Search results for: transformative representation
446 Cultivating Students’ Competences through Social Innovation Education
Authors: Ioanna Garefi, Irene Kalemaki
Abstract:
Education is not solely about preparing young people for the world of work but also about equipping them with competences that will enable them to become socially proactive, empowered, responsible, and engaged citizens who will collectively contribute to and benefit from an inclusive and sustainable future. Hence, progress assessment towards competence development is an ongoing process where continuous efforts are needed. This paper abstract presents the work of the H2020 NEMESIS project that aims to investigate, experiment and co-create together with schools a model for introducing and embedding social innovation education (SIE henceforth) in European primary and secondary schools. All in all, during the 2018-2019 academic year, 8 schools from 5 European countries involving 56 teachers, 1030 students, and 80 external stakeholders, experimented with different methodologies for embedding SIE in their contexts. This paper captures briefly the impact of these efforts towards the cultivation and progression of students’ social innovation (SI henceforth) competences. As part of the model, 14 SI competences, whose progress was evaluated, have been introduced falling under 3 interrelated categories: competences for identifying opportunities for social and collective value creation, competences for developing collaborations and building meaningful relations and competences for taking action both on an individual and collective level. Methodologically wise, the evaluation strategy employed was informed by a realist approach, enabling the researchers to go beyond synthesizing 'what happened' and towards understanding 'why it happened', delving into ‘what works, for whom and in what circumstances’. The reason for choosing such an approach was because it goes beyond attempting to answer the basic yes or no question of evaluation and focus on an ‘explanatory quest’ tracing the limits of when and where intervention is effective. A rich mix of sources of evidence have been employed, from focus groups with 80 people from the 5 EU countries to an online survey to 206 students, classroom observations, students’ narratives granting them with the opportunity to freely express their opinions, short stories letting students express their feelings through their imagination and also, drawings so that younger children can express their perception of reality. All these evidences offered insights on the impact of SIE on the development of students’ competences. Research findings showed that students progressed in all 14 SI competences through their involvement in the different activities. This positive progression is attributed to the model’s three core principles: 1) the student-centered approach, rendering students active and self-determined producers of their own learning, 2) the co-creation process fostering intergenerational interactions, empowering thus students by making their voices heard and valued and also, 3) the transformative social action whereby through their projects, students are able to witness the impact they are bringing about with their actions. Concluding, these initial findings, together with the forthcoming evaluation research to a pool of 30 schools around Europe, have the potential to raise the dynamics of the under-investigated field of SIE and encourage its embeddedness in more schools around Europe.Keywords: competence development, education, social innovation, students
Procedia PDF Downloads 99445 User Authentication Using Graphical Password with Sound Signature
Authors: Devi Srinivas, K. Sindhuja
Abstract:
This paper presents architecture to improve surveillance applications based on the usage of the service oriented paradigm, with smart phones as user terminals, allowing application dynamic composition and increasing the flexibility of the system. According to the result of moving object detection research on video sequences, the movement of the people is tracked using video surveillance. The moving object is identified using the image subtraction method. The background image is subtracted from the foreground image, from that the moving object is derived. So the Background subtraction algorithm and the threshold value is calculated to find the moving image by using background subtraction algorithm the moving frame is identified. Then, by the threshold value the movement of the frame is identified and tracked. Hence, the movement of the object is identified accurately. This paper deals with low-cost intelligent mobile phone-based wireless video surveillance solution using moving object recognition technology. The proposed solution can be useful in various security systems and environmental surveillance. The fundamental rule of moving object detecting is given in the paper, then, a self-adaptive background representation that can update automatically and timely to adapt to the slow and slight changes of normal surroundings is detailed. While the subtraction of the present captured image and the background reaches a certain threshold, a moving object is measured to be in the current view, and the mobile phone will automatically notify the central control unit or the user through SMS (Short Message System). The main advantage of this system is when an unknown image is captured by the system it will alert the user automatically by sending an SMS to user’s mobile.Keywords: security, graphical password, persuasive cued click points
Procedia PDF Downloads 537444 Text Analysis to Support Structuring and Modelling a Public Policy Problem-Outline of an Algorithm to Extract Inferences from Textual Data
Authors: Claudia Ehrentraut, Osama Ibrahim, Hercules Dalianis
Abstract:
Policy making situations are real-world problems that exhibit complexity in that they are composed of many interrelated problems and issues. To be effective, policies must holistically address the complexity of the situation rather than propose solutions to single problems. Formulating and understanding the situation and its complex dynamics, therefore, is a key to finding holistic solutions. Analysis of text based information on the policy problem, using Natural Language Processing (NLP) and Text analysis techniques, can support modelling of public policy problem situations in a more objective way based on domain experts knowledge and scientific evidence. The objective behind this study is to support modelling of public policy problem situations, using text analysis of verbal descriptions of the problem. We propose a formal methodology for analysis of qualitative data from multiple information sources on a policy problem to construct a causal diagram of the problem. The analysis process aims at identifying key variables, linking them by cause-effect relationships and mapping that structure into a graphical representation that is adequate for designing action alternatives, i.e., policy options. This study describes the outline of an algorithm used to automate the initial step of a larger methodological approach, which is so far done manually. In this initial step, inferences about key variables and their interrelationships are extracted from textual data to support a better problem structuring. A small prototype for this step is also presented.Keywords: public policy, problem structuring, qualitative analysis, natural language processing, algorithm, inference extraction
Procedia PDF Downloads 589443 Demographic Diversity in the Boardroom and Firm Performance: Empirical Evidence in the French Context
Authors: Elhem Zaatir, Taher Hamza
Abstract:
Several governments seek to implement gender parity on boards, but the results of doing so are not clear and could harm corporations and economies. The present paper aims to investigate the relationship between women’s presence on boards and firms’ performance in the context of the French listed firms during the quota period. A dynamic panel generalized method of moment estimation is applied to control the endogenous effect of board structure and reverse the causality impact of the financial performance. Our results show that the impact of gender diversity manifests in conflicting directions, positively affecting accounting performance and negatively influencing market performance. These results suggest that female directors create economic value, but the market discounts their impact. Apparently, they are subject to a biased evaluation by the market, which undervalues their presence on boards. Added to that, our results confirm a twofold nature of female representation in the French market. The effect of female directorship on firm performance varies with the affiliation of the directors. In other words, the positive impact of gender diversity on return on assets primarily originates from the positive effect of non-family-affiliated women directors on market performance rather than on the effect of family-affiliated women directors on ROA. Finally, according to our results, women’s demographic attributes namely the level of education and multiple directorships strongly and positively impact firm performance as measured by return on assets (ROA). Obviously, women directors seem to be appointed to the business case rather than as token directors.Keywords: corporate governance, board of directors, women, gender diversity, demographic attributes, firm performance
Procedia PDF Downloads 126442 Study on Gender Mainstreaming: The Case Study of a Rural University in Limpopo Province, South Africa
Authors: Tsoaledi D. Thobejane, Barnabas C. Okere
Abstract:
Gender mainstreaming has been adopted as a strategy for promoting gender equality in institutions of higher learning Worldwide, not least in Africa. This study investigated Gender Mainstreaming at the University of Venda, in Limpopo Province, South Africa. The study was based on the Feminist Theoretical Framework. Both qualitative and quantitative approaches were used. A case study research design was adopted. The study involved a population of 60 participants and a sample of 25 male and female workers selected using the purposive sampling technique. Data were presented in pie charts, tables, themes and in textual forms. Data were analysed through descriptive statistics and thematic analysis. The major findings and conclusions of the study were that the University of Venda faces enormous challenges in mainstreaming gender in the university functions. There are perceptions that most strategic higher positions in the institution are dominated by men while women are marginalized. Although the University has policies on gender, staff members do not know about them while management does not implement its policies. University of Venda makes use of the Employment Equity Act of 1998, but it is not clear whether line managers are aware of its implementation and how. In addition, favouritism, nepotism, patronage, and patriarchy played a role in gender mainstreaming. The study recommended that there should be more gender awareness activities, such as workshops, conferences, and symposia for workers and staff members in order to sensitize them about gender towards understanding. The study also recommended that deserving female staff members should be promoted, and all employees should be encouraged to read and understand gender policies. In addition, management should implement the institutions and national gender policies without fear or favour.Keywords: gender mainstreaming, gender equality, institutions, representation
Procedia PDF Downloads 360441 Crossing Multi-Source Climate Data to Estimate the Effects of Climate Change on Evapotranspiration Data: Application to the French Central Region
Authors: Bensaid A., Mostephaoui T., Nedjai R.
Abstract:
Climatic factors are the subject of considerable research, both methodologically and instrumentally. Under the effect of climate change, the approach to climate parameters with precision remains one of the main objectives of the scientific community. This is from the perspective of assessing climate change and its repercussions on humans and the environment. However, many regions of the world suffer from a severe lack of reliable instruments that can make up for this deficit. Alternatively, the use of empirical methods becomes the only way to assess certain parameters that can act as climate indicators. Several scientific methods are used for the evaluation of evapotranspiration which leads to its evaluation either directly at the level of the climatic stations or by empirical methods. All these methods make a point approach and, in no case, allow the spatial variation of this parameter. We, therefore, propose in this paper the use of three sources of information (network of weather stations of Meteo France, World Databases, and Moodis satellite images) to evaluate spatial evapotranspiration (ETP) using the Turc method. This first step will reflect the degree of relevance of the indirect (satellite) methods and their generalization to sites without stations. The spatial variation representation of this parameter using the geographical information system (GIS) accounts for the heterogeneity of the behaviour of this parameter. This heterogeneity is due to the influence of site morphological factors and will make it possible to appreciate the role of certain topographic and hydrological parameters. A phase of predicting the evolution over the medium and long term of evapotranspiration under the effect of climate change by the application of the Intergovernmental Panel on Climate Change (IPCC) scenarios gives a realistic overview as to the contribution of aquatic systems to the scale of the region.Keywords: climate change, ETP, MODIS, GIEC scenarios
Procedia PDF Downloads 100440 Investigating Malaysian Prereader’s Cognitive Processes when Reading English Picture Storybooks: A Comparative Eye-Tracking Experiment
Authors: Siew Ming Thang, Wong Hoo Keat, Chee Hao Sue, Fung Lan Loo, Ahju Rosalind
Abstract:
There are numerous studies that explored young learners’ literacy skills in Malaysia but none that uses the eye-tracking device to track their cognitive processes when reading picture storybooks. This study used this method to investigate two groups of prereaders’ cognitive processes in four conditions. (1) A congruent picture was presented, and a matching narration was read aloud by a recorder; (2) Children heard a narration telling about the same characters in the picture but involves a different scene; (3) Only a picture with matching text was present; (4) Students only heard the reading aloud of the text on the screen. The two main objectives of this project are to test which content of pictures helps the prereaders (i.e., young children who have not received any formal reading instruction) understand the narration and whether children try to create a coherent mental representation from the oral narration and the pictures. The study compares two groups of children from two different kindergartens. Group1: 15 Chinese children; Group2: 17 Malay children. The medium of instruction was English. An eye-tracker were used to identify Areas of Interest (AOI) of each picture and the five target elements and calculate number of fixations and total time spent on fixation of pictures and written texts. Two mixed factorial ANOVAs with the storytelling performance (good, average, or weak) and vocabulary level (low, medium, high) as between-subject variables, and the Areas of Interests (AOIs) and display conditions as the within-subject variables were performedon the variables.Keywords: eye-tracking, cognitive processes, literacy skills, prereaders, visual attention
Procedia PDF Downloads 95439 Development of a CFD Model for PCM Based Energy Storage in a Vertical Triplex Tube Heat Exchanger
Authors: Pratibha Biswal, Suyash Morchhale, Anshuman Singh Yadav, Shubham Sanjay Chobe
Abstract:
Energy demands are increasing whereas energy sources, especially non-renewable sources are limited. Due to the intermittent nature of renewable energy sources, it has become the need of the hour to find new ways to store energy. Out of various energy storage methods, latent heat thermal storage devices are becoming popular due to their high energy density per unit mass and volume at nearly constant temperature. This work presents a computational fluid dynamics (CFD) model using ANSYS FLUENT 19.0 for energy storage characteristics of a phase change material (PCM) filled in a vertical triplex tube thermal energy storage system. A vertical triplex tube heat exchanger, just like its name consists of three concentric tubes (pipe sections) for parting the device into three fluid domains. The PCM is filled in the middle domain with heat transfer fluids flowing in the outer and innermost domains. To enhance the heat transfer inside the PCM, eight fins have been incorporated between the internal and external tubes. These fins run radially outwards from the outer-wall of innermost tube to the inner-wall of the middle tube dividing the middle domain (between innermost and middle tube) into eight sections. These eight sections are then filled with a PCM. The validation is carried with earlier work and a grid independence test is also presented. Further studies on freezing and melting process were carried out. The results are presented in terms of pictorial representation of isotherms and liquid fractionKeywords: heat exchanger, thermal energy storage, phase change material, CFD, latent heat
Procedia PDF Downloads 153438 Attitudes of Secondary School Students towards Science and Technical Education in Yauri Metropolis Kebbi State, Nigeria
Authors: Ibrahim Alhassan Libata
Abstract:
This study was carried out to assess attitude of secondary school students towards science and technical education in Yauri metropolis, Kebbi State, Nigeria. The population of the study was 200. Proportionate random sampling method was used in selecting 132 as sample size. Science and technical education is the most powerful forces for change in the world today, and students who hope to have a hand in shaping a better future must participate for their advancements. Four Null hypotheses were generated to guide the conduct of the study, questionnaire was the only instrument used in the study; the instrument was subjected to test-retest reliability. The reliability index of the instrument was 0.69. Overall scores of the Students were analyzed and a mean score was determined, the mean score of students was 85. There were no significant differences between the attitudes of male and female students towards science and technical education. The results also revealed that there was significant difference between the attitude of boding and day school students towards science and technical education, personality constraints of students is one factor militating against the participation of students in science and technical education, socio-economic status of the parents over the years have been the dominant factor of student’s inadequate representation in the field of science and technical education. Based on the findings of this study, the researcher recommended that teachers should motivate students, which they can do through their teaching styles and by showing them the relevance of the learning topics to their everyday lives. Government and the school management should create the learning environment that helps motivate students not only to come to classes but also want to learn and enjoy learning science and technical education, establishment of more Science and Technical Colleges education, more Public enlightenment campaigns to motivate parents and the entire community to support their children in studying science and technical education.Keywords: attitude, students, science, Yauri
Procedia PDF Downloads 254437 Cultural Semiotics of the Traditional Costume from Banat’s Plain from 1870 to 1950 from Lotman’s Perspective
Authors: Glavan Claudiu
Abstract:
My paper focuses on the cultural semiotic interpretation of the Romanian costume from Banat region, from the perspective of Lotman’s semiotic theory of culture. Using Lotman’s system we will analyse the level of language, text and semiosphere within the unity of Banat’s traditional costume. In order to establish a common language and to communicate, the forms and chromatic compositions were expressed through symbols, which carried semantic meanings with an obvious significant semantic load. The symbols, used in this region, receive a strong specific ethnical mark in its representation, in its compositional and chromatic complexity, in accordance with the values and conceptions of life for the people living here. Thus the signs become a unifying force of this ethnic community. Associated with the signs, were the fabrics used in manufacturing the costumes and the careful selections of colours. For example, softer fabrics like silk associated with red vivid colours were used for young woman sending the message they ready to be married. The unity of these elements created the important message that you were sending to your community. The unity of the symbol, fabrics and choice of colours used on the costume carried out an important message like: marital status, social position, or even the village you belonged to. Using Lotman’s perspective on cultural semiotics we will read and analyse the symbolism of the traditional Romanian art from Banat. We will discover meaning in the codified existence of ancient solar symbols, symbols regarding fertility, religious symbols and very few heraldic symbols. Visual communication makes obvious the importance of semiotic value that the traditional costume is carrying from our ancestors.Keywords: traditional costume, semiotics, Lotman’s theory of culture, traditional culture, signs and symbols
Procedia PDF Downloads 145436 Mnemotopic Perspectives: Communication Design as Stabilizer for the Memory of Places
Authors: C. Galasso
Abstract:
The ancestral relationship between humans and geographical environment has long been at the center of an interdisciplinary dialogue, which sees one of its main research nodes in the relationship between memory and places. Given its deep complexity, this symbiotic connection continues to look for a proper definition that appears increasingly negotiated by different disciplines. Numerous fields of knowledge are involved, from anthropology to semiotics of space, from photography to architecture, up to subjects traditionally far from these reasonings. This is the case of Design of Communication, a young discipline, now confident in itself and its objectives, aimed at finding and investigating original forms of visualization and representation, between sedimented knowledge and new technologies. In particular, Design of Communication for the Territory offers an alternative perspective to the debate, encouraging the reactivation and reconstruction of the memory of places. Recognizing mnemotopes as a cultural object of vertical interpretation of the memory-place relationship, design can become a real mediator of the territorial fixation of memories, making them increasingly accessible and perceptible, contributing to build a topography of memory. According to a mnemotopic vision, Communication Design can support the passage from a memory in which the observer participates only as an individual to a collective form of memory. A mnemotopic form of Communication Design can, through geolocation and content map-based systems, make chronology a topography rooted in the territory and practicable; it can be useful to understand how the perception of the memory of places changes over time, considering how to insert them in the contemporary world. Mnemotopes can be materialized in different format of translation, editing and narration and then involved in complex systems of communication. The memory of places, therefore, if stabilized by the tools offered by Communication Design, can make visible ruins and territorial stratifications, illuminating them with new communicative interests that can be shared and participated.Keywords: memory of places, design of communication, territory, mnemotope, topography of memory
Procedia PDF Downloads 132435 Determining Which Material Properties Resist the Tool Wear When Machining Pre-Sintered Zirconia
Authors: David Robert Irvine
Abstract:
In the dental restoration sector, there has been a shift to using zirconia. With the ever increasing need to decrease lead times to deliver restorations faster the zirconia is machined in its pre-sintered state instead of grinding the very hard sintered state. As with all machining, there is tool wear and while investigating the tooling used to machine pre-sintered zirconia it became apparent that the wear rate is based more on material build up and abrasion than it is on plastic deformation like conventional metal machining. It also came to light that the tool material can currently not be selected based on wear resistance, as there is no data. Different works have analysed the effect of the individual wear mechanism separately using similar if not the same material. In this work, the testing method used to analyse the wear was a modified from ISO 8688:1989 to use the pre-sintered zirconia and the cutting conditions used in dental to machine it. This understanding was developed through a series of tests based in machining operations, to give the best representation of the multiple wear factors that can occur in machining of pre-sintered zirconia such as 3 body abrasion, material build up, surface welding, plastic deformation, tool vibration and thermal cracking. From the testing, it found that carbide grades with low trans-granular rupture toughness would fail due to abrasion while those with high trans-granular rupture toughness failed due to edge chipping from build up or thermal properties. The results gained can assist the development of these tools and the restorative dental process. This work was completed with the aim of assisting in the selection of tool material for future tools along with a deeper understanding of the properties that assist in abrasive wear resistance and material build up.Keywords: abrasive wear, cemented carbide, pre-sintered zirconia, tool wear
Procedia PDF Downloads 159434 Lying Decreases Relying: Deceiver's Distrust in Online Restaurant Reviews
Authors: Jenna Barriault, Reeshma Haji
Abstract:
Online consumer behaviourand reliance on online reviews may be more pervasive than ever, andthis necessitates a better scientific understanding of the widespread phenomenon of online deception. The present research focuses on the understudied topic of deceiver’s distrust, where those who engage in deception later have less trust in others in the context of online restaurant reviews. The purpose was to examine deception and valence in online restaurant reviews and the effects they had on deceiver’s distrust. Undergraduate university students (N = 76) completed an online study where valence was uniquely manipulated by telling participants that either positive (or negative reviews) were influential and asking them to write a correspondingly valenced review. Deception was manipulated in the same task. Participants in the deception condition were asked to write an online restaurant review that was counter to their actual experience of the restaurant (negative review of a restaurant they liked, positive review of the restaurant they did not like). In the no deception condition, participants were asked to write a review that they actually liked or didn’t like (based on the valence condition to which they were randomly assigned). Participants’ trust was then assessed through various measures, includingfuture reliance on online reviews. There was a main effect of deception on reliance on online reviews. Consistent with deceiver’s distrust, those who deceived reported that they would rely less on online reviews. This study demonstrates that even when participants are induced to write a deceptive review, it can result in deceiver’s distrust, thereby lowering their trust in online reviews. If trust or reliance can be altered through deception in online reviews, people may start questioning the objectivity or true representation of a company based on such reviews. A primary implication is that people may reduce theirreliance upon online reviews if they know they are easily subject to manipulation. The findings of this study also contribute to the limited research regarding deceiver’s distrust in an online context, and further research is clarifying the specific conditions in which it is most likely to occur.Keywords: deceiver’s distrust, deception, online reviews, trust, valence
Procedia PDF Downloads 122433 Effects of Watershed Erosion on Stream Channel Formation
Authors: Tiao Chang, Ivan Caballero, Hong Zhou
Abstract:
Streams carry water and sediment naturally by maintaining channel dimensions, pattern, and profile over time. Watershed erosion as a natural process has occurred to contribute sediment to streams over time. The formation of channel dimensions is complex. This study is to relate quantifiable and consistent channel dimensions at the bankfull stage to the corresponding watershed erosion estimation by the Revised Universal Soil Loss Equation (RUSLE). Twelve sites of which drainage areas range from 7 to 100 square miles in the Hocking River Basin of Ohio were selected for the bankfull geometry determinations including width, depth, cross-section area, bed slope, and drainage area. The twelve sub-watersheds were chosen to obtain a good overall representation of the Hocking River Basin. It is of interest to determine how these bankfull channel dimensions are related to the soil erosion of corresponding sub-watersheds. Soil erosion is a natural process that has occurred in a watershed over time. The RUSLE was applied to estimate erosions of the twelve selected sub-watersheds where the bankfull geometry measurements were conducted. These quantified erosions of sub-watersheds are used to investigate correlations with bankfull channel dimensions including discharge, channel width, channel depth, cross-sectional area, and pebble distribution. It is found that drainage area, bankfull discharge and cross-sectional area correlates strongly with watershed erosion well. Furthermore, bankfull width and depth are moderately correlated with watershed erosion while the particle size, D50, of channel bed sediment is not well correlated with watershed erosion.Keywords: watershed, stream, sediment, channel
Procedia PDF Downloads 287432 Development of Medical Intelligent Process Model Using Ontology Based Technique
Authors: Emmanuel Chibuogu Asogwa, Tochukwu Sunday Belonwu
Abstract:
An urgent demand for creative solutions has been created by the rapid expansion of medical knowledge, the complexity of patient care, and the requirement for more precise decision-making. As a solution to this problem, the creation of a Medical Intelligent Process Model (MIPM) utilizing ontology-based appears as a promising way to overcome this obstacle and unleash the full potential of healthcare systems. The development of a Medical Intelligent Process Model (MIPM) using ontology-based techniques is motivated by a lack of quick access to relevant medical information and advanced tools for treatment planning and clinical decision-making, which ontology-based techniques can provide. The aim of this work is to develop a structured and knowledge-driven framework that leverages ontology, a formal representation of domain knowledge, to enhance various aspects of healthcare. Object-Oriented Analysis and Design Methodology (OOADM) were adopted in the design of the system as we desired to build a usable and evolvable application. For effective implementation of this work, we used the following materials/methods/tools: the medical dataset for the test of our model in this work was obtained from Kaggle. The ontology-based technique was used with Confusion Matrix, MySQL, Python, Hypertext Markup Language (HTML), Hypertext Preprocessor (PHP), Cascaded Style Sheet (CSS), JavaScript, Dreamweaver, and Fireworks. According to test results on the new system using Confusion Matrix, both the accuracy and overall effectiveness of the medical intelligent process significantly improved by 20% compared to the previous system. Therefore, using the model is recommended for healthcare professionals.Keywords: ontology-based, model, database, OOADM, healthcare
Procedia PDF Downloads 78431 Fake News Detection Based on Fusion of Domain Knowledge and Expert Knowledge
Authors: Yulan Wu
Abstract:
The spread of fake news on social media has posed significant societal harm to the public and the nation, with its threats spanning various domains, including politics, economics, health, and more. News on social media often covers multiple domains, and existing models studied by researchers and relevant organizations often perform well on datasets from a single domain. However, when these methods are applied to social platforms with news spanning multiple domains, their performance significantly deteriorates. Existing research has attempted to enhance the detection performance of multi-domain datasets by adding single-domain labels to the data. However, these methods overlook the fact that a news article typically belongs to multiple domains, leading to the loss of domain knowledge information contained within the news text. To address this issue, research has found that news records in different domains often use different vocabularies to describe their content. In this paper, we propose a fake news detection framework that combines domain knowledge and expert knowledge. Firstly, it utilizes an unsupervised domain discovery module to generate a low-dimensional vector for each news article, representing domain embeddings, which can retain multi-domain knowledge of the news content. Then, a feature extraction module uses the domain embeddings discovered through unsupervised domain knowledge to guide multiple experts in extracting news knowledge for the total feature representation. Finally, a classifier is used to determine whether the news is fake or not. Experiments show that this approach can improve multi-domain fake news detection performance while reducing the cost of manually labeling domain labels.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 73430 Transformative Economic Policies in India: A Political Economy Analysis of IMF Influence, Sectoral Shifts, and Political Transitions
Authors: Vrajesh Rawal
Abstract:
India's economic landscape has witnessed significant transformations over the past decades, characterized by shifts from agrarian to service-oriented economies. Recently, there has been a growing emphasis on transitioning towards a manufacturing-led growth model driven by factors such as demographic changes, technological advancements, and evolving global trade dynamics. These changes reflect broader efforts to enhance industrialization, boost employment opportunities, and diversify the economic base beyond traditional sectors. Within this context, this research focuses on understanding the specific drivers and dynamics behind India's shift from a predominantly service-based economy to one centered on manufacturing. It seeks to explore how political ideologies influence economic policies and shape sectoral priorities, with a particular focus on contrasting approaches between the Indian National Congress (INC) and the Bharatiya Janata Party (BJP). Additionally, the study evaluates the alignment of IMF policy recommendations with India's economic goals and priorities within the theoretical frameworks of neoliberalism and political economy theory. Despite the extensive literature on India's economic reforms and political economy, there remains a gap in understanding how political ideology influences sectoral shifts and economic policy outcomes, particularly in the context of IMF recommendations. Existing studies often focus narrowly on either political ideologies or economic reforms without fully integrating both perspectives. This research aims to bridge this gap by providing a comprehensive analysis that integrates political economy theories with empirical evidence from political speeches, government documents, and IMF reports. Through qualitative content analysis of speeches by political leaders, document analysis of key governmental documents, and scrutiny of party manifestos, this research demonstrates how political ideologies translate into distinct economic strategies and developmental agendas. It highlights the extent to which IMF policy prescriptions align with India's economic objectives and how these interactions shape broader socio-economic outcomes. The theoretical framework of neoliberalism and political economy theory provides a lens to interpret these findings, offering insights into the complex interplay between economic policies, political ideologies, and institutional frameworks in India. The findings of this study are expected to provide valuable insights for policymakers, researchers, and practitioners involved in economic governance and development planning in India. By understanding the factors driving sectoral shifts and the influence of political ideologies on economic policies, policymakers can make informed decisions to foster sustainable economic growth and development. Implementation of these insights could contribute to refining policy frameworks, enhancing alignment with national development priorities, and optimizing engagement with international financial institutions like the IMF to better meet India's socio-economic challenges and opportunities in the evolving global context.Keywords: political economy, international politics, social science, policy analysis
Procedia PDF Downloads 32429 Tractography Analysis and the Evolutionary Origin of Schizophrenia
Authors: Mouktafi Amine, Tahiri Asmaa
Abstract:
A substantial number of traditional medical research has been put forward to managing and treating mental disorders. At the present time, to our best knowledge, it is believed that a fundamental understanding of the underlying causes of the majority of psychological disorders needs to be explored further to inform early diagnosis, managing symptoms and treatment. The emerging field of evolutionary psychology is a promising prospect to address the origin of mental disorders, potentially leading to more effective treatments. Schizophrenia as a topical mental disorder has been linked to the evolutionary adaptation of the human brain represented in the brain connectivity and asymmetry directly linked to humans' higher brain cognition in contrast to other primates being our direct living representation of the structure and connectivity of our earliest common African ancestors. As proposed in the evolutionary psychology scientific literature, the pathophysiology of schizophrenia is expressed and directly linked to altered connectivity between the Hippocampal Formation (HF) and Dorsolateral Prefrontal Cortex (DLPFC). This research paper presents the results of the use of tractography analysis using multiple open access Diffusion Weighted Imaging (DWI) datasets of healthy subjects, schizophrenia-affected subjects and primates to illustrate the relevance of the aforementioned brain regions' connectivity and the underlying evolutionary changes in the human brain. Deterministic fiber tracking and streamline analysis were used to generate connectivity matrices from the DWI datasets overlaid to compute distances and highlight disconnectivity patterns in conjunction with other fiber tracking metrics: Fractional Anisotropy (FA), Mean Diffusivity (MD) and Radial Diffusivity (RD).Keywords: tractography, diffusion weighted imaging, schizophrenia, evolutionary psychology
Procedia PDF Downloads 49428 Simulating Human Behavior in (Un)Built Environments: Using an Actor Profiling Method
Authors: Hadas Sopher, Davide Schaumann, Yehuda E. Kalay
Abstract:
This paper addresses the shortcomings of architectural computation tools in representing human behavior in built environments, prior to construction and occupancy of those environments. Evaluating whether a design fits the needs of its future users is currently done solely post construction, or is based on the knowledge and intuition of the designer. This issue is of high importance when designing complex buildings such as hospitals, where the quality of treatment as well as patient and staff satisfaction are of major concern. Existing computational pre-occupancy human behavior evaluation methods are geared mainly to test ergonomic issues, such as wheelchair accessibility, emergency egress, etc. As such, they rely on Agent Based Modeling (ABM) techniques, which emphasize the individual user. Yet we know that most human activities are social, and involve a number of actors working together, which ABM methods cannot handle. Therefore, we present an event-based model that manages the interaction between multiple Actors, Spaces, and Activities, to describe dynamically how people use spaces. This approach requires expanding the computational representation of Actors beyond their physical description, to include psychological, social, cultural, and other parameters. The model presented in this paper includes cognitive abilities and rules that describe the response of actors to their physical and social surroundings, based on the actors’ internal status. The model has been applied in a simulation of hospital wards, and showed adaptability to a wide variety of situated behaviors and interactions.Keywords: agent based modeling, architectural design evaluation, event modeling, human behavior simulation, spatial cognition
Procedia PDF Downloads 264427 Self-Supervised Attributed Graph Clustering with Dual Contrastive Loss Constraints
Authors: Lijuan Zhou, Mengqi Wu, Changyong Niu
Abstract:
Attributed graph clustering can utilize the graph topology and node attributes to uncover hidden community structures and patterns in complex networks, aiding in the understanding and analysis of complex systems. Utilizing contrastive learning for attributed graph clustering can effectively exploit meaningful implicit relationships between data. However, existing attributed graph clustering methods based on contrastive learning suffer from the following drawbacks: 1) Complex data augmentation increases computational cost, and inappropriate data augmentation may lead to semantic drift. 2) The selection of positive and negative samples neglects the intrinsic cluster structure learned from graph topology and node attributes. Therefore, this paper proposes a method called self-supervised Attributed Graph Clustering with Dual Contrastive Loss constraints (AGC-DCL). Firstly, Siamese Multilayer Perceptron (MLP) encoders are employed to generate two views separately to avoid complex data augmentation. Secondly, the neighborhood contrastive loss is introduced to constrain node representation using local topological structure while effectively embedding attribute information through attribute reconstruction. Additionally, clustering-oriented contrastive loss is applied to fully utilize clustering information in global semantics for discriminative node representations, regarding the cluster centers from two views as negative samples to fully leverage effective clustering information from different views. Comparative clustering results with existing attributed graph clustering algorithms on six datasets demonstrate the superiority of the proposed method.Keywords: attributed graph clustering, contrastive learning, clustering-oriented, self-supervised learning
Procedia PDF Downloads 53426 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments
Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea
Abstract:
The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.Keywords: deep learning, data mining, gender predication, MOOCs
Procedia PDF Downloads 147425 Problem Solving in Chilean Higher Education: Figurations Prior in Interpretations of Cartesian Graphs
Authors: Verónica Díaz
Abstract:
A Cartesian graph, as a mathematical object, becomes a tool for configuration of change. Its best comprehension is done through everyday life problem-solving associated with its representation. Despite this, the current educational framework favors general graphs, without consideration of their argumentation. Students are required to find the mathematical function without associating it to the development of graphical language. This research describes the use made by students of configurations made prior to Cartesian graphs with regards to an everyday life problem related to a time and distance variation phenomenon. The theoretical framework describes the function conditions of study and their modeling. This is a qualitative, descriptive study involving six undergraduate case studies that were carried out during the first term in 2016 at University of Los Lagos. The research problem concerned the graphic modeling of a real person’s movement phenomenon, and two levels of analysis were identified. The first level aims to identify local and global graph interpretations; a second level describes the iconicity and referentiality degree of an image. According to the results, students were able to draw no figures before the Cartesian graph, highlighting the need for students to represent the context and the movement of which causes the phenomenon change. From this, they managed Cartesian graphs representing changes in position, therefore, achieved an overall view of the graph. However, the local view only indicates specific events in the problem situation, using graphic and verbal expressions to represent movement. This view does not enable us to identify what happens on the graph when the movement characteristics change based on possible paths in the person’s walking speed.Keywords: cartesian graphs, higher education, movement modeling, problem solving
Procedia PDF Downloads 218424 Household Knowledge, Attitude, and Determinants in Solid Waste Segregation: The Case of Sfax City
Authors: Leila Kharrat, Younes Boujelbene
Abstract:
In recent decades, solid waste management (SWM) has become a global concern because rapid population growth and overexploitation of non-renewable resources have generated enormous amounts of waste far exceeding carrying capacity; too, it poses serious threats to the environment and health. However, it is still difficult to combat the growing amount of solid waste before assessing the condition of people. Therefore, this study was conducted to assess the knowledge, attitudes, perception, and practices on the separation of solid waste in Sfax City. Nowadays, GDS is essential for sustainable development, hence the need for intensive research. Respondents from seven different districts in the city of Sfax were analyzed through a questionnaire survey with 342 households. This paper presents a qualitative exploratory study on the behavior of the citizens in the field of waste separation. The objective knows the antecedents of waste separation and the representation that individuals have about sorting waste on a specific territory which presents some characteristics regarding waste management in Sfax city. Source separation is not widely practiced and people usually sweep their places throwing waste components into the streets or neighboring plots. The results also indicate that participation in solid waste separation activities depends on the level of awareness of separating activities in the area, household income and educational level. It is, therefore, argued that increasing quality of municipal service is the best means of promoting positive attitudes to solid waste separation activities. One of the effective strategies identified by households that can be initiated by policymakers to increase the rate of participation in separation activities and eventually encourage them to participate in recycling activities is to provide a financial incentive in all residential areas in Sfax city.Keywords: solid waste management, waste separation, public policy, econometric modelling
Procedia PDF Downloads 237423 Perceptual and Ultrasound Articulatory Training Effects on English L2 Vowels Production by Italian Learners
Authors: I. Sonia d’Apolito, Bianca Sisinni, Mirko Grimaldi, Barbara Gili Fivela
Abstract:
The American English contrast /ɑ-ʌ/ (cop-cup) is difficult to be produced by Italian learners since they realize L2-/ɑ-ʌ/ as L1-/ɔ-a/ respectively, due to differences in phonetic-phonological systems and also in grapheme-to-phoneme conversion rules. In this paper, we try to answer the following research questions: Can a short training improve the production of English /ɑ-ʌ/ by Italian learners? Is a perceptual training better than an articulatory (ultrasound - US) training? Thus, we compare a perceptual training with an US articulatory one to observe: 1) the effects of short trainings on L2-/ɑ-ʌ/ productions; 2) if the US articulatory training improves the pronunciation better than the perceptual training. In this pilot study, 9 Salento-Italian monolingual adults participated: 3 subjects performed a 1-hour perceptual training (ES-P); 3 subjects performed a 1-hour US training (ES-US); and 3 control subjects did not receive any training (CS). Verbal instructions about the phonetic properties of L2-/ɑ-ʌ/ and L1-/ɔ-a/ and their differences (representation on F1-F2 plane) were provided during both trainings. After these instructions, the ES-P group performed an identification training based on the High Variability Phonetic Training procedure, while the ES-US group performed the articulatory training, by means of US video of tongue gestures in L2-/ɑ-ʌ/ production and dynamic view of their own tongue movements and position using a probe under their chin. The acoustic data were analyzed and the first three formants were calculated. Independent t-tests were run to compare: 1) /ɑ-ʌ/ in pre- vs. post-test respectively; /ɑ-ʌ/ in pre- and post-test vs. L1-/a-ɔ/ respectively. Results show that in the pre-test all speakers realize L2-/ɑ-ʌ/ as L1-/ɔ-a/ respectively. Contrary to CS and ES-P groups, the ES-US group in the post-test differentiates the L2 vowels from those produced in the pre-test as well as from the L1 vowels, although only one ES-US subject produces both L2 vowels accurately. The articulatory training seems more effective than the perceptual one since it favors the production of vowels in the correct direction of L2 vowels and differently from the similar L1 vowels.Keywords: L2 vowel production, perceptual training, articulatory training, ultrasound
Procedia PDF Downloads 256422 Verification of Satellite and Observation Measurements to Build Solar Energy Projects in North Africa
Authors: Samy A. Khalil, U. Ali Rahoma
Abstract:
The measurements of solar radiation, satellite data has been routinely utilize to estimate solar energy. However, the temporal coverage of satellite data has some limits. The reanalysis, also known as "retrospective analysis" of the atmosphere's parameters, is produce by fusing the output of NWP (Numerical Weather Prediction) models with observation data from a variety of sources, including ground, and satellite, ship, and aircraft observation. The result is a comprehensive record of the parameters affecting weather and climate. The effectiveness of reanalysis datasets (ERA-5) for North Africa was evaluate against high-quality surfaces measured using statistical analysis. Estimating the distribution of global solar radiation (GSR) over five chosen areas in North Africa through ten-years during the period time from 2011 to 2020. To investigate seasonal change in dataset performance, a seasonal statistical analysis was conduct, which showed a considerable difference in mistakes throughout the year. By altering the temporal resolution of the data used for comparison, the performance of the dataset is alter. Better performance is indicate by the data's monthly mean values, but data accuracy is degraded. Solar resource assessment and power estimation are discuses using the ERA-5 solar radiation data. The average values of mean bias error (MBE), root mean square error (RMSE) and mean absolute error (MAE) of the reanalysis data of solar radiation vary from 0.079 to 0.222, 0.055 to 0.178, and 0.0145 to 0.198 respectively during the period time in the present research. The correlation coefficient (R2) varies from 0.93 to 99% during the period time in the present research. This research's objective is to provide a reliable representation of the world's solar radiation to aid in the use of solar energy in all sectors.Keywords: solar energy, ERA-5 analysis data, global solar radiation, North Africa
Procedia PDF Downloads 98421 Investigating Students' Understanding about Mathematical Concept through Concept Map
Authors: Rizky Oktaviana
Abstract:
The main purpose of studying lies in improving students’ understanding. Teachers usually use written test to measure students’ understanding about learning material especially mathematical learning material. This common method actually has a lack point, such that in mathematics content, written test only show procedural steps to solve mathematical problems. Therefore, teachers unable to see whether students actually understand about mathematical concepts and the relation between concepts or not. One of the best tools to observe students’ understanding about the mathematical concepts is concept map. The goal of this research is to describe junior high school students understanding about mathematical concepts through Concept Maps based on the difference of mathematical ability. There were three steps in this research; the first step was choosing the research subjects by giving mathematical ability test to students. The subjects of this research are three students with difference mathematical ability, high, intermediate and low mathematical ability. The second step was giving concept mapping training to the chosen subjects. The last step was giving concept mapping task about the function to the subjects. Nodes which are the representation of concepts of function were provided in concept mapping task. The subjects had to use the nodes in concept mapping. Based on data analysis, the result of this research shows that subject with high mathematical ability has formal understanding, due to that subject could see the connection between concepts of function and arranged the concepts become concept map with valid hierarchy. Subject with intermediate mathematical ability has relational understanding, because subject could arranged all the given concepts and gave appropriate label between concepts though it did not represent the connection specifically yet. Whereas subject with low mathematical ability has poor understanding about function, it can be seen from the concept map which is only used few of the given concepts because subject could not see the connection between concepts. All subjects have instrumental understanding for the relation between linear function concept, quadratic function concept and domain, co domain, range.Keywords: concept map, concept mapping, mathematical concepts, understanding
Procedia PDF Downloads 271420 An Integrated Label Propagation Network for Structural Condition Assessment
Authors: Qingsong Xiong, Cheng Yuan, Qingzhao Kong, Haibei Xiong
Abstract:
Deep-learning-driven approaches based on vibration responses have attracted larger attention in rapid structural condition assessment while obtaining sufficient measured training data with corresponding labels is relevantly costly and even inaccessible in practical engineering. This study proposes an integrated label propagation network for structural condition assessment, which is able to diffuse the labels from continuously-generating measurements by intact structure to those of missing labels of damage scenarios. The integrated network is embedded with damage-sensitive features extraction by deep autoencoder and pseudo-labels propagation by optimized fuzzy clustering, the architecture and mechanism which are elaborated. With a sophisticated network design and specified strategies for improving performance, the present network achieves to extends the superiority of self-supervised representation learning, unsupervised fuzzy clustering and supervised classification algorithms into an integration aiming at assessing damage conditions. Both numerical simulations and full-scale laboratory shaking table tests of a two-story building structure were conducted to validate its capability of detecting post-earthquake damage. The identifying accuracy of a present network was 0.95 in numerical validations and an average 0.86 in laboratory case studies, respectively. It should be noted that the whole training procedure of all involved models in the network stringently doesn’t rely upon any labeled data of damage scenarios but only several samples of intact structure, which indicates a significant superiority in model adaptability and feasible applicability in practice.Keywords: autoencoder, condition assessment, fuzzy clustering, label propagation
Procedia PDF Downloads 97419 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record
Authors: Raghavi C. Janaswamy
Abstract:
In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.Keywords: electronic health record, graph neural network, heterogeneous data, prediction
Procedia PDF Downloads 86418 Bayesian System and Copula for Event Detection and Summarization of Soccer Videos
Authors: Dhanuja S. Patil, Sanjay B. Waykar
Abstract:
Event detection is a standout amongst the most key parts for distinctive sorts of area applications of video data framework. Recently, it has picked up an extensive interest of experts and in scholastics from different zones. While detecting video event has been the subject of broad study efforts recently, impressively less existing methodology has considered multi-model data and issues related efficiency. Start of soccer matches different doubtful circumstances rise that can't be effectively judged by the referee committee. A framework that checks objectively image arrangements would prevent not right interpretations because of some errors, or high velocity of the events. Bayesian networks give a structure for dealing with this vulnerability using an essential graphical structure likewise the probability analytics. We propose an efficient structure for analysing and summarization of soccer videos utilizing object-based features. The proposed work utilizes the t-cherry junction tree, an exceptionally recent advancement in probabilistic graphical models, to create a compact representation and great approximation intractable model for client’s relationships in an interpersonal organization. There are various advantages in this approach firstly; the t-cherry gives best approximation by means of junction trees class. Secondly, to construct a t-cherry junction tree can be to a great extent parallelized; and at last inference can be performed utilizing distributed computation. Examination results demonstrates the effectiveness, adequacy, and the strength of the proposed work which is shown over a far reaching information set, comprising more soccer feature, caught at better places.Keywords: summarization, detection, Bayesian network, t-cherry tree
Procedia PDF Downloads 324417 Effect of Naphtha in Addition to a Cycle Steam Stimulation Process Reducing the Heavy Oil Viscosity Using a Two-Level Factorial Design
Authors: Nora A. Guerrero, Adan Leon, María I. Sandoval, Romel Perez, Samuel Munoz
Abstract:
The addition of solvents in cyclic steam stimulation is a technique that has shown an impact on the improved recovery of heavy oils. In this technique, it is possible to reduce the steam/oil ratio in the last stages of the process, at which time this ratio increases significantly. The mobility of improved crude oil increases due to the structural changes of its components, which at the same time reflected in the decrease in density and viscosity. In the present work, the effect of the variables such as temperature, time, and weight percentage of naphtha was evaluated, using a factorial design of experiments 23. From the results of analysis of variance (ANOVA) and Pareto diagram, it was possible to identify the effect on viscosity reduction. The experimental representation of the crude-vapor-naphtha interaction was carried out in a batch reactor on a Colombian heavy oil of 12.8° API and 3500 cP. The conditions of temperature, reaction time, and percentage of naphtha were 270-300 °C, 48-66 hours, and 3-9% by weight, respectively. The results showed a decrease in density with values in the range of 0.9542 to 0.9414 g/cm³, while the viscosity decrease was in the order of 55 to 70%. On the other hand, simulated distillation results, according to ASTM 7169, revealed significant conversions of the 315°C+ fraction. From the spectroscopic techniques of nuclear magnetic resonance NMR, infrared FTIR and UV-VIS visible ultraviolet, it was determined that the increase in the performance of the light fractions in the improved crude is due to the breakdown of alkyl chains. The methodology for cyclic steam injection with naphtha and laboratory-scale characterization can be considered as a practical tool in improved recovery processes.Keywords: viscosity reduction, cyclic steam stimulation, factorial design, naphtha
Procedia PDF Downloads 174