets is essential for this function in the scope of lab-on-a-chip applications. To obtain the characteristics (size, velocity, pressure, and frequency of production) of droplets, this study describes an integrated on-chip method of real-time signal detection. By controlling and manipulating the fluids, the flow behavior can be obtained in the droplet-based microfluidics. The detection method is used a type of infrared sensor. Through the varieties of droplets in the microfluidic devices, the real-time conditions of velocity and pressure are gained from the sensors. Here the microfluidic devices are fabricated by polydimethylsiloxane (PDMS). To measure the droplets, the signal acquisition of sensor and LabVIEW program control must be established in the microchannel devices. The devices can generate the different size droplets where the flow rate of oil phase is fixed 30 μl/hr and the flow rates of water phase range are from 20 μl/hr to 80 μl/hr. The experimental results demonstrate that the sensors are able to measure the time difference of droplets under the different velocity at the voltage from 0 V to 2 V. Consequently, the droplets are measured the fastest speed of 1.6 mm/s and related flow behaviors that can be helpful to develop and integrate the practical microfluidic applications.Keywords: microfluidic, droplets, sensors, single detection
Procedia PDF Downloads 4933653 Application of Support Vector Machines in Fault Detection and Diagnosis of Power Transmission Lines
Authors: I. A. Farhat, M. Bin Hasan
Abstract:
A developed approach for the protection of power transmission lines using Support Vector Machines (SVM) technique is presented. In this paper, the SVM technique is utilized for the classification and isolation of faults in power transmission lines. Accurate fault classification and location results are obtained for all possible types of short circuit faults. As in distance protection, the approach utilizes the voltage and current post-fault samples as inputs. The main advantage of the method introduced here is that the method could easily be extended to any power transmission line.Keywords: fault detection, classification, diagnosis, power transmission line protection, support vector machines (SVM)
Procedia PDF Downloads 5593652 The Benefits of Security Culture for Improving Physical Protection Systems at Detection and Radiation Measurement Laboratory
Authors: Ari S. Prabowo, Nia Febriyanti, Haryono B. Santosa
Abstract:
Security function that is called as Physical Protection Systems (PPS) has functions to detect, delay and response. Physical Protection Systems (PPS) in Detection and Radiation Measurement Laboratory needs to be improved continually by using internal resources. The nuclear security culture provides some potentials to support this research. The study starts by identifying the security function’s weaknesses and its strengths of security culture as a purpose. Secondly, the strengths of security culture are implemented in the laboratory management. Finally, a simulation was done to measure its effectiveness. Some changes were happened in laboratory personnel behaviors and procedures. All became more prudent. The results showed a good influence of nuclear security culture in laboratory security functions.Keywords: laboratory, physical protection system, security culture, security function
Procedia PDF Downloads 185