Search results for: economic resources
14 Results concerning the University: Industry Partnership for a Research Project Implementation (MUROS) in the Romanian Program Star
Authors: Loretta Ichim, Dan Popescu, Grigore Stamatescu
Abstract:
The paper reports the collaboration between a top university from Romania and three companies for the implementation of a research project in a multidisciplinary domain, focusing on the impact and benefits both for the education and industry. The joint activities were developed under the Space Technology and Advanced Research Program (STAR), funded by the Romanian Space Agency (ROSA) for a university-industry partnership. The context was defined by linking the European Space Agency optional programs, with the development and promotion national research, with the educational and industrial capabilities in the aeronautics, security and related areas by increasing the collaboration between academic and industrial entities as well as by realizing high-level scientific production. The project name is Multisensory Robotic System for Aerial Monitoring of Critical Infrastructure Systems (MUROS), which was carried 2013-2016. The project included the University POLITEHNICA of Bucharest (coordinator) and three companies, which manufacture and market unmanned aerial systems. The project had as main objective the development of an integrated system for combined ground wireless sensor networks and UAV monitoring in various application scenarios for critical infrastructure surveillance. This included specific activities related to fundamental and applied research, technology transfer, prototype implementation and result dissemination. The core area of the contributions laid in distributed data processing and communication mechanisms, advanced image processing and embedded system development. Special focus is given by the paper to analyzing the impact the project implementation in the educational process, directly or indirectly, through the faculty members (professors and students) involved in the research team. Three main directions are discussed: a) enabling students to carry out internships at the partner companies, b) handling advanced topics and industry requirements at the master's level, c) experiments and concept validation for doctoral thesis. The impact of the research work (as the educational component) developed by the faculty members on the increasing performances of the companies’ products is highlighted. The collaboration between university and companies was well balanced both for contributions and results. The paper also presents the outcomes of the project which reveals the efficient collaboration between high education and industry: master thesis, doctoral thesis, conference papers, journal papers, technical documentation for technology transfer, prototype, and patent. The experience can provide useful practices of blending research and education within an academia-industry cooperation framework while the lessons learned represent a starting point in debating the new role of advanced research and development performing companies in association with higher education. This partnership, promoted at UE level, has a broad impact beyond the constrained scope of a single project and can develop into long-lasting collaboration while benefiting all stakeholders: students, universities and the surrounding knowledge-based economic and industrial ecosystem. Due to the exchange of experiences between the university (UPB) and the manufacturing company (AFT Design), a new project, SIMUL, under the Bridge Grant Program (Romanian executive agency UEFISCDI) was started (2016 – 2017). This project will continue the educational research for innovation on master and doctoral studies in MUROS thematic (collaborative multi-UAV application for flood detection).Keywords: education process, multisensory robotic system, research and innovation project, technology transfer, university-industry partnership
Procedia PDF Downloads 24013 Design of DNA Origami Structures Using LAMP Products as a Combined System for the Detection of Extended Spectrum B-Lactamases
Authors: Kalaumari Mayoral-Peña, Ana I. Montejano-Montelongo, Josué Reyes-Muñoz, Gonzalo A. Ortiz-Mancilla, Mayrin Rodríguez-Cruz, Víctor Hernández-Villalobos, Jesús A. Guzmán-López, Santiago García-Jacobo, Iván Licona-Vázquez, Grisel Fierros-Romero, Rosario Flores-Vallejo
Abstract:
The group B-lactamic antibiotics include some of the most frequently used small drug molecules against bacterial infections. Nevertheless, an alarming decrease in their efficacy has been reported due to the emergence of antibiotic-resistant bacteria. Infections caused by bacteria expressing extended Spectrum B-lactamases (ESBLs) are difficult to treat and account for higher morbidity and mortality rates, delayed recovery, and high economic burden. According to the Global Report on Antimicrobial Resistance Surveillance, it is estimated that mortality due to resistant bacteria will ascend to 10 million cases per year worldwide. These facts highlight the importance of developing low-cost and readily accessible detection methods of drug-resistant ESBLs bacteria to prevent their spread and promote accurate and fast diagnosis. Bacterial detection is commonly done using molecular diagnostic techniques, where PCR stands out for its high performance. However, this technique requires specialized equipment not available everywhere, is time-consuming, and has a high cost. Loop-Mediated Isothermal Amplification (LAMP) is an alternative technique that works at a constant temperature, significantly decreasing the equipment cost. It yields double-stranded DNA of several lengths with repetitions of the target DNA sequence as a product. Although positive and negative results from LAMP can be discriminated by colorimetry, fluorescence, and turbidity, there is still a large room for improvement in the point-of-care implementation. DNA origami is a technique that allows the formation of 3D nanometric structures by folding a large single-stranded DNA (scaffold) into a determined shape with the help of short DNA sequences (staples), which hybridize with the scaffold. This research aimed to generate DNA origami structures using LAMP products as scaffolds to improve the sensitivity to detect ESBLs in point-of-care diagnosis. For this study, the coding sequence of the CTM-X-15 ESBL of E. coli was used to generate the LAMP products. The set of LAMP primers were designed using PrimerExplorerV5. As a result, a target sequence of 200 nucleotides from CTM-X-15 ESBL was obtained. Afterward, eight different DNA origami structures were designed using the target sequence in the SDCadnano and analyzed with CanDo to evaluate the stability of the 3D structures. The designs were constructed minimizing the total number of staples to reduce costs and complexity for point-of-care applications. After analyzing the DNA origami designs, two structures were selected. The first one was a zig-zag flat structure, while the second one was a wall-like shape. Given the sequence repetitions in the scaffold sequence, both were able to be assembled with only 6 different staples each one, ranging between 18 to 80 nucleotides. Simulations of both structures were performed using scaffolds of different sizes yielding stable structures in all the cases. The generation of the LAMP products were tested by colorimetry and electrophoresis. The formation of the DNA structures was analyzed using electrophoresis and colorimetry. The modeling of novel detection methods through bioinformatics tools allows reliable control and prediction of results. To our knowledge, this is the first study that uses LAMP products and DNA-origami in combination to delect ESBL-producing bacterial strains, which represent a promising methodology for diagnosis in the point-of-care.Keywords: beta-lactamases, antibiotic resistance, DNA origami, isothermal amplification, LAMP technique, molecular diagnosis
Procedia PDF Downloads 22312 Managing Crowds at Sports Mega Events: Examining the Impact of ‘Fan Parks’ at International Football Tournaments between 2002 and 2016
Authors: Joel Rookwood
Abstract:
Sports mega events have become increasingly significant in sporting, political and economic terms, with analysis often focusing on issues including resource expenditure, development, legacy and sustainability. Transnational tournaments can inspire interest from a variety of demographics, and the operational management of such events can involve contributions from a range of personnel. In addition to television audiences events also attract attending spectators, and in football contexts the temporary migration of fans from potentially rival nations and teams can present event organising committees and security personnel with various challenges in relation to crowd management. The behaviour, interaction and control of supporters has previously led to incidents of disorder and hooliganism, with damage to property as well as injuries and deaths proving significant consequences. The Heysel tragedy at the 1985 European Cup final in Brussels is a notable example, where 39 fans died following crowd disorder and mismanagement. Football disasters and disorder, particularly in the context of international competition, have inspired responses from police, law makers, event organisers, clubs and associations, including stadium improvements, legislative developments and crowd management practice to improve the effectiveness of spectator safety. The growth and internationalisation of fandom and developments in event management and tourism have seen various responses to the evolving challenges associated with hosting large numbers of visiting spectators at mega events. In football contexts ‘fan parks’ are a notable example. Since the first widespread introduction in European football competitions at the 2006 World Cup finals in Germany, these facilities have become a staple element of such mega events. This qualitative, longitudinal, multi-continent research draws on extensive semi-structured interview and observation data. As a frame of reference, this work considers football events staged before and after the development of fan parks. Research was undertaken at four World Cup finals (Japan 2002, Germany 2006, South Africa 2010 and Brazil 2014), four European Championships (Portugal 2004, Switzerland/Austria 2008, Poland/Ukraine 2012 and France 2016), four other confederation tournaments (Ghana 2008, Qatar 2011, USA 2011 and Chile 2015), and four European club finals (Istanbul 2005, Athens 2007, Rome 2009 and Basle 2016). This work found that these parks are typically temporarily erected, specifically located zones where supporters congregate together irrespective of allegiances to watch matches on large screens, and partake in other forms of organised on-site entertainment. Such facilities can also allow organisers to control the behaviour, confine the movement and monitor the alcohol consumption of supporters. This represents a notable shift in policy from previous football tournaments, when the widely assumed causal link between alcohol and hooliganism which frequently shaped legislative and police responses to disorder, also dissuaded some authorities from permitting fans to consume alcohol in and around stadia. It also reflects changing attitudes towards modern football fans. The work also found that in certain contexts supporters have increasingly engaged with such provision which impacts fan behaviour, but that this is relative to factors including location, facilities, management and security.Keywords: event, facility, fan, management, park
Procedia PDF Downloads 31311 Long-Term Subcentimeter-Accuracy Landslide Monitoring Using a Cost-Effective Global Navigation Satellite System Rover Network: Case Study
Authors: Vincent Schlageter, Maroua Mestiri, Florian Denzinger, Hugo Raetzo, Michel Demierre
Abstract:
Precise landslide monitoring with differential global navigation satellite system (GNSS) is well known, but technical or economic reasons limit its application by geotechnical companies. This study demonstrates the reliability and the usefulness of Geomon (Infrasurvey Sàrl, Switzerland), a stand-alone and cost-effective rover network. The system permits deploying up to 15 rovers, plus one reference station for differential GNSS. A dedicated radio communication links all the modules to a base station, where an embedded computer automatically provides all the relative positions (L1 phase, open-source RTKLib software) and populates an Internet server. Each measure also contains information from an internal inclinometer, battery level, and position quality indices. Contrary to standard GNSS survey systems, which suffer from a limited number of beacons that must be placed in areas with good GSM signal, Geomon offers greater flexibility and permits a real overview of the whole landslide with good spatial resolution. Each module is powered with solar panels, ensuring autonomous long-term recordings. In this study, we have tested the system on several sites in the Swiss mountains, setting up to 7 rovers per site, for an 18 month-long survey. The aim was to assess the robustness and the accuracy of the system in different environmental conditions. In one case, we ran forced blind tests (vertical movements of a given amplitude) and compared various session parameters (duration from 10 to 90 minutes). Then the other cases were a survey of real landslides sites using fixed optimized parameters. Sub centimetric-accuracy with few outliers was obtained using the best parameters (session duration of 60 minutes, baseline 1 km or less), with the noise level on the horizontal component half that of the vertical one. The performance (percent of aborting solutions, outliers) was reduced with sessions shorter than 30 minutes. The environment also had a strong influence on the percent of aborting solutions (ambiguity search problem), due to multiple reflections or satellites obstructed by trees and mountains. The length of the baseline (distance reference-rover, single baseline processing) reduced the accuracy above 1 km but had no significant effect below this limit. In critical weather conditions, the system’s robustness was limited: snow, avalanche, and frost-covered some rovers, including the antenna and vertically oriented solar panels, leading to data interruption; and strong wind damaged a reference station. The possibility of changing the sessions’ parameters remotely was very useful. In conclusion, the rover network tested provided the foreseen sub-centimetric-accuracy while providing a dense spatial resolution landslide survey. The ease of implementation and the fully automatic long-term survey were timesaving. Performance strongly depends on surrounding conditions, but short pre-measures should allow moving a rover to a better final placement. The system offers a promising hazard mitigation technique. Improvements could include data post-processing for alerts and automatic modification of the duration and numbers of sessions based on battery level and rover displacement velocity.Keywords: GNSS, GSM, landslide, long-term, network, solar, spatial resolution, sub-centimeter.
Procedia PDF Downloads 11110 Evaluation of Coal Quality and Geomechanical Moduli Using Core and Geophysical Logs: Study from Middle Permian Barakar Formation of Gondwana Coalfield
Authors: Joyjit Dey, Souvik Sen
Abstract:
Middle Permian Barakar formation is the major economic coal bearing unit of vast east-west trending Damodar Valley basin of Gondwana coalfield. Primary sedimentary structures were studied from the core holes, which represent majorly four facies groups: sandstone dominated facies, sandstone-shale heterolith facies, shale facies and coal facies. Total eight major coal seams have been identified with the bottom most seam being the thickest. Laterally, continuous coal seams were deposited in the calm and quiet environment of extensive floodplain swamps. Channel sinuosity and lateral channel migration/avulsion results in lateral facies heterogeneity and coal splitting. Geophysical well logs (Gamma-Resistivity-Density logs) have been used to establish the vertical and lateral correlation of various litho units field-wide, which reveals the predominance of repetitive fining upwards cycles. Well log data being a permanent record, offers a strong foundation for generating log based property evaluation and helps in characterization of depositional units in terms of lateral and vertical heterogeneity. Low gamma, high resistivity, low density is the typical coal seam signatures in geophysical logs. Here, we have used a density cutoff of 1.6 g/cc as a primary discriminator of coal and the same has been employed to compute various coal assay parameters, which are ash, fixed carbon, moisture, volatile content, cleat porosity, vitrinite reflectance (VRo%), which were calibrated with the laboratory based measurements. The study shows ash content and VRo% increase from west to east (towards basin margin), while fixed carbon, moisture and volatile content increase towards west, depicting increased coal quality westwards. Seam wise cleat porosity decreases from east to west, this would be an effect of overburden, as overburden pressure increases westward with the deepening of basin causing more sediment packet deposited on the western side of the study area. Coal is a porous, viscoelastic material in which velocity and strain both change nonlinearly with stress, especially for stress applied perpendicular to the bedding plane. Usually, the coal seam has a high velocity contrast relative to its neighboring layers. Despite extensive discussion of the maceral and chemical properties of coal, its elastic characteristics have received comparatively little attention. The measurement of the elastic constants of coal presents many difficulties: sample-to-sample inhomogeneity and fragility and velocity dependence on stress, orientation, humidity, and chemical content. In this study, a conclusive empirical equation VS= 0.80VP-0.86 has been used to model shear velocity from compression velocity. Also the same has been used to compute various geomechanical moduli. Geomech analyses yield a Poisson ratio of 0.348 against coals. Average bulk modulus value is 3.97 GPA, while average shear modulus and Young’s modulus values are coming out as 1.34 and 3.59 GPA respectively. These middle Permian Barakar coals show an average 23.84 MPA uniaxial compressive strength (UCS) with 4.97 MPA cohesive strength and 0.46 as friction coefficient. The output values of log based proximate parameters and geomechanical moduli suggest a medium volatile Bituminous grade for the studied coal seams, which is found in the laboratory based core study as well.Keywords: core analysis, coal characterization, geophysical log, geo-mechanical moduli
Procedia PDF Downloads 2269 Tackling the Decontamination Challenge: Nanorecycling of Plastic Waste
Authors: Jocelyn Doucet, Jean-Philippe Laviolette, Ali Eslami
Abstract:
The end-of-life management and recycling of polymer wastes remains a key environment issue in on-going efforts to increase resource efficiency and attaining GHG emission reduction targets. Half of all the plastics ever produced were made in the last 13 years, and only about 16% of that plastic waste is collected for recycling, while 25% is incinerated, 40% is landfilled, and 19% is unmanaged and leaks in the environment and waterways. In addition to the plastic collection issue, the UN recently published a report on chemicals in plastics, which adds another layer of challenge when integrating recycled content containing toxic products into new products. To tackle these important issues, innovative solutions are required. Chemical recycling of plastics provides new complementary alternatives to the current recycled plastic market by converting waste material into a high value chemical commodity that can be reintegrated in a variety of applications, making the total market size of the output – virgin-like, high value products - larger than the market size of the input – plastic waste. Access to high-quality feedstock also remains a major obstacle, primarily due to material contamination issues. Pyrowave approaches this challenge with its innovative nano-recycling technology, which purifies polymers at the molecular level, removing undesirable contaminants and restoring the resin to its virgin state without having to depolymerise it. This breakthrough approach expands the range of plastics that can be effectively recycled, including mixed plastics with various contaminants such as lead, inorganic pigments, and flame retardants. The technology allows yields below 100ppm, and purity can be adjusted to an infinitesimal level depending on the customer's specifications. The separation of the polymer and contaminants in Pyrowave's nano-recycling process offers the unique ability to customize the solution on targeted additives and contaminants to be removed based on the difference in molecular size. This precise control enables the attainment of a final polymer purity equivalent to virgin resin. The patented process involves dissolving the contaminated material using a specially formulated solvent, purifying the mixture at the molecular level, and subsequently extracting the solvent to yield a purified polymer resin that can directly be reintegrated in new products without further treatment. Notably, this technology offers simplicity, effectiveness, and flexibility while minimizing environmental impact and preserving valuable resources in the manufacturing circuit. Pyrowave has successfully applied this nano-recycling technology to decontaminate polymers and supply purified, high-quality recycled plastics to critical industries, including food-contact compliance. The technology is low-carbon, electrified, and provides 100% traceable resins with properties identical to those of virgin resins. Additionally, the issue of low recycling rates and the limited market for traditionally hard-to-recycle plastic waste has fueled the need for new complementary alternatives. Chemical recycling, such as Pyrowave's microwave depolymerization, presents a sustainable and efficient solution by converting plastic waste into high-value commodities. By employing microwave catalytic depolymerization, Pyrowave enables a truly circular economy of plastics, particularly in treating polystyrene waste to produce virgin-like styrene monomers. This revolutionary approach boasts low energy consumption, high yields, and a reduced carbon footprint. Pyrowave offers a portfolio of sustainable, low-carbon, electric solutions to give plastic waste a second life and paves the way to the new circular economy of plastics. Here, particularly for polystyrene, we show that styrene monomer yields from Pyrowave’s polystyrene microwave depolymerization reactor is 2,2 to 1,5 times higher than that of the thermal conventional pyrolysis. In addition, we provide a detailed understanding of the microwave assisted depolymerization via analyzing the effects of microwave power, pyrolysis time, microwave receptor and temperature on the styrene product yields. Furthermore, we investigate life cycle environmental impact assessment of microwave assisted pyrolysis of polystyrene in commercial-scale production. Finally, it is worth pointing out that Pyrowave is able to treat several tons of polystyrene to produce virgin styrene monomers and manage waste/contaminated polymeric materials as well in a truly circular economy.Keywords: nanorecycling, nanomaterials, plastic recycling, depolymerization
Procedia PDF Downloads 668 Optimum Irrigation System Management for Climate Resilient and Improved Productivity of Flood-based Livelihood Systems
Authors: Mara Getachew Zenebe, Luuk Fleskens, Abdu Obieda Ahmed
Abstract:
This paper seeks to advance our scientific understanding of optimizing flood utilization in regions impacted by climate change, with a focus on enhancing agricultural productivity through effective irrigation management. The study was conducted as part of a three-year (2021 to 2023) USAID-supported initiative aimed at promoting Economic Growth and Peace in the Gash Agricultural Scheme (GAS), situated in Sudan's water-stressed Eastern region. GAS is the country's largest flood-irrigated scheme, covering 100,800 hectares of cultivable land, with a potential to provide the food security needs of over a quarter of a million agro-pastoral community members. GAS relies on the Gash River, which sources its water from high-intensity rainfall events in the highlands of Ethiopia and Eritrea. However, climate change and variations in these highlands have led to increased variability in the Gash River's flow. The study conducted water balance analyses based on a ten-year dataset of the annual Gash River flow, irrigated area; as well as the evapotranspiration demand of the major sorghum crop. Data collection methods included field measurements, surveys, remote sensing, and CropWat modelling. The water balance assessment revealed that the existing three-year rotation-based irrigation system management, capping cultivated land at 33,000 hectares annually, is excessively risk-averse. While this system reduced conflicts among the agro-pastoral communities by consistently delivering on the land promised to be annually cultivated, it also increased GAS's vulnerability to flood damage due to several reasons. The irrigation efficiency over the past decade was approximately 30%, leaving significant unharnessed floodwater that caused damage to infrastructure and agricultural land. The three-year rotation resulted in inadequate infrastructural maintenance, given the destructive nature of floods. Additionally, it led to infrequent land tillage, allowing the encroachment of mesquite trees hindering major sorghum crop growth. Remote sensing data confirmed that mesquite trees have overtaken 70,000 hectares in the past two decades, rendering them unavailable for agriculture. The water balance analyses suggest shifting to a two-year rotation, covering approximately 50,000 hectares annually while maintaining risk aversion. This shift could boost GAS's annual sorghum production by two-thirds, exceeding 850,000 tons. The scheme's efficiency can be further enhanced through low-cost on-farm interventions. Currently, large irrigation plots that range from 420 to 756 hectares are irrigated with limited water distribution guidance, leading to uneven irrigation. As demonstrated through field trials, implementing internal longitudinal bunds and horizontal deflector bunds can increase adequately irrigated parts of the irrigation plots from 50% to 80% and thus nearly double the sorghum yield to 2 tons per hectare while reducing the irrigation duration from 30 days to a maximum of 17 days. Flow measurements in 2021 and 2022 confirmed that these changes sufficiently meet the sorghum crop's water requirements, even with a conservative 60% field application efficiency assumption. These insights and lessons from the GAS on enhancing agricultural resilience and sustainability in the face of climate change are relevant to flood-based livelihood systems globally.Keywords: climate change, irrigation management and productivity, variable flood flows, water balance analysis
Procedia PDF Downloads 757 Rapid Situation Assessment of Family Planning in Pakistan: Exploring Barriers and Realizing Opportunities
Authors: Waqas Abrar
Abstract:
Background: Pakistan is confronted with a formidable challenge to increase uptake of modern contraceptive methods. USAID, through its flagship Maternal and Child Survival Program (MCSP), in Pakistan is determined to support provincial Departments of Health and Population Welfare to increase the country's contraceptive prevalence rates (CPR) in Sindh, Punjab and Balochistan to achieve FP2020 goals. To inform program design and planning, a Rapid Situation Assessment (RSA) of family planning was carried out in Rawalpindi and Lahore districts in Punjab and Karachi district in Sindh. Methodology: The methodology consisted of comprehensive desk review of available literature and used a qualitative approach comprising of in-depth interviews (IDIs) and focus group discussions (FGDs). FGDs were conducted with community women, men, and mothers-in-law whereas IDIs were conducted with health facility in-charges/chiefs, healthcare providers, and community health workers. Results: Some of the oft-quoted reasons captured during desk review included poor quality of care at public sector facilities, affordability and accessibility in rural communities and providers' technical incompetence. Moreover, providers had inadequate knowledge of contraceptive methods and lacked counseling techniques; thereby, leading to dissatisfied clients and hence, discontinuation of contraceptive methods. These dissatisfied clients spread the myths and misconceptions about contraceptives in their respective communities which seriously damages community-level family planning efforts. Private providers were found reluctant to insert Intrauterine Contraceptive Devices (IUCDs) due to inadequate knowledge vis-à-vis post insertion issues/side effects. FGDs and IDIs unveiled multi-faceted reasons for poor contraceptives uptake. It was found that low education and socio-economic levels lead to low contraceptives uptake and mostly uneducated women rely on condoms provided by Lady Health Workers (LHWs). Providers had little or no knowledge about postpartum family planning or lactational amenorrhea. At community level family planning counseling sessions organized by LHWs and Male Mobilizers do not sensitize community men on permissibility of contraception in Islam. Many women attributed their physical ailments to the use of contraceptives. Lack of in-service training, job-aids and Information, Education and Communications (IEC) materials at facilities seriously comprise the quality of care in effective family planning service delivery. This is further compounded by frequent stock-outs of contraceptives at public healthcare facilities, poor data quality, false reporting, lack of data verification systems and follow-up. Conclusions: Some key conclusions from this assessment included capacity building of healthcare providers on long acting reversible contraceptives (LARCs) which give women contraception for a longer period. Secondly, capacity building of healthcare providers on postpartum family planning is an enormous challenge that can be best addressed through institutionalization. Thirdly, Providers should be equipped with counseling skills and techniques including inculcation of pros and cons of all contraceptive methods. Fourthly, printed materials such as job-aids and Information, Education and Communications (IEC) materials should be disseminated among healthcare providers and clients. These concluding statements helped MCSP to make informed decisions with regard to setting broad objectives of project and were duly approved by USAID.Keywords: capacity building, contraceptive prevalence rate, family planning, Institutionalization, Pakistan, postpartum care, postpartum family planning services
Procedia PDF Downloads 1536 Salmon Diseases Connectivity between Fish Farm Management Areas in Chile
Authors: Pablo Reche
Abstract:
Since 1980’s aquaculture has become the biggest economic activity in southern Chile, being Salmo salar and Oncorhynchus mykiss the main finfish species. High fish density makes both species prone to contract diseases, what drives the industry to big losses, affecting greatly the local economy. Three are the most concerning infective agents, the infectious salmon anemia virus (ISAv), the bacteria Piscirickettsia salmonis and the copepod Caligus rogercresseyi. To regulate the industry the government arranged the salmon farms within management areas named as barrios, which coordinate the fallowing periods and antibiotics treatments of their salmon farms. In turn, barrios are gathered into larger management areas, named as macrozonas whose purpose is to minimize the risk of disease transmission between them and to enclose the outbreaks within their boundaries. However, disease outbreaks still happen and transmission to neighbor sites enlarges the initial event. Salmon disease agents are mostly transported passively by local currents. Thus, to understand how transmission occurs it must be firstly studied the physical environment. In Chile, salmon farming takes place in the inner seas of the southernmost regions of western Patagonia, between 41.5ºS-55ºS. This coastal marine system is characterised by western winds, latitudinally modulated by the position of the South-Eats Pacific high-pressure centre, high precipitation rates and freshwater inflows from the numerous glaciers (including the largest ice cap out of Antarctic and Greenland). All of these forcings meet in a complex bathymetry and coastline system - deep fjords, shallow sills, narrow straits, channels, archipelagos, inlets, and isolated inner seas- driving an estuarine circulation (fast outflows westwards on surface and slow deeper inflows eastwards). Such a complex system is modelled on the numerical model MIKE3, upon whose 3D current fields particle-track-biological models (one for each infective agent) are decoupled. Each agent biology is parameterized by functions for maturation and mortality (reproduction not included). Such parameterizations are depending upon environmental factors, like temperature and salinity, so their lifespan will depend upon the environmental conditions those virtual agents encounter on their way while passively transported. CLIC (Connectivity-Langrangian–IFOP-Chile) is a service platform that supports the graphical visualization of the connectivity matrices calculated from the particle trajectories files resultant of the particle-track-biological models. On CLIC users can select, from a high-resolution grid (~1km), the areas the connectivity will be calculated between them. These areas can be barrios and macrozonas. Users also can select what nodes of these areas are allowed to release and scatter particles from, depth and frequency of the initial particle release, climatic scenario (winter/summer) and type of particle (ISAv, Piscirickettsia salmonis, Caligus rogercresseyi plus an option for lifeless particles). Results include probabilities downstream (where the particles go) and upstream (where the particles come from), particle age and vertical distribution, all of them aiming to understand how currently connectivity works to eventually propose a minimum risk zonation for aquaculture purpose. Preliminary results in Chiloe inner sea shows that the risk depends not only upon dynamic conditions but upon barrios location with respect to their neighbors.Keywords: aquaculture zonation, Caligus rogercresseyi, Chilean Patagonia, coastal oceanography, connectivity, infectious salmon anemia virus, Piscirickettsia salmonis
Procedia PDF Downloads 1555 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 1504 Sustainable Agricultural and Soil Water Management Practices in Relation to Climate Change and Disaster: A Himalayan Country Experience
Authors: Krishna Raj Regmi
Abstract:
A “Climate change adaptation and disaster risk management for sustainable agriculture” project was implemented in Nepal, a Himalayan country during 2008 to 2013 sponsored jointly by Food and Agriculture Organization (FAO) and United Nations Development Programme (UNDP), Nepal. The paper is based on the results and findings of this joint pilot project. The climate change events such as increased intensity of erratic rains in short spells, trend of prolonged drought, gradual rise in temperature in the higher elevations and occurrence of cold and hot waves in Terai (lower plains) has led to flash floods, massive erosion in the hills particularly in Churia range and drying of water sources. These recurring natural and climate-induced disasters are causing heavy damages through sedimentation and inundation of agricultural lands, crops, livestock, infrastructures and rural settlements in the downstream plains and thus reducing agriculture productivity and food security in the country. About 65% of the cultivated land in Nepal is rainfed with drought-prone characteristics and stabilization of agricultural production and productivity in these tracts will be possible through adoption of rainfed and drought-tolerant technologies as well as efficient soil-water management by the local communities. The adaptation and mitigation technologies and options identified by the project for soil erosion, flash floods and landslide control are on-farm watershed management, sloping land agriculture technologies (SALT), agro-forestry practices, agri-silvi-pastoral management, hedge-row contour planting, bio-engineering along slopes and river banks, plantation of multi-purpose trees and management of degraded waste land including sandy river-bed flood plains. The stress tolerant technologies with respect to drought, floods and temperature stress for efficient utilization of nutrient, soil, water and other resources for increased productivity are adoption of stress tolerant crop varieties and breeds of animals, indigenous proven technologies, mixed and inter-cropping systems, system of rice/wheat intensification (SRI), direct rice seeding, double transplanting of rice, off-season vegetable production and regular management of nurseries, orchards and animal sheds. The alternate energy use options and resource conservation practices for use by local communities are installation of bio-gas plants and clean stoves (Chulla range) for mitigation of green house gas (GHG) emissions, use of organic manures and bio-pesticides, jatropha cultivation, green manuring in rice fields and minimum/zero tillage practices for marshy lands. The efficient water management practices for increasing productivity of crops and livestock are use of micro-irrigation practices, construction of water conservation and water harvesting ponds, use of overhead water tanks and Thai jars for rain water harvesting and rehabilitation of on-farm irrigation systems. Initiation of some works on community-based early warning system, strengthening of met stations and disaster database management has made genuine efforts in providing disaster-tailored early warning, meteorological and insurance services to the local communities. Contingent planning is recommended to develop coping strategies and capacities of local communities to adopt necessary changes in the cropping patterns and practices in relation to adverse climatic and disaster risk conditions. At the end, adoption of awareness raising and capacity development activities (technical and institutional) and networking on climate-induced disaster and risks through training, visits and knowledge sharing workshops, dissemination of technical know-how and technologies, conduct of farmers' field schools, development of extension materials and their displays are being promoted. However, there is still need of strong coordination and linkage between agriculture, environment, forestry, meteorology, irrigation, climate-induced pro-active disaster preparedness and research at the ministry, department and district level for up-scaling, implementation and institutionalization of climate change and disaster risk management activities and adaptation mitigation options in agriculture for sustainable livelihoods of the communities.Keywords: climate change adaptation, disaster risk management, soil-water management practices, sustainable agriculture
Procedia PDF Downloads 5103 Design and Construction of a Solar Dehydration System as a Technological Strategy for Food Sustainability in Difficult-to-Access Territories
Authors: Erika T. Fajardo-Ariza, Luis A. Castillo-Sanabria, Andrea Nieto-Veloza, Carlos M. Zuluaga-Domínguez
Abstract:
The growing emphasis on sustainable food production and preservation has driven the development of innovative solutions to minimize postharvest losses and improve market access for small-scale farmers. This project focuses on designing, constructing, and selecting materials for solar dryers in certain regions of Colombia where inadequate infrastructure limits access to major commercial hubs. Postharvest losses pose a significant challenge, impacting food security and farmer income. Addressing these losses is crucial for enhancing the value of agricultural products and supporting local economies. A comprehensive survey of local farmers revealed substantial challenges, including limited market access, inefficient transportation, and significant postharvest losses. For crops such as coffee, bananas, and citrus fruits, losses range from 0% to 50%, driven by factors like labor shortages, adverse climatic conditions, and transportation difficulties. To address these issues, the project prioritized selecting effective materials for the solar dryer. Various materials, recovered acrylic, original acrylic, glass, and polystyrene, were tested for their performance. The tests showed that recovered acrylic and glass were most effective in increasing the temperature difference between the interior and the external environment. The solar dryer was designed using Fusion 360® software (Autodesk, USA) and adhered to architectural guidelines from Architectural Graphic Standards. It features up to sixteen aluminum trays, each with a maximum load capacity of 3.5 kg, arranged in two levels to optimize drying efficiency. The constructed dryer was then tested with two locally available plant materials: green plantains (Musa paradisiaca L.) and snack bananas (Musa AA Simonds). To monitor performance, Thermo hygrometers and an Arduino system recorded internal and external temperature and humidity at one-minute intervals. Despite challenges such as adverse weather conditions and delays in local government funding, the active involvement of local producers was a significant advantage, fostering ownership and understanding of the project. The solar dryer operated under conditions of 31°C dry bulb temperature (Tbs), 55% relative humidity, and 21°C wet bulb temperature (Tbh). The drying curves showed a consistent drying period with critical moisture content observed between 200 and 300 minutes, followed by a sharp decrease in moisture loss, reaching an equilibrium point after 3,400 minutes. Although the solar dryer requires more time and is highly dependent on atmospheric conditions, it can approach the efficiency of an electric dryer when properly optimized. The successful design and construction of solar dryer systems in difficult-to-access areas represent a significant advancement in agricultural sustainability and postharvest loss reduction. By choosing effective materials such as recovered acrylic and implementing a carefully planned design, the project provides a valuable tool for local farmers. The initiative not only improves the quality and marketability of agricultural products but also offers broader environmental benefits, such as reduced reliance on fossil fuels and decreased waste. Additionally, it supports economic growth by enhancing the value of crops and potentially increasing farmer income. The successful implementation and testing of the dryer, combined with the engagement of local stakeholders, highlight its potential for replication and positive impact in similar contexts.Keywords: drying technology, postharvest loss reduction, solar dryers, sustainable agriculture
Procedia PDF Downloads 312 Modern Day Second Generation Military Filipino Amerasians and Ghosts of the U.S. Military Prostitution System in West Central Luzon's 'AMO Amerasian Triangle'
Authors: P. C. Kutschera, Elena C. Tesoro, Mary Grace Talamera-Sandico, Jose Maria G. Pelayo III
Abstract:
Second generation military Filipino Amerasians comprise a formidable contemporary segment of the estimated 250,000-plus biracial Amerasians in the Philippines today. Overall, they are a stigmatized and socioeconomically marginalized diaspora, historically; they were abandoned or estranged by U.S. military personnel fathers assigned during the century-long Colonial, Post-World War II and Cold War Era of permanent military basing (1898-1992). Indeed, U.S. military personnel remain stationed in smaller numbers in the Philippines today. This inquiry is an outgrowth of two recent small sample studies. The first surfaced the impact of the U.S. military prostitution system on formation of the ‘Derivative Amerasian Family Construct’ on first generation Amerasians; a second, qualitative case study suggested the continued effect of the prostitution systems' destructive impetuous on second generation Amerasians. The intent of this current qualitative, multiple-case study was to actively seek out second generation sex industry toilers. The purpose was to focus further on this human phenomenon in the post-basing and post-military prostitution system eras. As background, the former military prostitution apparatus has transformed into a modern dynamic of rampant sex tourism and prostitution nationwide. This is characterized by hotel and resorts offering unrestricted carnal access, urban and provincial brothels (casas), discos, bars and pickup clubs, massage parlors, local barrio karaoke bars and street prostitution. A small case study sample (N = 4) of female and male second generation Amerasians were selected. Sample formation employed a non-probability ‘snowball’ technique drawing respondents from the notorious Angeles, Metro Manila, Olongapo City ‘AMO Amerasian Triangle’ where most former U.S. military installations were sited and modern sex tourism thrives. A six-month study and analysis of in-depth interviews of female and male sex laborers, their families and peers revealed a litany of disturbing, and troublesome experiences. Results showed profiles of debilitating human poverty, history of family disorganization, stigmatization, social marginalization and the ghost of the military prostitution system and its harmful legacy on Amerasian family units. Emerging were testimonials of wayward young people ensnared in a maelstrom of deep economic deprivation, familial dysfunction, psychological desperation and societal indifference. The paper recommends that more study is needed and implications of unstudied psychosocial and socioeconomic experiences of distressed younger generations of military Amerasians require specific research. Heretofore apathetic or disengaged U.S. institutions need to confront the issue and formulate activist and solution-oriented social welfare, human services and immigration easement policies and alternatives. These institutions specifically include academic and social science research agencies, corporate foundations, the U.S. Congress, and Departments of State, Defense and Health and Human Services, and Homeland Security (i.e. Citizen and Immigration Services) It is them who continue to endorse a laissez-faire policy of non-involvement over the entire Filipino Amerasian question. Such apathy, the paper concludes, relegates this consequential but neglected blood progeny to the status of humiliating destitution and exploitation. Amerasians; thus, remain entrapped in their former colonial, and neo-colonial habitat. Ironically, they are unwitting victims of a U.S. American homeland that fancies itself geo-politically as a strong and strategic military treaty ally of the Philippines in the Western Pacific.Keywords: Asian Americans, diaspora, Filipino Amerasians, military prostitution, stigmatization
Procedia PDF Downloads 4881 Women in Malaysia: Exploring the Democratic Space in Politics
Authors: Garima Sarkar
Abstract:
The main purpose of the present paper is to investigate the development and progress achieved by women in the decision-making sphere and to access the level of their political-participation in Parliamentary Elections of Malaysia and their status in overall Malaysian political domain. The paper also focuses on the role and status of women in the major political parties of the state both the parties in power as well as the parties in opposition. The primary objective of the study is to focus on the major hindrances and social malpractices faced by women and also Muslim women’s access to justice in Malaysia. It also demonstrates the linkages between national policy initiatives and the advancement of women in various areas, such as economics, health, employment, politics, power-sharing, social development and law and most importantly evaluating their status in the dominant religion of the nation. In Malaysia, women’s political participation is being challenged from every nook and corner of the society. A high percentage of women are getting educated, forming a significant labor force in present day Malaysia, who can be employed in the manufacturing sector, retail trade, hotels and restaurant, agriculture etc. Women today consist of almost half of the population and exceed boys in the tertiary sector by a ratio of 80:20. Despite these achievements, however, women’s labor force engagement remains confined to ‘ traditional women’s occupations’, such as those of primary school teachers, data entry clerks and organizing polls during elections and motivating other less enlightened women to cast their votes. In the political arena, the past few General Elections of Malaysia clearly exhibited a slight change in the number of women Members of Parliament from 10.6% (20 out of 193 Parliamentary seats in 1999) to 10.5% (23 out of 219 Parliamentary seats in 2004). Amidst the political posturing for the recent General Election in 2013 of Malaysia, women’s political participation remains a prime concern in Malaysia. It is evident that while much of the attention of women revolves around charitable assistance, they are much less likely to be portrayed as active participants in electoral politics and governance. According to the electoral roll for the third quarter of 2012, 6,578,916 women are registered as voters. They represent 50.2% of the total number of the registered voters. However, this parity in terms of voter registration is not reflected in the number of elected representatives at the Parliamentary level. Only 10.4% of sitting Members of Parliament are women. The women’s participation in the legislature and executive branches are important since their presence brings the spotlight squarely on issues that have been historically neglected and overlooked. In the recent 2013 General Elections in Malaysia out of 35 full ministerial position only two, or 5.7% have been filled by women. In each of the 2009, 2010, and in the present 2013 Cabinet members, there have only been two women ministers, with this number reduced to one briefly when the Prime Minister appointed himself placeholder in the Ministry of Women, Family and Community Development. In the recent past, in its Election Manifesto, Barisan Nasional made a pledge of ‘increasing the number of women participating in national decision-making processes’. Even after such pledges, the Malaysian leadership has failed to mirror the strong presence of women in leadership positions of public life which primarily includes politics, the judiciary and in business. There has been a strong urge to political parties by various gender-sensitive groups to nominate more women as candidates for contesting elections at the Parliamentary as well as at the State level. The democratization process will never be truly democratic without a proper gender agenda and representation. Although Malaysia signed the Beijing Platform for Action document in 1995, the state has a long way to go in enhancing the participation of women in every segment of Malaysian political, economic and cultural. There has been a small percentage of women representation in decision-making bodies compared to the 30% targeted by the Beijing Platform for Action. Thus, democratization in terms of representation of women in leadership positions and decision-making positions or bodies is essential since it’s a move towards a qualitative transformation of women in shaping national decision-making processes. The democratization process has to ensure women’s full participation and their goals of development and their full participation has to be included in the process of formulating and shaping the developmental goals.Keywords: women, gender equality, Islam, democratization, political representation, Parliament
Procedia PDF Downloads 261