Search results for: Langerhans cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3671

Search results for: Langerhans cell

2561 Ultra Reliable Communication: Availability Analysis in 5G Cellular Networks

Authors: Yosra Benchaabene, Noureddine Boujnah, Faouzi Zarai

Abstract:

To meet the growing demand of users, the fifth generation (5G) will continue to provide services to higher data rates with higher carrier frequencies and wider bandwidths. As part of the 5G communication paradigm, Ultra Reliable Communication (URC) is envisaged as an important technology pillar for providing anywhere and anytime services to end users. Ultra Reliable Communication (URC) is considered an important technology that why it has become an active research topic. In this work, we analyze the availability of a service in the space domain. We characterize spatially available areas consisting of all locations that meet a performance requirement with confidence, and we define cell availability and system availability, individual user availability, and user-oriented system availability. Poisson point process (PPP) and Voronoi tessellation are adopted to model the spatial characteristics of a cell deployment in heterogeneous networks. Numerical results are presented, also highlighting the effect of different system parameters on the achievable link availability.

Keywords: URC, dependability and availability, space domain analysis, Poisson point process, Voronoi Tessellation

Procedia PDF Downloads 122
2560 Fabrication of Ligand Coated Lipid-Based Nanoparticles for Synergistic Treatment of Autoimmune Disease

Authors: Asiya Mahtab, Sushama Talegaonkar

Abstract:

The research is aimed at developing targeted lipid-based nanocarrier systems of chondroitin sulfate (CS) to deliver an antirheumatic drug to the inflammatory site in arthritic paw. Lipid-based nanoparticle (TEF-lipo) was prepared by using a thin-film hydration method. The coating of prepared drug-loaded nanoparticles was done by the ionic interaction mechanism. TEF-lipo and CS-coated lipid nanoparticle (CS-lipo) were characterized for mean droplet size, zeta potential, and surface morphology. TEF-lipo and CS-lipo were further subjected to in vitro cell line studies on RAW 264.7 murine macrophage, U937, and MG 63 cell lines. The pharmacodynamic study was performed to establish the effectiveness of the prepared lipid-based conventional and targeted nanoparticles in comparison to pure drugs. Droplet size and zeta potential of TEF-lipo were found to be 128. 92 ± 5.42 nm and +12.6 ± 1.2 mV. It was observed that after the coating of TEF-lipo with CS, particle size increased to 155.6± 2.12 nm and zeta potential changed to -10.2± 1.4mV. Transmission electron microscopic analysis revealed that the nanovesicles were uniformly dispersed and detached from each other. Formulations followed sustained release pattern up to 24 h. Results of cell line studies ind icated that CS-lipo formulation showed the highest cytotoxic potential, thereby proving its enhanced ability to kill the RAW 264.7 murine macrophage and U937 cells when compared with other formulations. It is clear from our in vivo pharmacodynamic results that targeted nanocarriers had a higher inhibitory effect on arthritis progression than nontargeted nanocarriers or free drugs. Results demonstrate that this approach will provide effective treatment for rheumatoid arthritis, and CS served as a potential prophylactic against the advancement of cartilage degeneration.

Keywords: adjuvant induced arthritis, chondroitin sulfate, rheumatoid arthritis, teriflunomide

Procedia PDF Downloads 136
2559 Partially Fluorinated Electrolyte for Lithium-Ion Batteries

Authors: Gebregziabher Brhane Berhe, Bing Joe Hwange, Wei-Nien Su

Abstract:

For a high-voltage cell, severe capacity fading is usually observed when the commercially carbonate-based electrolyte is employed due to the oxidative decomposition of solvents. To mitigate this capacity fading, an advanced electrolyte of fluoroethylene carbonate, ethyl methyl carbonate (EMC), and 1,1,2,2-Tetrafluoroetyle-2,2,3,3-tetrafluoropropyl ether (TTE) (in vol. ratio of 3:2:5) is dissolved with oxidative stability. A high-voltage lithium-ion battery was designed by coupling sulfured carbon anode from polyacrylonitrile (S-C(PAN)) and LiN0.5Mn1.5 O4 (LNMO) cathode. The discharged capacity of the cell made with modified electrolyte reaches 688 mAhg-1S a rate of 2 C, while only 19 mAhg-1S for the control electrolyte. The adopted electrolyte can effectively stabilize the sulfurized carbon anode and LNMO cathode surfaces, as the X-ray photoelectron spectroscopy (XPS) results confirmed. The developed robust high-voltage lithium-ion battery enjoys wider oxidative stability, high rate capability, and good cyclic performance, which can be attributed to the partially fluorinated electrolyte formulations with balanced viscosity and conductivity.

Keywords: high voltage, LNMO, fluorinated electrolyte, lithium-ion batteries

Procedia PDF Downloads 66
2558 Static Balance in the Elderly: Comparison Between Elderly Performing Physical Activity and Fine Motor Coordination Activity

Authors: Andreia Guimaraes Farnese, Mateus Fernandes Reu Urban, Leandro Procopio, Renato Zangaro, Regiane Albertini

Abstract:

Senescence changes include postural balance, inferring the risk of falls, and can lead to fractures, bedridden, and the risk of death. Physical activity, e.g., cardiovascular exercises, is notable for improving balance due to brain cell stimulations, but fine coordination exercises also elevate cell brain metabolism. This study aimed to verify whether the elderly person who performs fine motor activity has a balance similar to that of those who practice physical activity. The subjects were divided into three groups according to the activity practice: control group (CG) with seven participants for the sedentary individuals, motor coordination group (MCG) with six participants, and activity practitioner group (PAG) with eight participants. Data comparisons were from the Berg balance scale, Time up and Go test, and stabilometric analysis. Descriptive statistical and ANOVA analyses were performed for data analysis. The results reveal that including fine motor activities can improve the balance of the elderly and indirectly decrease the risk of falls.

Keywords: balance, barapodometer, coordination, elderly

Procedia PDF Downloads 169
2557 Polymer Solar Cells Synthesized with Copper Oxide Nanoparticles

Authors: Nidal H. Abu-Zahra, Aruna P. Wanninayake

Abstract:

Copper Oxide (CuO) is a p-type semiconductor with a band gap energy of 1.5 eV, this is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nano particles make them attractive candidates for improving the performance of polymer solar cells when incorporated into the active polymer layer. The UV-visible absorption spectra and external quantum efficiency of P3HT/PC70BM solar cells containing different weight percentages of CuO nano particles showed a clear enhancement in the photo absorption of the active layer, this increased the power conversion efficiency of the solar cells by 24% in comparison to the reference cell. The short circuit current of the reference cell was found to be 5.234 mA/cm2 and it seemed to increase to 6.484 mA/cm2 in cells containing 0.6 mg of CuO NPs; in addition the fill factor increased from 61.15% to 68.0%, showing an enhancement of 11.2%. These observations suggest that the optimum concentration of CuO nano particles was 0.6 mg in the active layer. These significant findings can be applied to design high-efficiency polymer solar cells containing inorganic nano particles.

Keywords: copper oxide nanoparticle, UV-visible spectroscopy, polymer solar cells, P3HT/PCBM

Procedia PDF Downloads 423
2556 DFT and SCAPS Analysis of an Efficient Lead-Free Inorganic CsSnI₃ Based Perovskite Solar Cell by Modification of Hole Transporting Layer

Authors: Seyedeh Mozhgan Seyed Talebi, Chih -Hao Lee

Abstract:

With an abrupt rise in the power conservation efficiency (PCE) of perovskite solar cells (PSCs) within a short span of time, the toxicity of lead was raised as a major hurdle in the path toward their commercialization. In the present research, a systematic investigation of the electrical and optical characteristics of the all-inorganic CsSnI₃ perovskite absorber layer was performed with the Vienna Ab Initio Simulation Package (VASP) using the projector-augmented wave method. The presence of inorganic halide perovskite offers the advantages of enhancing the degradation resistance of the device, reducing the cost of cells, and minimizing the recombination of generated carriers. The simulated standard device using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves FTO/n-TiO₂/CsSnI₃ Perovskite absorber/Spiro OmeTAD HTL/Au contact layer. The variation in the device design key parameters such as the thickness and defect density of perovskite absorber, hole transport layer and electron transport layer and interfacial defects are examined with their impact on the photovoltaic characteristic parameters. The effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnI3-based perovskite devices is also investigated. The optimized standard device at room temperature shows the highest PCE of 25.18 % with FF of 75.71 %, Voc of 0.96 V, and Jsc of 34.67 mA/cm². The outcomes and interpretation of different inorganic Cu-based HTLs presence, such as CuSCN, Cu₂O, CuO, CuI, SrCu₂O₂, and CuSbS₂, here represent a critical avenue for the possibility of fabricating high PCE perovskite devices made of stable, low-cost, efficient, safe, and eco-friendly all-inorganic materials like CsSnI₃ perovskite light absorber.

Keywords: CsSnI₃, hole transporting layer (HTL), lead-free perovskite solar cell, SCAPS-1D software

Procedia PDF Downloads 87
2555 Non-Cytotoxic Natural Sourced Inorganic Hydroxyapatite (HAp) Scaffold Facilitate Bone-like Mechanical Support and Cell Proliferation

Authors: Sudip Mondal, Biswanath Mondal, Sudit S. Mukhopadhyay, Apurba Dey

Abstract:

Bioactive materials improve devices for a long lifespan but have mechanical limitations. Mechanical characterization is one of the very important characteristics to evaluate the life span and functionality of the scaffold material. After implantation of scaffold material the primary stage rejection of scaffold occurs due to non biocompatible effect of host body system. The second major problems occur due to the effect of mechanical failure. The mechanical and biocompatibility failure of the scaffold materials can be overcome by the prior evaluation of the scaffold materials. In this study chemically treated Labeo rohita scale is used for synthesizing hydroxyapatite (HAp) biomaterial. Thermo-gravimetric and differential thermal analysis (TG-DTA) is carried out to ensure thermal stability. The chemical composition and bond structures of wet ball-milled calcined HAp powder is characterized by Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) analysis. Fish scale derived apatite materials consists of nano-sized particles with Ca/P ratio of 1.71. The biocompatibility through cytotoxicity evaluation and MTT assay are carried out in MG63 osteoblast cell lines. In the cell attachment study, the cells are tightly attached with HAp scaffolds developed in the laboratory. The result clearly suggests that HAp material synthesized in this study do not have any cytotoxic effect, as well as it has a natural binding affinity for mammalian cell lines. The synthesized HAp powder further successfully used to develop porous scaffold material with suitable mechanical property of ~0.8GPa compressive stress, ~1.10 GPa a hardness and ~ 30-35% porosity which is acceptable for implantation in trauma region for animal model. The histological analysis also supports the bio-affinity of processed HAp biomaterials in Wistar rat model for investigating the contact reaction and stability at the artificial or natural prosthesis interface for biomedical function. This study suggests the natural sourced fish scale-derived HAp material could be used as a suitable alternative biomaterial for tissue engineering application in near future.

Keywords: biomaterials, hydroxyapatite, scaffold, mechanical property, tissue engineering

Procedia PDF Downloads 455
2554 Rejuvenation of Premature Ovarian Failure with Stem Cells/IVA Technique

Authors: Elham Vojoudi, Marzieh Mehrafza, Ahmad Hosseini, Azadeh Raofi, Maryam Najafi

Abstract:

Premature ovarian failure (POF) has become one of the main causes of infertility in women of childbearing age and the incidence of this disorder is increasing year by year. In these patients, poor ovarian response (POR) to gonadotropins reflects a diminished ovarian reserve (DOR) that gives place to few follicles despite aggressive stimulation. Up to now, egg donation is the only way to resolve infertility problems in POF patients. Therefore, some novel aspects such as activating (Akt signaling pathway) and inhibiting (Hippo-signaling) elements have been identified as IVA procedure that promotes primordial follicle activation. In this study, we used the newly developed technique (combination of in vitro activation of dormant follicles (IVA) and stem cell therapy) to promote ovarian follicle growth much more efficiently than the natural, in vivo process for women with POF. Transplantation of Warton Jelly-MSCs to the ovaries of POF patients rescued overall ovarian function. Participants (10 patients) were followed up monthly for a period of six months by hormonal (AMH, FSH, LH and E2), clinical (resuming menstruation), and US (folliculometry) outcomes after a laparoscopic operation. In summary, IVA/WJ-MSC transplantation may provide an effective treatment for POF.

Keywords: POF, in vitro activation, stem cell therapy, infertility

Procedia PDF Downloads 130
2553 Cytotoxic Metabolites from Tagetes minuta L. Growing in Saudi Arabia

Authors: Ali A. A. Alqarni, Gamal A. Mohamed, Hossam M. Abdallah, Sabrin R. M. Ibrahim

Abstract:

Phytochemical investigation of the methanolic extract of aerial parts of Tagetes minuta L. (Family: Asteraceae) using different chromatographic techniques led to the isolation of five compounds; ecliptal (1), scopoletin (2), P-hydroxy benzoic acid (3), patuletin (4), and patuletin-7-O-β-D-glucopyranoside (5) (Figure 1). Their structures were established based on physical, chemical, and spectral data [Ultraviolet (UV), Proton ¹H, Carbon thirteen ¹³C, and Heteronuclear Multiple Bond Correlation (HMBC) NMR], as well as Electrospray Ionization Mass Spectroscopy (ESIMS) and comparison with literature data. Their cytotoxic activity was assessed towards human liver hepatocellular carcinoma (HepG2), human breast cancer (MCF-7), and human colon cancer (HCT116) cancer cell lines using sulphorhodamine B (SRB) assay. It is noteworthy that compound 1 demonstrated a significant cytotoxic potential towards HepG2, MCF7, and HCT116 cells with IC₅₀s ranging from 2.74 to 7.01 μM, compared to doxorubicin (IC₅₀ 0.18, 0.60, and 0.20 μM, respectively), whereas compounds 2, 4, and 5 showed moderate cytotoxic potential with IC50s ranging from 11.71 to 35.64 μM. However, 3 was inactive up to a concentration of 100 μM towards the three tested cancer cell lines.

Keywords: Asteraceae, cytotoxicity, metabolites, Tagetes minuta

Procedia PDF Downloads 163
2552 The Development of Solar Cells to Maximize the Utilization of Solar Energy in Al-Baha Area

Authors: Mohammed Ahmed Alghamdi, Hazem Mahmoud Ali Darwish, Mostafa Mohamed Abdelraheem

Abstract:

Transparent conducting oxides (TCOs) possess low resistivity, exhibit good adherence to many substrates, and have good transmission characteristics from the visible to near-infrared wavelengths, which make it useful for various applications. Thin films of transparent conducting oxide (TCO’s) have received much attention because of their wide applications in the field of optoelectronic devices. Advancement of transparent conducting oxides TCO’s may not only lie within the improvement of existing materials in use, but also the development of novel materials. Solar cells are devices, which convert solar energy into electricity, either directly via the photovoltaic effect, or indirectly by first converting the solar energy to heat or chemical energy. Solar power has attracted attention of late as the most advanced of the alternative energy resources. The project aims to access the solar energy in Al-Baha region by search for materials (transparent-conductive oxides (TCO's)) to use in solar cells with highly transparent to the solar spectrum, have low electrical resistivity, be stable under H-plasma, and have a suitable structure in particular for a-Si solar cells. As the PV surface is exposed to the sunlight, the module temperature increases. High ambient temperatures along with long sunlight exposure time increases the temperature impact on PV cells efficiency. Since Al-Baha area is characterized by an atmosphere and pressure different from their counterparts in Saudi Arabia due to the height above sea level, hence it is appropriate to do studies to improve the efficiency of solar cells under these conditions. In this work, some ion change materials will be deposited using either sputtering/ or electron beam evaporation techniques. The optical properties of the synthesized materials will be studied in details for solar cell application. As we will study the effect of some dyes on the optical properties of the prepared films. The efficiency and other parameters of solar cell will be determined.

Keywords: thin films, solar cell, optical properties, electrical properties

Procedia PDF Downloads 469
2551 Studies on Anaemia in Camels (Camelus dromedarius) Brought for Slaughter at Sokoto Metropolitan Abattoir: A Preliminary Report

Authors: Y. S. Baraya, B. Umar, A. Aliyu, A. A. Raji, K. A. N. Esievo

Abstract:

This study was performed to determine the presence of anaemia in randomly selected apparently healthy camels (Camelus dromedarius) brought for slaughter at the Sokoto metropolitan abattoir, Sokoto State, Nigeria. The camels were derived from both sexes, different age groups, functional usages and kept at various localities within and outside Sokoto town. In the study area, studies involving camels were limited in particular the emphasis on the anaemic status of camels brought daily for human consumption. A total of eighty (80) blood samples were collected once a week from these camels within the period of eight (8) weeks to investigate the haematological variations especially packed cell volume (PCV). The PCV analysis revealed anaemia in more than fifty (50) % of the camels studied. However, the actual cause of the anaemia was not investigated but could be caused by infectious agent like protozoan parasite Trypanosoma specie and non-infectious cause such as nutritional deficiency. The PCV examination as a simple, inexpensive and reliable procedure could be part of the routine ante-mortem assessment to evaluate camels for the existence of anaemia since many of the causes of anaemia besides being affecting the meat quality could also be of zoonotic significance.

Keywords: anaemia, camels, packed cell volume, Sokoto abattoir

Procedia PDF Downloads 372
2550 AFM Probe Sensor Designed for Cellular Membrane Components

Authors: Sarmiza Stanca, Wolfgang Fritzsche, Christoph Krafft, Jürgen Popp

Abstract:

Independent of the cell type a thin layer of a few nanometers thickness surrounds the cell interior as the cellular membrane. The transport of ions and molecules through the membrane is achieved in a very precise way by pores. Understanding the process of opening and closing the pores due to an electrochemical gradient across the membrane requires knowledge of the pore constitutive proteins. Recent reports prove the access to the molecular level of the cellular membrane by atomic force microscopy (AFM). This technique also permits an electrochemical study in the immediate vicinity of the tip. Specific molecules can be electrochemically localized in the natural cellular membrane. Our work aims to recognize the protein domains of the pores using an AFM probe as a miniaturized amperometric sensor, and to follow the protein behavior while changing the applied potential. The intensity of the current produced between the surface and the AFM probe is amplified and detected simultaneously with the surface imaging. The AFM probe plays the role of the working electrode and the substrate, a conductive glass on which the cells are grown, represent the counter electrode. For a better control of the electric potential on the probe, a third electrode Ag/AgCl wire is mounted in the circuit as a reference electrode. The working potential is applied between the electrodes with a programmable source and the current intensity in the circuit is recorded with a multimeter. The applied potential considers the overpotential at the electrode surface and the potential drop due to the current flow through the system. The reported method permits a high resolved electrochemical study of the protein domains on the living cell membrane. The amperometric map identifies areas of different current intensities on the pore depending on the applied potential. The reproducibility of this method is limited by the tip shape, the uncontrollable capacitance, which occurs at the apex and a potential local charge separation.

Keywords: AFM, sensor, membrane, pores, proteins

Procedia PDF Downloads 308
2549 Proliferative Effect of Some Calcium Channel Blockers on the Human Embryonic Kidney Cell Line

Authors: Lukman Ahmad Jamil, Heather M. Wallace

Abstract:

Introduction: Numerous epidemiological studies have shown a positive as well as negative association and no association in some cases between chronic use of calcium channel blockers and the increased risk of developing cancer. However, these associations were enmeshed with controversies in the absence of laboratory based studies to back up those claims. Aim: The aim of this study was to determine in mechanistic terms the association between the long-term administration of nifedipine and diltiazem and increased risk of developing cancer using the human embryonic kidney (HEK293) cell line. Methods: Cell counting using the Trypan blue dye exclusion and 3-4, 5-Dimethylthiazol-2-yl-2, 5-diphenyl-tetrazolium bromide (MTT) assays were used to investigate the effect of nifedipine and diltiazem on the growth pattern of HEK293 cells. Protein assay using modified Lowry method and analysis of intracellular polyamines concentration using Liquid Chromatography – Tandem Mass Spectrometry (LC-MS) were performed to ascertain the mechanism through which chronic use of nifedipine increases the risk of developing cancer. Results: Both nifedipine and diltiazem significantly increased the proliferation of HEK293 cells dose and time dependently. This proliferative effect after 24, 48 and 72-hour incubation period was observed at 0.78, 1.56 and 25 µM for nifedipine and 0.39, 1.56 and 25 µM for diltiazem, respectively. The increased proliferation of the cells was found to be statistically significantly (p<0.05). Furthermore, the increased proliferation of the cells induced by nifedipine was associated with the increase in the protein content and elevated intracellular polyamines concentration level. Conclusion: The chronic use of nifedipine is associated with increased proliferation of cells with concomitant elevation of polyamines concentration and elevated polyamine levels have been implicated in many malignant transformations and hence, these provide a possible explanation on the link between long term use of nifedipine and development of some human cancers. Further studies are needed to evaluate the cause of this association.

Keywords: cancer, nifedipine, polyamine, proliferation

Procedia PDF Downloads 198
2548 Development of Map of Gridded Basin Flash Flood Potential Index: GBFFPI Map of QuangNam, QuangNgai, DaNang, Hue Provinces

Authors: Le Xuan Cau

Abstract:

Flash flood is occurred in short time rainfall interval: from 1 hour to 12 hours in small and medium basins. Flash floods typically have two characteristics: large water flow and big flow velocity. Flash flood is occurred at hill valley site (strip of lowland of terrain) in a catchment with large enough distribution area, steep basin slope, and heavy rainfall. The risk of flash floods is determined through Gridded Basin Flash Flood Potential Index (GBFFPI). Flash Flood Potential Index (FFPI) is determined through terrain slope flash flood index, soil erosion flash flood index, land cover flash floods index, land use flash flood index, rainfall flash flood index. Determining GBFFPI, each cell in a map can be considered as outlet of a water accumulation basin. GBFFPI of the cell is determined as basin average value of FFPI of the corresponding water accumulation basin. Based on GIS, a tool is developed to compute GBFFPI using ArcObjects SDK for .NET. The maps of GBFFPI are built in two types: GBFFPI including rainfall flash flood index (real time flash flood warning) or GBFFPI excluding rainfall flash flood index. GBFFPI Tool can be used to determine a high flash flood potential site in a large region as quick as possible. The GBFFPI is improved from conventional FFPI. The advantage of GBFFPI is that GBFFPI is taking into account the basin response (interaction of cells) and determines more true flash flood site (strip of lowland of terrain) while conventional FFPI is taking into account single cell and does not consider the interaction between cells. The GBFFPI Map of QuangNam, QuangNgai, DaNang, Hue is built and exported to Google Earth. The obtained map proves scientific basis of GBFFPI.

Keywords: ArcObjects SDK for NET, basin average value of FFPI, gridded basin flash flood potential index, GBFFPI map

Procedia PDF Downloads 381
2547 Protective Role of Autophagy Challenging the Stresses of Type 2 Diabetes and Dyslipidemia

Authors: Tanima Chatterjee, Maitree Bhattacharyya

Abstract:

The global challenge of type 2 diabetes mellitus is a major health concern in this millennium, and researchers are continuously exploring new targets to develop a novel therapeutic strategy. Type 2 diabetes mellitus (T2DM) is often coupled with dyslipidemia increasing the risks for cardiovascular (CVD) complications. Enhanced oxidative and nitrosative stresses appear to be the major risk factors underlying insulin resistance, dyslipidemia, β-cell dysfunction, and T2DM pathogenesis. Autophagy emerges to be a promising defense mechanism against stress-mediated cell damage regulating tissue homeostasis, cellular quality control, and energy production, promoting cell survival. In this study, we have attempted to explore the pivotal role of autophagy in T2DM subjects with or without dyslipidemia in peripheral blood mononuclear cells and insulin-resistant HepG2 cells utilizing flow cytometric platform, confocal microscopy, and molecular biology techniques like western blotting, immunofluorescence, and real-time polymerase chain reaction. In the case of T2DM with dyslipidemia higher population of autophagy, positive cells were detected compared to patients with the only T2DM, which might have resulted due to higher stress. Autophagy was observed to be triggered both by oxidative and nitrosative stress revealing a novel finding of our research. LC3 puncta was observed in peripheral blood mononuclear cells and periphery of HepG2 cells in the case of the diabetic and diabetic-dyslipidemic conditions. Increased expression of ATG5, LC3B, and Beclin supports the autophagic pathway in both PBMC and insulin-resistant Hep G2 cells. Upon blocking autophagy by 3-methyl adenine (3MA), the apoptotic cell population increased significantly, as observed by caspase‐3 cleavage and reduced expression of Bcl2. Autophagy has also been evidenced to control oxidative stress-mediated up-regulation of inflammatory markers like IL-6 and TNF-α. To conclude, this study elucidates autophagy to play a protective role in the case of diabetes mellitus with dyslipidemia. In the present scenario, this study demands to have a significant impact on developing a new therapeutic strategy for diabetic dyslipidemic subjects by enhancing autophagic activity.

Keywords: autophagy, apoptosis, dyslipidemia, reactive oxygen species, reactive nitrogen species, Type 2 diabetes

Procedia PDF Downloads 129
2546 Tracking of Intramuscular Stem Cells by Magnetic Resonance Diffusion Weighted Imaging

Authors: Balakrishna Shetty

Abstract:

Introduction: Stem Cell Imaging is a challenging field since the advent of Stem Cell treatment in humans. Series of research on tagging and tracking the stem cells has not been very effective. The present study is an effort by the authors to track the stem cells injected into calf muscles by Magnetic Resonance Diffusion Weighted Imaging. Materials and methods: Stem Cell injection deep into the calf muscles of patients with peripheral vascular disease is one of the recent treatment modalities followed in our institution. 5 patients who underwent deep intramuscular injection of stem cells as treatment were included for this study. Pre and two hours Post injection MRI of bilateral calf regions was done using 1.5 T Philips Achieva, 16 channel system using 16 channel torso coils. Axial STIR, Axial Diffusion weighted images with b=0 and b=1000 values with back ground suppression (DWIBS sequence of Philips MR Imaging Systems) were obtained at 5 mm interval covering the entire calf. The invert images were obtained for better visualization. 120ml of autologous bone marrow derived stem cells were processed and enriched under c-GMP conditions and reduced to 40ml solution containing mixture of above stem cells. Approximately 40 to 50 injections, each containing 0.75ml of processed stem cells, was injected with marked grids over the calf region. Around 40 injections, each of 1ml normal saline, is injected into contralateral leg as control. Results: Significant Diffusion hyper intensity is noted at the site of injected stem cells. No hyper intensity noted before the injection and also in the control side where saline was injected conclusion: This is one of the earliest studies in literature showing diffusion hyper intensity in intramuscularly injected stem cells. The advantages and deficiencies in this study will be discussed during the presentation.

Keywords: stem cells, imaging, DWI, peripheral vascular disease

Procedia PDF Downloads 74
2545 Oral Microbiota as a Novel Predictive Biomarker of Response To Immune Checkpoint Inhibitors in Advanced Non-small Cell Lung Cancer Patients

Authors: Francesco Pantano, Marta Fogolari, Michele Iuliani, Sonia Simonetti, Silvia Cavaliere, Marco Russano, Fabrizio Citarella, Bruno Vincenzi, Silvia Angeletti, Giuseppe Tonini

Abstract:

Background: Although immune checkpoint inhibitors (ICIs) have changed the treatment paradigm of non–small cell lung cancer (NSCLC), these drugs fail to elicit durable responses in the majority of NSCLC patients. The gut microbiota, able to regulate immune responsiveness, is emerging as a promising, modifiable target to improve ICIs response rates. Since the oral microbiome has been demonstrated to be the primary source of bacterial microbiota in the lungs, we investigated its composition as a potential predictive biomarker to identify and select patients who could benefit from immunotherapy. Methods: Thirty-five patients with stage IV squamous and non-squamous cell NSCLC eligible for an anti-PD-1/PD-L1 as monotherapy were enrolled. Saliva samples were collected from patients prior to the start of treatment, bacterial DNA was extracted using the QIAamp® DNA Microbiome Kit (QIAGEN) and the 16S rRNA gene was sequenced on a MiSeq sequencing instrument (Illumina). Results: NSCLC patients were dichotomized as “Responders” (partial or complete response) and “Non-Responders” (progressive disease), after 12 weeks of treatment, based on RECIST criteria. A prevalence of the phylum Candidatus Saccharibacteria was found in the 10 responders compared to non-responders (abundance 5% vs 1% respectively; p-value = 1.46 x 10-7; False Discovery Rate (FDR) = 1.02 x 10-6). Moreover, a higher prevalence of Saccharibacteria Genera Incertae Sedis genus (belonging to the Candidatus Saccharibacteria phylum) was observed in "responders" (p-value = 6.01 x 10-7 and FDR = 2.46 x 10-5). Finally, the patients who benefit from immunotherapy showed a significant abundance of TM7 Phylum Sp Oral Clone FR058 strain, member of Saccharibacteria Genera Incertae Sedis genus (p-value = 6.13 x 10-7 and FDR=7.66 x 10-5). Conclusions: These preliminary results showed a significant association between oral microbiota and ICIs response in NSCLC patients. In particular, the higher prevalence of Candidatus Saccharibacteria phylum and TM7 Phylum Sp Oral Clone FR058 strain in responders suggests their potential immunomodulatory role. The study is still ongoing and updated data will be presented at the congress.

Keywords: oral microbiota, immune checkpoint inhibitors, non-small cell lung cancer, predictive biomarker

Procedia PDF Downloads 98
2544 Targeting Methionine Metabolism In Gastric Cancer; Promising To Improve Chemosensetivity With Non-hetrogeneity

Authors: Nigatu Tadesse, Li Juan, Liuhong Ming

Abstract:

Gastric cancer (GC) is the fifth most common and fourth deadly cancer in the world with limited treatment options at late advanced stage in which surgical therapy is not recommended with chemotherapy remain as the mainstay of treatment. However, the occurrence of chemoresistance as well as intera-tumoral and inter-tumoral heterogeneity of response to targeted and immunotherapy underlined a clear unmet treatment need in gastroenterology. Several molecular and cellular alterations ascribed for chemo resistance in GC including cancer stem cells (CSC) and tumor microenvironment (TME) remodeling. Cancer cells including CSC bears higher metabolic demand and major changes in TME involves alterations of gut microbiota interacting with nutrients metabolism. Metabolic upregulation in lipids, carbohydrates, amino acids, fatty acids biosynthesis pathways identified as a common hall mark in GC. Metabolic addiction to methionine metabolism occurs in many cancer cells to promote the biosynthesis of S-Adenosylmethionine (SAM), a universal methyl donor molecule for high rate of transmethylation in GC and promote cell proliferation. Targeting methionine metabolism found to promotes chemo-sensitivity with treatment non-heterogeneity. Methionine restriction (MR) promoted the arrest of cell cycle at S/G2 phase and enhanced downregulation of GC cells resistance to apoptosis (including ferroptosis), which suggests the potential of synergy with chemotherapies acting at S-phase of the cell cycle as well as inducing cell apoptosis. Accumulated evidences showed both the biogenesis as well as intracellular metabolism of exogenous methionine could be safe and effective target for therapy either alone or in combination with chemotherapies. This review article provides an over view of the upregulation in methionine biosynthesis pathway and the molecular signaling through the PI3K/Akt/mTOR-c-MYC axis to promote metabolic reprograming through activating the expression of L-type aminoacid-1 (LAT1) transporter and overexpression of Methionine adenosyltransferase 2A(MAT2A) for intercellular metabolic conversion of exogenous methionine to SAM in GC, and the potential of targeting with novel therapeutic agents such as methioninase (METase), Methionine adenosyltransferase 2A (MAT2A), c-MYC, methyl like transferase 16 (METTL16) inhibitors that are currently under clinical trial development stages and future perspectives.

Keywords: gastric cancer, methionine metabolism, pi3k/akt/mtorc1-c-myc axis, gut microbiota, MAT2A, c-MYC, METTL16, methioninase

Procedia PDF Downloads 48
2543 Family Quality of Life in the Context of Pediatric Sickle Cell Disease in Oman

Authors: Wafa Al Jabri

Abstract:

Sickle cell disease (SCD) is a genetic blood disorder that is characterized by a severe painful crisis. SCD among children requires long term dependencies and high caregiving demands that increase the overall family burdens. It is, therefore, essential to examine, support, and promote the well-being of families of children with SCD. Although there has been considerable progress in the international research on family quality of life (FQOL) in recent years; however, research in this field is relatively recent and diverse. Oman is a country in which family quality of life has definitely been under-researched. Therefore, the purpose of the study is to describe the FQOL in families of children with SCD in Oman. The study will also examine the relationships between child, mother, and family-related factors that may influence the overall FQOL. Theoretical Framework: The study is guided by the unified theory of family quality of life to help in understanding the concept of FQOL and the factors that shape it. Method:A convenience sample of 98 mothers of children with SCD will be recruited from the pediatric hematology clinic at Sultan Qaboos University Hospital in Oman to participate in this descriptive, cross sectional, correlational study. Data will be obtained using a self-administered questionnaire that includes child and mother socio-demographic data, questions about the number of visits and admissions to health care facilities for vaso- occlusive crises (VOCs), the Perceived Stress Scale-10, and the Beachcenter-FQOL scale. Anticipated Results: It is expected to find an association among frequency of VOCs, mother’s perceived stress level, and FQOL in families of children with SCD in Oman. Family type, socio-economic status, and number of SCD children in the family are also expected to influence the overall FQOL. Conclusion: The findings of the study might be pivotal in designing and implementing tailored family-based interventions to improve families’ wellbeing.

Keywords: family quality of life, sickle cell disaes, children, family well-being

Procedia PDF Downloads 139
2542 Quantum Dots Incorporated in Biomembrane Models for Cancer Marker

Authors: Thiago E. Goto, Carla C. Lopes, Helena B. Nader, Anielle C. A. Silva, Noelio O. Dantas, José R. Siqueira Jr., Luciano Caseli

Abstract:

Quantum dots (QD) are semiconductor nanocrystals that can be employed in biological research as a tool for fluorescence imagings, having the potential to expand in vivo and in vitro analysis as cancerous cell biomarkers. Particularly, cadmium selenide (CdSe) magic-sized quantum dots (MSQDs) exhibit stable luminescence that is feasible for biological applications, especially for imaging of tumor cells. For these facts, it is interesting to know the mechanisms of action of how such QDs mark biological cells. For that, simplified models are a suitable strategy. Among these models, Langmuir films of lipids formed at the air-water interface seem to be adequate since they can mimic half a membrane. They are monomolecular films formed at liquid-gas interfaces that can spontaneously form when organic solutions of amphiphilic compounds are spread on the liquid-gas interface. After solvent evaporation, the monomolecular film is formed, and a variety of techniques, including tensiometric, spectroscopic and optic can be applied. When the monolayer is formed by membrane lipids at the air-water interface, a model for half a membrane can be inferred where the aqueous subphase serve as a model for external or internal compartment of the cell. These films can be transferred to solid supports forming the so-called Langmuir-Blodgett (LB) films, and an ampler variety of techniques can be additionally used to characterize the film, allowing for the formation of devices and sensors. With these ideas in mind, the objective of this work was to investigate the specific interactions of CdSe MSQDs with tumorigenic and non-tumorigenic cells using Langmuir monolayers and LB films of lipids and specific cell extracts as membrane models for diagnosis of cancerous cells. Surface pressure-area isotherms and polarization modulation reflection-absorption spectroscopy (PM-IRRAS) showed an intrinsic interaction between the quantum dots, inserted in the aqueous subphase, and Langmuir monolayers, constructed either of selected lipids or of non-tumorigenic and tumorigenic cells extracts. The quantum dots expanded the monolayers and changed the PM-IRRAS spectra for the lipid monolayers. The mixed films were then compressed to high surface pressures and transferred from the floating monolayer to solid supports by using the LB technique. Images of the films were then obtained with atomic force microscopy (AFM) and confocal microscopy, which provided information about the morphology of the films. Similarities and differences between films with different composition representing cell membranes, with or without CdSe MSQDs, was analyzed. The results indicated that the interaction of quantum dots with the bioinspired films is modulated by the lipid composition. The properties of the normal cell monolayer were not significantly altered, whereas for the tumorigenic cell monolayer models, the films presented significant alteration. The images therefore exhibited a stronger effect of CdSe MSQDs on the models representing cancerous cells. As important implication of these findings, one may envisage for new bioinspired surfaces based on molecular recognition for biomedical applications.

Keywords: biomembrane, langmuir monolayers, quantum dots, surfaces

Procedia PDF Downloads 196
2541 Heamatological and Biochemical Changes in Cockerels Fed Graded Levels of Wild Sunflower Leaf Meal

Authors: Siyanbola Mojisola Funmilayo, Amao Emmanuel Ayodele

Abstract:

The poultry industry in Nigeria has been played by a variety of problems, which include the search for feed ingredients that are not competed for by man. This has resulted in a reduced interest of farmers in the industry leading to a reduction in animal protein availability for human consumption as a consequence of a high cost of production. The incorporation of wild sunflower meal (Tithonia diversfolia, Hemsl A. Gray) (WSF Meal) and some others in poultry diets have been reported to result in compounded feed with nutrient profiles that compare favourable with feeds of conventional feedstuff and reduce feed cost as they reduce competition with humans. A 98-day feeding trial was used to evaluate the effect of Wild sunflower leaf (WSL) at varying levels on the hematology and biochemistry of cockerels. A total of one hundred and twenty(120) cockerel birds were randomly allotted into four experimental diets with three replicates per experimental diet (ten birds per replicate). Wild sunflower leaf was included in four graded levels ; 0, 5, 10, and 15%. Packed cell volume, Red blood cell count, White blood cell count, Hemoglobin count, Lymphocyte count, Neutrophil count, Platelets, Mean Corpuscular Hemoglobin Concentration (MCHC), Mean Corpuscular Hemoglobin (MCH), Aspartate aminotransferase (AST), Glucose, Urea, Chloride, Sodium, and Potassium ion values were significantly different (p<0.05) among the treatments. Mean values obtained for Creatinine, Total Protein, Alanine aminotransferase (ALT), Albumin, and Mean Corpuscular Volume (MCV) were not significantly different (p>0.05) in all the treatment. WSL could be included up to 15% in the diet of cockerel without any deleterious effect on the birds. Based on the results, up to 15% Wild sunflower meal (WSL) can be included in the diet of cockerel without any adverse effect on the hematology and biochemical indices of birds.

Keywords: biochemical changes, cockerels, hematology, wild sunflower leaf

Procedia PDF Downloads 447
2540 MARISTEM: A COST Action Focused on Stem Cells of Aquatic Invertebrates

Authors: Arzu Karahan, Loriano Ballarin, Baruch Rinkevich

Abstract:

Marine invertebrates, the highly diverse phyla of multicellular organisms, represent phenomena that are either not found or highly restricted in the vertebrates. These include phenomena like budding, fission, a fusion of ramets, and high regeneration power, such as the ability to create whole new organisms from either tiny parental fragment, many of which are controlled by totipotent, pluripotent, and multipotent stem cells. Thus, there is very much that can be learned from these organisms on the practical and evolutionary levels, further resembling Darwin's words, “It is not the strongest of the species that survives, nor the most intelligent, but the one most responsive to change”. The ‘stem cell’ notion highlights a cell that has the ability to continuously divide and differentiate into various progenitors and daughter cells. In vertebrates, adult stem cells are rare cells defined as lineage-restricted (multipotent at best) with tissue or organ-specific activities that are located in defined niches and further regulate the machinery of homeostasis, repair, and regeneration. They are usually categorized by their morphology, tissue of origin, plasticity, and potency. The above description not always holds when comparing the vertebrates with marine invertebrates’ stem cells that display wider ranges of plasticity and diversity at the taxonomic and the cellular levels. While marine/aquatic invertebrates stem cells (MISC) have recently raised more scientific interest, the know-how is still behind the attraction they deserve. MISC, not only are highly potent but, in many cases, are abundant (e.g., 1/3 of the entire animal cells), do not locate in permanent niches, participates in delayed-aging and whole-body regeneration phenomena, the knowledge of which can be clinically relevant. Moreover, they have massive hidden potential for the discovery of new bioactive molecules that can be used for human health (antitumor, antimicrobial) and biotechnology. The MARISTEM COST action (Stem Cells of Marine/Aquatic Invertebrates: From Basic Research to Innovative Applications) aims to connect the European fragmented MISC community. Under this scientific umbrella, the action conceptualizes the idea for adult stem cells that do not share many properties with the vertebrates’ stem cells, organizes meetings, summer schools, and workshops, stimulating young researchers, supplying technical and adviser support via short-term scientific studies, making new bridges between the MISC community and biomedical disciplines.

Keywords: aquatic/marine invertebrates, adult stem cell, regeneration, cell cultures, bioactive molecules

Procedia PDF Downloads 169
2539 Toxicological Effects of Heavy Metals; Copper, Lead and Chromium on Brain and Liver Tissue of Grass Carp (Ctenopharyngodon idella)

Authors: Ahsan Khan, Nazish Shah, Muhammad Salman

Abstract:

The present study deals with the toxicological effects of copper, lead and chromium on brain and liver tissues of grass carp (Ctenopharyngodon idella). The average length of experimental fish was 8.5 ± 5.5 cm and weighed 9.5 ± 6.5 g. Grass carp was exposed to lethal concentration (LC₁₅) of copper, lead and chromium for 24, 48, 72 and 96 hours respectively. (LC₁₅) for copper was 1.5, 1.4, 1.2 and 1mgL⁻¹. Similarly, LC₁₅ of lead was 250, 235, 225 and 216mgL⁻¹ while (LC₁₅) for chromium was 25.5, 22.5, 20 and 18mgL⁻¹ respectively. During the time of exposure against various doses of heavy metals the grass carp showed some behavioral changes. In the initial stages of experiment, the rapid movements and gulping of air were observed. Several times the fish tried to jump to scat from the toxic median. In addition, the accumulation of heavy metals in different tissues of grass carp particularly in liver and brain tissues were observed. Lead was highly accumulated in brain tissue after the exposure of fish for 24 and 48 hours, while highly accumulated in liver tissues after the exposure of fish for 72 and 96 hours. Chromium was highly accumulated in the liver tissues after the exposure of fish for 24 hours while its accumulation was found highly in the brain tissues after the exposure of fish for 48, 72 and 96 hours. Similarly, accumulation of copper concentration was found highly in brain tissues after the exposure of 48 and 96 hours while its accumulation was high in liver tissues after the exposure of 24 and 72 hours. Comparatively maximum accumulation of lead was found in brain and liver tissues of grass carp followed by chromium and copper. Furthermore, accumulation of these metals caused many abnormalities like gliosis, destruction of cell, change in cell shape and shrinkage of cells in brain tissue while in liver tissues aggregation in hepatocytes, widen space between cells and also destruction of cell was observed. These experiments and observations can be useful to monitor the aquatic pollution and quality of aquatic environment system.

Keywords: brain, grass carp, liver, lethal concentration, toxicity

Procedia PDF Downloads 156
2538 Transcriptional Differences in B cell Subpopulations over the Course of Preclinical Autoimmunity Development

Authors: Aleksandra Bylinska, Samantha Slight-Webb, Kevin Thomas, Miles Smith, Susan Macwana, Nicolas Dominguez, Eliza Chakravarty, Joan T. Merrill, Judith A. James, Joel M. Guthridge

Abstract:

Background: Systemic Lupus Erythematosus (SLE) is an interferon-related autoimmune disease characterized by B cell dysfunction. One of the main hallmarks is a loss of tolerance to self-antigens leading to increased levels of autoantibodies against nuclear components (ANAs). However, up to 20% of healthy ANA+ individuals will not develop clinical illness. SLE is more prevalent among women and minority populations (African, Asian American and Hispanics). Moreover, African Americans have a stronger interferon (IFN) signature and develop more severe symptoms. The exact mechanisms involved in ethnicity-dependent B cell dysregulation and the progression of autoimmune disease from ANA+ healthy individuals to clinical disease remains unclear. Methods: Peripheral blood mononuclear cells (PBMCs) from African (AA) and European American (EA) ANA- (n=12), ANA+ (n=12) and SLE (n=12) individuals were assessed by multimodal scRNA-Seq/CITE-Seq methods to examine differential gene signatures in specific B cell subsets. Library preparation was done with a 10X Genomics Chromium according to established protocols and sequenced on Illumina NextSeq. The data were further analyzed for distinct cluster identification and differential gene signatures in the Seurat package in R and pathways analysis was performed using Ingenuity Pathways Analysis (IPA). Results: Comparing all subjects, 14 distinct B cell clusters were identified using a community detection algorithm and visualized with Uniform Manifold Approximation Projection (UMAP). The proportion of each of those clusters varied by disease status and ethnicity. Transitional B cells trended higher in ANA+ healthy individuals, especially in AA. Ribonucleoprotein high population (HNRNPH1 elevated, heterogeneous nuclear ribonucleoprotein, RNP-Hi) of proliferating Naïve B cells were more prevalent in SLE patients, specifically in EA. Interferon-induced protein high population (IFIT-Hi) of Naive B cells are increased in EA ANA- individuals. The proportion of memory B cells and plasma cells clusters tend to be expanded in SLE patients. As anticipated, we observed a higher signature of cytokine-related pathways, especially interferon, in SLE individuals. Pathway analysis among AA individuals revealed an NRF2-mediated Oxidative Stress response signature in the transitional B cell cluster, not seen in EA individuals. TNFR1/2 and Sirtuin Signaling pathway genes were higher in AA IFIT-Hi Naive B cells, whereas they were not detected in EA individuals. Interferon signaling was observed in B cells in both ethnicities. Oxidative phosphorylation was found in age-related B cells (ABCs) for both ethnicities, whereas Death Receptor Signaling was found only in EA patients in these cells. Interferon-related transcription factors were elevated in ABCs and IFIT-Hi Naive B cells in SLE subjects of both ethnicities. Conclusions: ANA+ healthy individuals have altered gene expression pathways in B cells that might drive apoptosis and subsequent clinical autoimmune pathogenesis. Increases in certain regulatory pathways may delay progression to SLE. Further, AA individuals have more elevated activation pathways that may make them more susceptible to SLE.

Keywords:

Procedia PDF Downloads 175
2537 Photocapacitor Integrating Solar Energy Conversion and Energy Storage

Authors: Jihuai Wu, Zeyu Song, Zhang Lan, Liuxue Sun

Abstract:

Solar energy is clean, open, and infinite, but solar radiation on the earth is fluctuating, intermittent, and unstable. So, the sustainable utilization of solar energy requires a combination of high-efficient energy conversion and low-loss energy storage technologies. Hence, a photo capacitor integrated with photo-electrical conversion and electric-chemical storage functions in single device is a cost-effective, volume-effective and functional-effective optimal choice. However, owing to the multiple components, multi-dimensional structure and multiple functions in one device, especially the mismatch of the functional modules, the overall conversion and storage efficiency of the photocapacitors is less than 13%, which seriously limits the development of the integrated system of solar conversion and energy storage. To this end, two typical photocapacitors were studied. A three-terminal photocapacitor was integrated by using perovskite solar cell as solar conversion module and symmetrical supercapacitor as energy storage module. A function portfolio management concept was proposed the relationship among various efficiencies during photovoltaic conversion and energy storage process were clarified. By harmonizing the energy matching between conversion and storage modules and seeking the maximum power points coincide and the maximum efficiency points synchronize, the overall efficiency of the photocapacitor surpassed 18 %, and Joule efficiency was closed to 90%. A voltage adjustable hybrid supercapacitor (VAHSC) was designed as energy storage module, and two Si wafers in series as solar conversion module, a three-terminal photocapacitor was fabricated. The VAHSC effectively harmonizes the energy harvest and storage modules, resulting in the current, voltage, power, and energy match between both modules. The optimal photocapacitor achieved an overall efficiency of 15.49% and Joule efficiency of 86.01%, along with excellent charge/discharge cycle stability. In addition, the Joule efficiency (ηJoule) was defined as the energy ratio of discharge/charge of the devices for the first time.

Keywords: joule efficiency, perovskite solar cell, photocapacitor, silicon solar cell, supercapacitor

Procedia PDF Downloads 86
2536 The Role of NAD+ and Nicotinamide (Vitamin B3) in Glaucoma: A Literature Review

Authors: James Pietris

Abstract:

Glaucoma is a collection of irreversible optic neuropathies which, if left untreated, lead to severe visual field loss. These diseases are a leading cause of blindness across the globe and are estimated to affect approximately 80 million people, particularly women and people of Asian descent.1This represents a major burden on healthcare systems worldwide. Recently, there has been increasing interest in the potential of nicotinamide (vitamin B3) as a novel option in the management of glaucoma. This review aims to analyse the currently available literature to determine whether there is evidence of an association between nicotinamide adenine dinucleotide (NAD+) and glaucomatous optic neuropathy and whether nicotinamide has the potential to prevent or reverse these effects. The literature showed a strong connection between reduced NAD+ levels and retinal ganglion cell dysfunction through multiple different studies. There is also evidence of the positive effect of nicotinamide supplementation on retinal ganglion cell function in models of mouse glaucoma and in a study involving humans. Based on the literature findings, a recommendation has been made that more research into the efficacy, appropriate dosing, and potential side effects of nicotinamide supplementation is needed before it can be definitively determined whether it is appropriate for widespread prophylactic and therapeutic use against glaucoma in humans.

Keywords: glaucoma, nicotinamide, vitamin B3, optic neuropathy

Procedia PDF Downloads 106
2535 Angiomotin Regulates Integrin Beta 1-Mediated Endothelial Cell Migration and Angiogenesis

Authors: Yuanyuan Zhang, Yujuan Zheng, Giuseppina Barutello, Sumako Kameishi, Kungchun Chiu, Katharina Hennig, Martial Balland, Federica Cavallo, Lars Holmgren

Abstract:

Angiogenesis describes that new blood vessels migrate from pre-existing ones to form 3D lumenized structure and remodeling. During directional migration toward the gradient of pro-angiogenic factors, the endothelial cells, especially the tip cells need filopodia to sense the environment and exert the pulling force. Of particular interest are the integrin proteins, which play an essential role in focal adhesion in the connection between migrating cells and extracellular matrix (ECM). Understanding how these biomechanical complexes orchestrate intrinsic and extrinsic forces is important for our understanding of the underlying mechanisms driving angiogenesis. We have previously identified Angiomotin (Amot), a member of Amot scaffold protein family, as a promoter for endothelial cell migration in vitro and zebrafish models. Hence, we established inducible endothelial-specific Amot knock-out mice to study normal retinal angiogenesis as well as tumor angiogenesis. We found that the migration ratio of the blood vessel network to the edge was significantly decreased in Amotec- retinas at postnatal day 6 (P6). While almost all the Amot defect tip cells lost migration advantages at P7. In consistence with the dramatic morphology defect of tip cells, there was a non-autonomous defect in astrocytes, as well as the disorganized fibronectin expression pattern correspondingly in migration front. Furthermore, the growth of transplanted LLC tumor was inhibited in Amot knockout mice due to fewer vasculature involved. By using MMTV-PyMT transgenic mouse model, there was a significantly longer period before tumors arised when Amot was specifically knocked out in blood vessels. In vitro evidence showed that Amot binded to beta-actin, Integrin beta 1 (ITGB1), Fibronectin, FAK, Vinculin, major focal adhesion molecules, and ITGB1 and stress fibers were distinctly induced by Amot transfection. Via traction force microscopy, the total energy (force indicater) was found significantly decreased in Amot knockdown cells. Taken together, we propose that Amot is a novel partner of the ITGB1/Fibronectin protein complex at focal adhesion and required for exerting force transition between endothelial cell and extracellular matrix.

Keywords: angiogenesis, angiomotin, endothelial cell migration, focal adhesion, integrin beta 1

Procedia PDF Downloads 238
2534 ZnMn₂O₄ / Carbon Composite Recycled from Spent Zinc-Carbon Batteries for Zn-Air Battery Applications

Authors: Nivedha L. K., Dhinesh Kumar Murugaiah, Ganapathi Rao Kandregula, Raja Murugan, Kothandaraman R.

Abstract:

ZnMn₂O₄, a non-precious metal catalyst for oxygen reduction reaction (ORR), was recycled from the spent primary Zn-C battery and utilized in the zinc-air battery. Catalysts exhibiting facile ORR kinetics are a requirement for building efficient Zinc-air batteries. ZnMn₂O₄ demonstrated excellent catalytic activity towards ORR in an aqueous alkaline medium, with an onset potential of 0. 90 V vs. RHE. The recycled ZnMn₂O₄ manifested a similar performance (at ~ 1.0 V) as the chemically synthesized one with a specific capacity of 210 mAh gzn-¹ at a constant current discharge of 15 mA cm-². A single electrode potential study was done to comprehend the losses at the electrodes and to identify the limiting electrode. Interestingly, the cathode was improving during discharge, which is in contrast to the expectation due to the accumulation of peroxide around the catalytic layer. Although the anode has exhibited minimal polarization, beyond a capacity of 210 mAh g-¹, the supersaturation of electrolyte occurs with zincate ion causing precipitation of ZnO on the cell components, thereby leading to sudden polarization of the cell and hence zinc electrode act as a limiting electrode in this system.

Keywords: battery recycling, oxygen reduction reaction, single electrode measurement, Zn-air battery, ZnMn₂O₄ recovery

Procedia PDF Downloads 73
2533 Mechanism of in Vitro Inhibition of Alpha-Amylase, Alpha-Glucosidase by Ethanolic Extracts of Polyalthia Longifolia, Its in Vitro Cytotoxicity on L6, Vero Cell-Lines and Influence of Glucose Uptake by Rat Hemi-Diaphragm

Authors: P. Gayathri, G. P. Jeyanthi

Abstract:

The bark of Polyalthia longifolia is used in ayurvedic system of medicine for the manangement of various ailments including diabetes mellitus. The bark of P. longifolia extracts was extracted using various polar and non-polar solvents and tested for inhibition of alpha-amylase and alpha-glucosidase among which the ethanolic extracts were found to be more potent. The ethanolic extracts of the bark were tested for the in vitro inhibition of alpha-amylase using starch as substrate and alpha-glucosidase using p-nitro phenyl alpha-D-gluco pyranoside as substrate to establish its in vitro antidiabetic effect. The mechanism of inhibition was determined by Dixon plot and Cornish-Bowden plot. The cytotoxic effect of the extract was tested on L6 and Vero cell-lines. The extract was partially purified by TLC. The individual effect of the ethanolic extract, TLC fractions and its combinatorial effect with insulin and glibenclamide on glucose uptake by rat hemi-diaphragm were studied.Results revealed that the ethanolic extracts of Polyalthia longifolia bark exhibited competitive inhibition of alpha-amylase and alpha-glucosidase. The extracts were also found not to be cytotoxic at the highest dose of 1 mg/mL. Glucose uptake study revealed that the extract alone and when combined with insulin, decreased the glucose uptake when compared to insulin control, however the purified TLC fractions exhibited significantly higher (p<0.05) glucose uptake by the rat hemi-diaphragm when compared to insulin. The study shows various possible mechanism of in vitro antidiabetic effect of the P. longifolia bark.

Keywords: alpha-amylase, alpha-glucosidase, dixon, cornish-bowden, L6 , Vero cell-lines, glucose uptake, polyalthia longifolia bark, ethanolic extract, TLC fractions

Procedia PDF Downloads 469
2532 Designing a Thermal Management System for Lithium Ion Battery Packs in Electric Vehicles

Authors: Ekin Esen, Mohammad Alipour, Riza Kizilel

Abstract:

Rechargeable lithium-ion batteries have been replacing lead-acid batteries for the last decade due to their outstanding properties such as high energy density, long shelf life, and almost no memory effect. Besides these, being very light compared to lead acid batteries has gained them their dominant place in the portable electronics market, and they are now the leading candidate for electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, their performance strongly depends on temperature, and this causes some inconveniences for their utilization in extreme temperatures. Since weather conditions vary across the globe, this situation limits their utilization for EVs and HEVs and makes a thermal management system obligatory for the battery units. The objective of this study is to understand thermal characteristics of Li-ion battery modules for various operation conditions and design a thermal management system to enhance battery performance in EVs and HEVs. In the first part of our study, we investigated thermal behavior of commercially available pouch type 20Ah LiFePO₄ (LFP) cells under various conditions. Main parameters were chosen as ambient temperature and discharge current rate. Each cell was charged and discharged at temperatures of 0°C, 10°C, 20°C, 30°C, 40°C, and 50°C. The current rate of charging process was 1C while it was 1C, 2C, 3C, 4C, and 5C for discharge process. Temperatures of 7 different points on the cells were measured throughout charging and discharging with N-type thermocouples, and a detailed temperature profile was obtained. In the second part of our study, we connected 4 cells in series by clinching and prepared 4S1P battery modules similar to ones in EVs and HEVs. Three reference points were determined according to the findings of the first part of the study, and a thermocouple is placed on each reference point on the cells composing the 4S1P battery modules. In the end, temperatures of 6 points in the module and 3 points on the top surface were measured and changes in the surface temperatures were recorded for different discharge rates (0.2C, 0.5C, 0.7C, and 1C) at various ambient temperatures (0°C – 50°C). Afterwards, aluminum plates with channels were placed between the cells in the 4S1P battery modules, and temperatures were controlled with airflow. Airflow was provided with a regular compressor, and the effect of flow rate on cell temperature was analyzed. Diameters of the channels were in mm range, and shapes of the channels were determined in order to make the cell temperatures uniform. Results showed that the designed thermal management system could help keeping the cell temperatures in the modules uniform throughout charge and discharge processes. Other than temperature uniformity, the system was also beneficial to keep cell temperature close to the optimum working temperature of Li-ion batteries. It is known that keeping the temperature at an optimum degree and maintaining uniform temperature throughout utilization can help obtaining maximum power from the cells in battery modules for a longer time. Furthermore, it will increase safety by decreasing the risk of thermal runaways. Therefore, the current study is believed to be beneficial for wider use of Li batteries for battery modules of EVs and HEVs globally.

Keywords: lithium ion batteries, thermal management system, electric vehicles, hybrid electric vehicles

Procedia PDF Downloads 163