Search results for: soetal complexity
583 Adaptive Certificate-Based Mutual Authentication Protocol for Mobile Grid Infrastructure
Authors: H. Parveen Begam, M. A. Maluk Mohamed
Abstract:
Mobile Grid Computing is an environment that allows sharing and coordinated use of diverse resources in dynamic, heterogeneous and distributed environment using different types of electronic portable devices. In a grid environment the security issues are like authentication, authorization, message protection and delegation handled by GSI (Grid Security Infrastructure). Proving better security between mobile devices and grid infrastructure is a major issue, because of the open nature of wireless networks, heterogeneous and distributed environments. In a mobile grid environment, the individual computing devices may be resource-limited in isolation, as an aggregated sum, they have the potential to play a vital role within the mobile grid environment. Some adaptive methodology or solution is needed to solve the issues like authentication of a base station, security of information flowing between a mobile user and a base station, prevention of attacks within a base station, hand-over of authentication information, communication cost of establishing a session key between mobile user and base station, computing complexity of achieving authenticity and security. The sharing of resources of the devices can be achieved only through the trusted relationships between the mobile hosts (MHs). Before accessing the grid service, the mobile devices should be proven authentic. This paper proposes the dynamic certificate based mutual authentication protocol between two mobile hosts in a mobile grid environment. The certificate generation process is done by CA (Certificate Authority) for all the authenticated MHs. Security (because of validity period of the certificate) and dynamicity (transmission time) can be achieved through the secure service certificates. Authentication protocol is built on communication services to provide cryptographically secured mechanisms for verifying the identity of users and resources.Keywords: mobile grid computing, certificate authority (CA), SSL/TLS protocol, secured service certificates
Procedia PDF Downloads 305582 Compliance of Systematic Reviews in Ophthalmology with the PRISMA Statement
Authors: Seon-Young Lee, Harkiran Sagoo, Reem Farwana, Katharine Whitehurst, Alex Fowler, Riaz Agha
Abstract:
Background/Aims: Systematic reviews and meta-analysis are becoming increasingly important way of summarizing research evidence. Researches in ophthalmology may represent further challenges, due to their potential complexity in study design. The aim of our study was to determine the reporting quality of systematic reviews and meta-analysis in ophthalmology with the PRISMA statement, by assessing the articles published between 2010 and 2015 from five major journals with the highest impact factor. Methods: MEDLINE and EMBASE were used to search systematic reviews published between January 2010 and December 2015, in 5 major ophthalmology journals: Progress in Retinal and Eye Research, Ophthalmology, Archives of Ophthalmology, American Journal of Ophthalmology, Journal of the American Optometric Association. Screening, identification, and scoring of articles were performed independently by two teams, followed by statistical analysis including the median, range, and 95% CIs. Results: 115 articles were involved. The median PRISMA score was 15 of 27 items (56%), with a range of 5-26 (19-96%) and 95% CI 13.9-16.1 (51-60%). Compliance was highest in items related to the description of rationale (item 3,100%) and inclusion of a structured summary in the abstract (item 2, 90%), while poorest in indication of review protocol and registration (item 5, 9%), specification of risk of bias affecting the cumulative evidence (item 15, 24%) and description of clear objectives in introduction (item 4, 26%). Conclusion: The reporting quality of systematic reviews and meta-analysis in ophthalmology need significant improvement. While the use of PRISMA criteria as a guideline before journal submission is recommended, additional research identifying potential barriers may be required to improve the compliance to the PRISMA guidelines.Keywords: systematic reviews, meta-analysis, research methodology, reporting quality, PRISMA, ophthalmology
Procedia PDF Downloads 263581 The Regional Novel in India: Its Emergence and Trajectory
Authors: Aruna Bommareddi
Abstract:
The journey of the novel is well examined in Indian academia as an offshoot of the novel in English. There have been many attempts to understand aspects of the early novel in India which shared a commonality with the English novel. The regional novel has had an entirely different trajectory which is mapped in the paper. The main focus of the paper would be to look at the historical emergence of the genre of the regional novel in Indian Literatures with specific reference to Kannada, Hindi, and Bengali. The selection of these languages is guided not only by familiarity with these languages as also based on the significance that these languages enjoy in the sub-continent and for the emergence of the regional novel as a specific category in these languages. The regional novels under study are Phaneeswaranath Renu’s Maila Anchal, Tarashankar Bandopadhyaya’s Ganadevata, and Kuvempu’s House of Kanuru for exploration of the themes of its emergence and some aspects of the regional novel common to and different from each other. The paper would explore the various movements that have shaped the genre regional novel in these Literatures. Though Phaneeswarnath Renu’s Maila Anchal is published in 1956, the novel is set in pre-Independent India and therefore shares a commonality of themes with the other two novels, House of Kanuru and Ganadevata. All three novels explore themes of superstition, ignorance, poverty, and the interventions of educated youth to salvage the crises in these backward regional worlds. In fact, it was Renu who assertively declared that he was going to write a regional novel and hence the tile of the first regional novel in Hindi is Maila Anchal meaning the soiled border. In Hindi, anchal also means the region therefore, the title is suggestive of a dirty region as well. The novel exposes the squalor, ignorance, and the conflict ridden life of the village or region as opposed to the rosy image of the village in literature. With this, all such novels which depicted conflicts of the region got recognized as regional novels even though they may have been written prior to Renu’s declaration. All three novels under study succeed in bringing out the complexity of rural life at a given point of time in its history.Keywords: bengali, hindi, kannada, regional novel, telugu
Procedia PDF Downloads 79580 A Novel Method for Face Detection
Authors: H. Abas Nejad, A. R. Teymoori
Abstract:
Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, etc. in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as the user stays neutral for the majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this work, we propose a light-weight neutral vs. emotion classification engine, which acts as a preprocessor to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at Key Emotion (KE) points using a textural statistical model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a textural statistical model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves ER accuracy and simultaneously reduces the computational complexity of ER system, as validated on multiple databases.Keywords: neutral vs. emotion classification, Constrained Local Model, procrustes analysis, Local Binary Pattern Histogram, statistical model
Procedia PDF Downloads 338579 Rights, Differences and Inclusion: The Role of Transdisciplinary Approach in the Education for Diversity
Authors: Ana Campina, Maria Manuela Magalhaes, Eusebio André Machado, Cristina Costa-Lobo
Abstract:
Inclusive school advocates respect for differences, for equal opportunities and for a quality education for all, including for students with special educational needs. In the pursuit of educational equity, guaranteeing equality in access and results, it becomes the responsibility of the school to recognize students' needs, adapting to the various styles and rhythms of learning, ensuring the adequacy of curricula, strategies and resources, materials and humans. This paper presents a set of theoretical reflections in the disciplinary interface between legal and education sciences, school administration and management, with the aim of understand the real inclusion characteristics in a balance with the inclusion policies and the need(s) of an education for Human Rights, especially for diversity. Considering the actual social complexity but the important education instruments and strategies, mostly patented in the policies, this paper aims expose the existing contexts opposed to the laws, policies and inclusion educational needs. More than a single study, this research aims to develop a map of the reality and the guidelines to implement the action. The results point to the usefulness and pertinence of a school in which educational managers, teachers, parents, and students, are involved in the creation, implementation and monitoring of flexible curricula and adapted to the educational needs of students, promoting a collaborative work among teachers. We are then faced with a scenario that points to the need to reflect on the legislation and curricular management of inclusive classes and to operationalize the processes of elaboration of curricular adaptations and differentiation in the classroom. The transdisciplinary is a pedagogic and social education perfect approach using the Human Rights binomio – teaching and learning – supported by the inclusion laws according to the realistic needs for an effective successful society construction.Keywords: rights, transdisciplinary, inclusion policies, education for diversity
Procedia PDF Downloads 388578 A Machine Learning Approach for Detecting and Locating Hardware Trojans
Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He
Abstract:
The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.Keywords: hardware trojans, physical properties, machine learning, hardware security
Procedia PDF Downloads 146577 Control of a Quadcopter Using Genetic Algorithm Methods
Authors: Mostafa Mjahed
Abstract:
This paper concerns the control of a nonlinear system using two different methods, reference model and genetic algorithm. The quadcopter is a nonlinear unstable system, which is a part of aerial robots. It is constituted by four rotors placed at the end of a cross. The center of this cross is occupied by the control circuit. Its motions are governed by six degrees of freedom: three rotations around 3 axes (roll, pitch and yaw) and the three spatial translations. The control of such system is complex, because of nonlinearity of its dynamic representation and the number of parameters, which it involves. Numerous studies have been developed to model and stabilize such systems. The classical PID and LQ correction methods are widely used. If the latter represent the advantage to be simple because they are linear, they reveal the drawback to require the presence of a linear model to synthesize. It also implies the complexity of the established laws of command because the latter must be widened on all the domain of flight of these quadcopter. Note that, if the classical design methods are widely used to control aeronautical systems, the Artificial Intelligence methods as genetic algorithms technique receives little attention. In this paper, we suggest comparing two PID design methods. Firstly, the parameters of the PID are calculated according to the reference model. In a second phase, these parameters are established using genetic algorithms. By reference model, we mean that the corrected system behaves according to a reference system, imposed by some specifications: settling time, zero overshoot etc. Inspired from the natural evolution of Darwin's theory advocating the survival of the best, John Holland developed this evolutionary algorithm. Genetic algorithm (GA) possesses three basic operators: selection, crossover and mutation. We start iterations with an initial population. Each member of this population is evaluated through a fitness function. Our purpose is to correct the behavior of the quadcopter around three axes (roll, pitch and yaw) with 3 PD controllers. For the altitude, we adopt a PID controller.Keywords: quadcopter, genetic algorithm, PID, fitness, model, control, nonlinear system
Procedia PDF Downloads 431576 Assessing the Financial Impact of Federal Benefit Program Enrollment on Low-income Households
Authors: Timothy Scheinert, Eliza Wright
Abstract:
Background: Link Health is a Boston-based non-profit leveraging in-person and digital platforms to promote health equity. Its primary aim is to financially support low-income individuals through enrollment in federal benefit programs. This study examines the monetary impact of enrollment in several benefit programs. Methodologies: Approximately 17,000 individuals have been screened for eligibility via digital outreach, community events, and in-person clinics. Enrollment and financial distributions are evaluated across programs, including the Affordable Connectivity Program (ACP), Lifeline, LIHEAP, Transitional Aid to Families with Dependent Children (TAFDC), and the Supplemental Nutrition Assistance Program (SNAP). Major Findings: A total of 1,895 individuals have successfully applied, collectively distributing an estimated $1,288,152.00 in aid. The largest contributors to this sum include: ACP: 1,149 enrollments, $413,640 distributed annually. Child Care Financial Assistance (CCFA): 15 enrollments, $240,000 distributed annually. Lifeline: 602 enrollments, $66,822 distributed annually. LIHEAP: 25 enrollments, $48,750 distributed annually. SNAP: 41 enrollments, $123,000 distributed annually. TAFDC: 21 enrollments, $341,760 distributed annually. Conclusions: These results highlight the role of targeted outreach and effective enrollment processes in promoting access to federal benefit programs. High enrollment rates in ACP and Lifeline demonstrate a considerable need for affordable broadband and internet services. Programs like CCFA and TAFDC, despite lower enrollment numbers, provide sizable support per individual. This analysis advocates for continued funding of federal benefit programs. Future efforts can be made to develop screening tools that identify eligibility for multiple programs and reduce the complexity of enrollment.Keywords: benefits, childcare, connectivity, equity, nutrition
Procedia PDF Downloads 26575 Decision Making in Medicine and Treatment Strategies
Authors: Kamran Yazdanbakhsh, Somayeh Mahmoudi
Abstract:
Three reasons make good use of the decision theory in medicine: 1. Increased medical knowledge and their complexity makes it difficult treatment information effectively without resorting to sophisticated analytical methods, especially when it comes to detecting errors and identify opportunities for treatment from databases of large size. 2. There is a wide geographic variability of medical practice. In a context where medical costs are, at least in part, by the patient, these changes raise doubts about the relevance of the choices made by physicians. These differences are generally attributed to differences in estimates of probabilities of success of treatment involved, and differing assessments of the results on success or failure. Without explicit criteria for decision, it is difficult to identify precisely the sources of these variations in treatment. 3. Beyond the principle of informed consent, patients need to be involved in decision-making. For this, the decision process should be explained and broken down. A decision problem is to select the best option among a set of choices. The problem is what is meant by "best option ", or know what criteria guide the choice. The purpose of decision theory is to answer this question. The systematic use of decision models allows us to better understand the differences in medical practices, and facilitates the search for consensus. About this, there are three types of situations: situations certain, risky situations, and uncertain situations: 1. In certain situations, the consequence of each decision are certain. 2. In risky situations, every decision can have several consequences, the probability of each of these consequences is known. 3. In uncertain situations, each decision can have several consequences, the probability is not known. Our aim in this article is to show how decision theory can usefully be mobilized to meet the needs of physicians. The decision theory can make decisions more transparent: first, by clarifying the data systematically considered the problem and secondly by asking a few basic principles should guide the choice. Once the problem and clarified the decision theory provides operational tools to represent the available information and determine patient preferences, and thus assist the patient and doctor in their choices.Keywords: decision making, medicine, treatment strategies, patient
Procedia PDF Downloads 579574 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection
Authors: Yulan Wu
Abstract:
With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 96573 Efficient Compact Micro Dielectric Barrier Discharge (DBD) Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems
Authors: D. Kuvshinov, A. Siswanto, J. Lozano-Parada, W. Zimmerman
Abstract:
Ozone is well known as a powerful fast reaction rate oxidant. The ozone based processes produce no by-product left as a non-reacted ozone returns back to the original oxygen molecule. Therefore an application of ozone is widely accepted as one of the main directions for a sustainable and clean technologies development. There are number of technologies require ozone to be delivered to specific points of a production network or reactors construction. Due to space constrains, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units. Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented. At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28E-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure. The MROG construction makes it applicable for emerged and dry systems. With a robust compact design MROG can be used as incorporated unit for production lines of high complexity.Keywords: dielectric barrier discharge (DBD), micro reactor, ozone, plasma
Procedia PDF Downloads 338572 Interrogating Bishwas: Reimagining a Christian Neighbourhood in Kolkata, India
Authors: Abhijit Dasgupta
Abstract:
This paper explores the everyday lives of the Christians residing in a Bengali Christian neighborhood in Kolkata, termed here as the larger Christian para (para meaning neighborhood in Bengali). Through ethnography and reading of secondary sources, the paper discerns how various Christians across denominations – Protestants, Catholics and Pentecostals implicate the role of bishwas (faith and belief) in their interpersonal neighborhood relations. The paper attempts to capture the role of bishwas in producing, transforming and revising the meaning of 'neighbourhood' and 'neighbours' and puts forward the argument of the neighbourhood as a theological product. By interrogating and interpreting bishwas through everyday theological discussions and reflections, the paper examines and analyses the ways everyday theology becomes an essential source of power and knowledge for the Bengali Christians in reimagining their neighbourhood compared to the nearby Hindu neighbourhoods. Borrowing literature from everyday theology, faith and belief, the paper reads and analyses various interpretations of theological knowledge across denominations to probe the prominence of bishwas within the Christian community and its role in creating a difference in their place of dwelling. The paper argues that the meaning of neighbourhood is revisited through prayers, sermons and biblical verses. At the same time, the divisions and fissures are seen among Protestants and Catholics and also among native Bengali Protestants and non-native Protestant pastors, which informs us about the complexity of theology in constituting everyday life. Thus, the paper addresses theology's role in creating an ethical Christian neighbourhood amidst everyday tensions and hostilities of diverse religious persuasions. At the same time, it looks into the processes through which multiple theological knowledge leads to schism and interdenominational hostilities. By attempting to answer these questions, the paper brings out Christians' negotiation with the neighbourhood.Keywords: anthropology, bishwas, christianity, neighbourhood, theology
Procedia PDF Downloads 87571 Characterization of Chest Pain in Patients Consulting to the Emergency Department of a Health Institution High Level of Complexity during 2014-2015, Medellin, Colombia
Authors: Jorge Iván Bañol-Betancur, Lina María Martínez-Sánchez, María de los Ángeles Rodríguez-Gázquez, Estefanía Bahamonde-Olaya, Ana María Gutiérrez-Tamayo, Laura Isabel Jaramillo-Jaramillo, Camilo Ruiz-Mejía, Natalia Morales-Quintero
Abstract:
Acute chest pain is a distressing sensation between the diaphragm and the base of the neck and it represents a diagnostic challenge for any physician in the emergency department. Objective: To establish the main clinical and epidemiological characteristics of patients who present with chest pain to the emergency department in a private clinic from the city of Medellin, during 2014-2015. Methods: Cross-sectional retrospective observational study. Population and sample were patients who consulted for chest pain in the emergency department who met the eligibility criteria. The information was analyzed in SPSS program vr.21; qualitative variables were described through relative frequencies, and the quantitative through mean and standard deviation or medians according to their distribution in the study population. Results: A total of 231 patients were evaluated, the mean age was 49.5 ± 19.9 years, 56.7% were females. The most frequent pathological antecedents were hypertension 35.5%, diabetes 10,8%, dyslipidemia 10.4% and coronary disease 5.2%. Regarding pain features, in 40.3% of the patients the pain began abruptly, in 38.2% it had a precordial location, for 20% of the cases physical activity acted as a trigger, and 60.6% was oppressive. Costochondritis was the most common cause of chest pain among patients with an established etiologic diagnosis, representing the 18.2%. Conclusions: Although the clinical features of pain reported coincide with the clinical presentation of an acute coronary syndrome, the most common cause of chest pain in study population was costochondritis instead, indicating that it is a differential diagnostic in the approach of patients with pain acute chest.Keywords: acute coronary syndrome, chest pain, epidemiology, osteochondritis
Procedia PDF Downloads 343570 Comparison of Different Artificial Intelligence-Based Protein Secondary Structure Prediction Methods
Authors: Jamerson Felipe Pereira Lima, Jeane Cecília Bezerra de Melo
Abstract:
The difficulty and cost related to obtaining of protein tertiary structure information through experimental methods, such as X-ray crystallography or NMR spectroscopy, helped raising the development of computational methods to do so. An approach used in these last is prediction of tridimensional structure based in the residue chain, however, this has been proved an NP-hard problem, due to the complexity of this process, explained by the Levinthal paradox. An alternative solution is the prediction of intermediary structures, such as the secondary structure of the protein. Artificial Intelligence methods, such as Bayesian statistics, artificial neural networks (ANN), support vector machines (SVM), among others, were used to predict protein secondary structure. Due to its good results, artificial neural networks have been used as a standard method to predict protein secondary structure. Recent published methods that use this technique, in general, achieved a Q3 accuracy between 75% and 83%, whereas the theoretical accuracy limit for protein prediction is 88%. Alternatively, to achieve better results, support vector machines prediction methods have been developed. The statistical evaluation of methods that use different AI techniques, such as ANNs and SVMs, for example, is not a trivial problem, since different training sets, validation techniques, as well as other variables can influence the behavior of a prediction method. In this study, we propose a prediction method based on artificial neural networks, which is then compared with a selected SVM method. The chosen SVM protein secondary structure prediction method is the one proposed by Huang in his work Extracting Physico chemical Features to Predict Protein Secondary Structure (2013). The developed ANN method has the same training and testing process that was used by Huang to validate his method, which comprises the use of the CB513 protein data set and three-fold cross-validation, so that the comparative analysis of the results can be made comparing directly the statistical results of each method.Keywords: artificial neural networks, protein secondary structure, protein structure prediction, support vector machines
Procedia PDF Downloads 621569 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa
Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam
Abstract:
Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines
Procedia PDF Downloads 515568 Meet Automotive Software Safety and Security Standards Expectations More Quickly
Authors: Jean-François Pouilly
Abstract:
This study addresses the growing complexity of embedded systems and the critical need for secure, reliable software. Traditional cybersecurity testing methods, often conducted late in the development cycle, struggle to keep pace. This talk explores how formal methods, integrated with advanced analysis tools, empower C/C++ developers to 1) Proactively address vulnerabilities and bugs, which includes formal methods and abstract interpretation techniques to identify potential weaknesses early in the development process, reducing the reliance on penetration and fuzz testing in later stages. 2) Streamline development by focusing on bugs that matter, with close to no false positives and catching flaws earlier, the need for rework and retesting is minimized, leading to faster development cycles, improved efficiency and cost savings. 3) Enhance software dependability which includes combining static analysis using abstract interpretation with full context sensitivity, with hardware memory awareness allows for a more comprehensive understanding of potential vulnerabilities, leading to more dependable and secure software. This approach aligns with industry best practices (ISO2626 or ISO 21434) and empowers C/C++ developers to deliver robust, secure embedded systems that meet the demands of today's and tomorrow's applications. We will illustrate this approach with the TrustInSoft analyzer to show how it accelerates verification for complex cases, reduces user fatigue, and improves developer efficiency, cost-effectiveness, and software cybersecurity. In summary, integrating formal methods and sound Analyzers enhances software reliability and cybersecurity, streamlining development in an increasingly complex environment.Keywords: safety, cybersecurity, ISO26262, ISO24434, formal methods
Procedia PDF Downloads 19567 Narrative Constructs and Environmental Engagement: A Textual Analysis of Climate Fiction’s Role in Shaping Sustainability Consciousness
Authors: Dean J. Hill
Abstract:
This paper undertakes the task of conducting an in-depth textual analysis of the cli-fi genre. It examines how writing in the genre contributes to expressing and facilitating the articulation of environmental consciousness through the form of narrative. The paper begins by situating cli-fi within the literary continuum of ecological narratives and identifying the unique textual characteristics and thematic preoccupations of this area. The paper unfolds how cli-fi transforms the esoteric nature of climate science into credible narrative forms by drawing on language use, metaphorical constructs, and narrative framing. It also involves how descriptive and figurative language in the description of nature and disaster makes climate change so vivid and emotionally resonant. The work also points out the dialogic nature of cli-fi, whereby the characters and the narrators experience inner disputes in the novel regarding the ethical dilemma of environmental destruction, thus demanding the readers challenge and re-evaluate their standpoints on sustainability and ecological responsibilities. The paper proceeds with analysing the feature of narrative voice and its role in eliciting empathy, as well as reader involvement with the ecological material. In looking at how different narratorial perspectives contribute to the emotional and cognitive reaction of the reader to text, this study demonstrates the profound power of perspective in developing intimacy with the dominating concerns. Finally, the emotional arc of cli-fi narratives, running its course over themes of loss, hope, and resilience, is analysed in relation to how these elements function to marshal public feeling and discourse into action around climate change. Therefore, we can say that the complexity of the text in the cli-fi not only shows the hard edge of the reality of climate change but also influences public perception and behaviour toward a more sustainable future.Keywords: cli-fi genre, ecological narratives, emotional arc, narrative voice, public perception
Procedia PDF Downloads 31566 Organization of the Purchasing Function for Innovation
Authors: Jasna Prester, Ivana Rašić Bakarić, Božidar Matijević
Abstract:
Various prominent scholars and substantial practitioner-oriented literature on innovation orientation have shown positive effects on firm performance. There is a myriad of factors that influence and enhance innovation but it has been found in the literature that new product innovations accounted for an average of 14 percent of sales revenues for all firms. If there is one thing that has changed in innovation management during the last decade, it is the growing reliance on external partners. As a consequence, a new task for purchasing arises, as firms need to understand which suppliers actually do have high potential contributing to the innovativeness of the firm and which do not. Purchasing function in an organization is extremely important as it deals on an average of 50% or more of a firm's expenditures. In the nineties the purchasing department was largely seen as a transaction-oriented, clerical function but today purchasing integration provides a formal interface mechanism between purchasing and other firm functions that services other functions within the company. Purchasing function has to be organized differently to enable firm innovation potential. However, innovations are inherently risky. There are behavioral risk (that some partner will take advantage of the other party), technological risk in terms of complexity of products and processes of manufacturing and incoming materials and finally market risks, which in fact judge the value of the innovation. These risks are investigated in this work since it has been found in the literature that the higher the technological risk, higher will be the centralization of the purchasing function as an interface with other supply chain members. Most researches on organization of purchasing function were done by case study analysis of innovative firms. This work actually tends to prove or discard results found in the literature based on case study method. A large data set of 1493 companies, from 25 countries collected in the GMRG 4 survey served as a basis for analysis.Keywords: purchasing function organization, innovation, technological risk, GMRG 4 survey
Procedia PDF Downloads 482565 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing
Authors: Yehjune Heo
Abstract:
As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.Keywords: anti-spoofing, CNN, fingerprint recognition, loss function, optimizer
Procedia PDF Downloads 136564 Parameters Influencing Human Machine Interaction in Hospitals
Authors: Hind Bouami
Abstract:
Handling life-critical systems complexity requires to be equipped with appropriate technology and the right human agents’ functions such as knowledge, experience, and competence in problem’s prevention and solving. Human agents are involved in the management and control of human-machine system’s performance. Documenting human agent’s situation awareness is crucial to support human-machine designers’ decision-making. Knowledge about risks, critical parameters and factors that can impact and threaten automation system’s performance should be collected using preventive and retrospective approaches. This paper aims to document operators’ situation awareness through the analysis of automated organizations’ feedback. The analysis of automated hospital pharmacies feedbacks helps to identify and control critical parameters influencing human machine interaction in order to enhance system’s performance and security. Our human machine system evaluation approach has been deployed in Macon hospital center’s pharmacy which is equipped with automated drug dispensing systems since 2015. Automation’s specifications are related to technical aspects, human-machine interaction, and human aspects. The evaluation of drug delivery automation performance in Macon hospital center has shown that the performance of the automated activity depends on the performance of the automated solution chosen, and also on the control of systemic factors. In fact, 80.95% of automation specification related to the chosen Sinteco’s automated solution is met. The performance of the chosen automated solution is involved in 28.38% of automation specifications performance in Macon hospital center. The remaining systemic parameters involved in automation specifications performance need to be controlled.Keywords: life-critical systems, situation awareness, human-machine interaction, decision-making
Procedia PDF Downloads 181563 Integration of Polarization States and Color Multiplexing through a Singular Metasurface
Authors: Tarik Sipahi
Abstract:
Photonics research continues to push the boundaries of optical science, and the development of metasurface technology has emerged as a transformative force in this domain. The work presents the intricacies of a unified metasurface design tailored for efficient polarization and color control in optical systems. The proposed unified metasurface serves as a singular, nanoengineered optical element capable of simultaneous polarization modulation and color encoding. Leveraging principles from metamaterials and nanophotonics, this design allows for unprecedented control over the behavior of light at the subwavelength scale. The metasurface's spatially varying architecture enables seamless manipulation of both polarization states and color wavelengths, paving the way for a paradigm shift in optical system design. The advantages of this unified metasurface are diverse and impactful. By consolidating functions that traditionally require multiple optical components, the design streamlines optical systems, reducing complexity and enhancing overall efficiency. This approach is particularly promising for applications where compactness, weight considerations, and multifunctionality are crucial. Furthermore, the proposed unified metasurface design not only enhances multifunctionality but also addresses key challenges in optical system design, offering a versatile solution for applications demanding compactness and lightweight structures. The metasurface's capability to simultaneously manipulate polarization and color opens new possibilities in diverse technological fields. The research contributes to the evolution of optical science by showcasing the transformative potential of metasurface technology, emphasizing its role in reshaping the landscape of optical system architectures. This work represents a significant step forward in the ongoing pursuit of pushing the boundaries of photonics, providing a foundation for future innovations in compact and efficient optical devices.Keywords: metasurface, nanophotonics, optical system design, polarization control
Procedia PDF Downloads 53562 Generative Design Method for Cooled Additively Manufactured Gas Turbine Parts
Authors: Thomas Wimmer, Bernhard Weigand
Abstract:
The improvement of gas turbine efficiency is one of the main drivers of research and development in the gas turbine market. This has led to elevated gas turbine inlet temperatures beyond the melting point of the utilized materials. The turbine parts need to be actively cooled in order to withstand these harsh environments. However, the usage of compressor air as coolant decreases the overall gas turbine efficiency. Thus, coolant consumption needs to be minimized in order to gain the maximum advantage from higher turbine inlet temperatures. Therefore, sophisticated cooling designs for gas turbine parts aim to minimize coolant mass flow. New design space is accessible as additive manufacturing is maturing to industrial usage for the creation of hot gas flow path parts. By making use of this technology more efficient cooling schemes can be manufacture. In order to find such cooling schemes a generative design method is being developed. It generates cooling schemes randomly which adhere to a set of rules. These assure the sanity of the design. A huge amount of different cooling schemes are generated and implemented in a simulation environment where it is validated. Criteria for the fitness of the cooling schemes are coolant mass flow, maximum temperature and temperature gradients. This way the whole design space is sampled and a Pareto optimum front can be identified. This approach is applied to a flat plate, which resembles a simplified section of a hot gas flow path part. Realistic boundary conditions are applied and thermal barrier coating is accounted for in the simulation environment. The resulting cooling schemes are presented and compared to representative conventional cooling schemes. Further development of this method can give access to cooling schemes with an even better performance having higher complexity, which makes use of the available design space.Keywords: additive manufacturing, cooling, gas turbine, heat transfer, heat transfer design, optimization
Procedia PDF Downloads 352561 Embracing Complex Femininity: A Comparative Analysis of the Representation of Female Sexuality in John Webster and William Faulkner
Authors: Elisabeth Pedersen
Abstract:
Representations and interpretations of womanhood and female sexualities bring forth various questions regarding gender norms, and the implications of these norms, which are permeating and repetitive within various societies. Literature is one form of media which provides the space to represent and interpret women, their bodies, and sexualities, and also reveals the power of language as an affective and affected force. As literature allows an opportunity to explore history and the representations of gender, power dynamics, and sexuality through historical contexts, this paper uses engaged theory through a comparative analysis of two work of literature, The Duchess of Malfi by John Wester, and The Sound and the Fury by William Faulkner. These novels span across space and time, which lends to the theory that repetitive tropes of womanhood and female sexuality in literature are influenced by and have an influence on the hegemonic social order throughout history. It analyzes how the representation of the dichotomy of male chivalry and honor, and female purity are disputed and questioned when a woman is portrayed as sexually emancipated, and explores the historical context in which these works were written to examine how socioeconomic events challenged the hegemonic social order. The analysis looks at how stereotypical ideals of womanhood and manhood have damaging implications on women, as the structure of society provides more privilege and power to men than to women, thus creating a double standard for men and women in regards to sexuality, sexual expression, and rights to sexual desire. This comparative analysis reveals how strict gender norms are permeating and have negative consequences. However, re-reading stories through a critical lens can provide an opportunity to challenge the repetitive tropes of female sexuality, and thus lead to the embrace of the complexity of female sexuality and expression.Keywords: femininity, literature, representation, sexuality
Procedia PDF Downloads 358560 In situ Real-Time Multivariate Analysis of Methanolysis Monitoring of Sunflower Oil Using FTIR
Authors: Pascal Mwenge, Tumisang Seodigeng
Abstract:
The combination of world population and the third industrial revolution led to high demand for fuels. On the other hand, the decrease of global fossil 8fuels deposits and the environmental air pollution caused by these fuels has compounded the challenges the world faces due to its need for energy. Therefore, new forms of environmentally friendly and renewable fuels such as biodiesel are needed. The primary analytical techniques for methanolysis yield monitoring have been chromatography and spectroscopy, these methods have been proven reliable but are more demanding, costly and do not provide real-time monitoring. In this work, the in situ monitoring of biodiesel from sunflower oil using FTIR (Fourier Transform Infrared) has been studied; the study was performed using EasyMax Mettler Toledo reactor equipped with a DiComp (Diamond) probe. The quantitative monitoring of methanolysis was performed by building a quantitative model with multivariate calibration using iC Quant module from iC IR 7.0 software. 15 samples of known concentrations were used for the modelling which were taken in duplicate for model calibration and cross-validation, data were pre-processed using mean centering and variance scale, spectrum math square root and solvent subtraction. These pre-processing methods improved the performance indexes from 7.98 to 0.0096, 11.2 to 3.41, 6.32 to 2.72, 0.9416 to 0.9999, RMSEC, RMSECV, RMSEP and R2Cum, respectively. The R2 value of 1 (training), 0.9918 (test), 0.9946 (cross-validation) indicated the fitness of the model built. The model was tested against univariate model; small discrepancies were observed at low concentration due to unmodelled intermediates but were quite close at concentrations above 18%. The software eliminated the complexity of the Partial Least Square (PLS) chemometrics. It was concluded that the model obtained could be used to monitor methanol of sunflower oil at industrial and lab scale.Keywords: biodiesel, calibration, chemometrics, methanolysis, multivariate analysis, transesterification, FTIR
Procedia PDF Downloads 148559 Multiple-Material Flow Control in Construction Supply Chain with External Storage Site
Authors: Fatmah Almathkour
Abstract:
Managing and controlling the construction supply chain (CSC) are very important components of effective construction project execution. The goals of managing the CSC are to reduce uncertainty and optimize the performance of a construction project by improving efficiency and reducing project costs. The heart of much SC activity is addressing risk, and the CSC is no different. The delivery and consumption of construction materials is highly variable due to the complexity of construction operations, rapidly changing demand for certain components, lead time variability from suppliers, transportation time variability, and disruptions at the job site. Current notions of managing and controlling CSC, involve focusing on one project at a time with a push-based material ordering system based on the initial construction schedule and, then, holding a tremendous amount of inventory. A two-stage methodology was proposed to coordinate the feed-forward control of advanced order placement with a supplier to a feedback local control in the form of adding the ability to transship materials between projects to improve efficiency and reduce costs. It focused on the single supplier integrated production and transshipment problem with multiple products. The methodology is used as a design tool for the CSC because it includes an external storage site not associated with one of the projects. The idea is to add this feature to a highly constrained environment to explore its effectiveness in buffering the impact of variability and maintaining project schedule at low cost. The methodology uses deterministic optimization models with objectives that minimizing the total cost of the CSC. To illustrate how this methodology can be used in practice and the types of information that can be gleaned, it is tested on a number of cases based on the real example of multiple construction projects in Kuwait.Keywords: construction supply chain, inventory control supply chain, transshipment
Procedia PDF Downloads 122558 Guidelines for the Sustainable Development of Agriphotovoltaics in Orchard Cultivation: An Approach for Their Harmonious Application in the Natural, Landscape and Socio-Cultural Context of South Tyrol
Authors: Fabrizio Albion
Abstract:
In response to the escalating recognition of the need to combat climate change, renewable energy sources (RES), particularly solar energy, have witnessed exponential growth. The intricate nature of agriphotovoltaics, which combines agriculture and solar energy production, demands rapid legislative and technological development, facing various challenges and multifaceted design. This complexity is also represented by its application for orchard cultivation (APVO), which, in the first part of this research, was studied in its environmental, economic, and sociocultural aspects. Insights from literature, case studies, and consultations with experts contributed valuable perspectives, forming a robust foundation for understanding and integrating APVO into rural environments, including those in the South Tyrolean context. For its harmonious integration into the sensitive Alpine landscape, the second part was then dedicated to the development of guidelines, from the identification of the requirements to be defined as APVO to its design flexibilities for being integrated into the context. As a basis for further considerations, the drafting of these guidelines was preceded by a program of interviews conducted to investigate the social perceptions of farmers, citizens and tourists on the potential integration of APVO in the fruit-growing valleys of the province. Conclusive results from the data collected in the first phase are, however, still pending. Due to ongoing experiments and data collection, the current results, although being generally positive, cannot guarantee a definitive exclusion of potential negative impacts on the crop. The guidelines developed should, therefore, be understood as an initial exploration, providing a basis for future updates, also in synergy with the evolution of existing local projects.Keywords: agriphotovoltaics, Alpin agricultural landscapes, landscape impact assessment, renewable energy
Procedia PDF Downloads 17557 Interlingual Melodious Constructions: Romanian Translation of References to Songs in James Joyce’s Ulysses
Authors: Andra-Iulia Ursa
Abstract:
James Joyce employs several unconventional stylistic features in this landmark novel meant to experiment with language. The episode known as “Sirens” is entirely conceived around music and linguistic structures subordinated to sound. However, the aspiration to the condition of music is reflected throughout this entire literary work, as musical effects are echoed systematically. The numerous melodies scattered across the narrative play an important role in enhancing the thoughts and feelings that pass through the minds of the characters. Often the lyrics are distorted or interweaved with other words, preoccupations or memories, intensifying the stylistic effect. The Victorian song “Love’s old sweet song” is one of the most commonly referred to and meaningful musical allusions in Ulysses, becoming a leitmotif of infidelity. The lyrics of the song “M’appari”, from the opera “Martha”, are compared to an event from Molly and Bloom’s romantic history. Moreover, repeated phrases using words from “The bloom is on the rye” or “The croppy boy” serve as glances into the minds of the characters. Therefore, the central purpose of this study is to shed light on the way musical allusions flit through the episodes from the point of view of the stream of consciousness technique and to compare and analyse how these constructions are rendered into Romanian. Mircea Ivănescu, the single Romanian translator who succeeded in carrying out the translation of the entire ‘stylistic odyssey’, received both praises and disapprovals from the critics. This paper is not meant to call forth eventual flaws of the Romanian translation, but rather to elaborate the complexity of the task. Following an attentive examination and analysis of the two texts, from the point of view of form and meaning of the references to various songs, the conclusions of this study will be able to point out the intricacies of the process of translation.Keywords: Joyce, melodious constructions, stream of consciousness, style, translation
Procedia PDF Downloads 164556 Discrete-Event Modeling and Simulation Methodologies: Past, Present and Future
Authors: Gabriel Wainer
Abstract:
Modeling and Simulation methods have been used to better analyze the behavior of complex physical systems, and it is now common to use simulation as a part of the scientific and technological discovery process. M&S advanced thanks to the improvements in computer technology, which, in many cases, resulted in the development of simulation software using ad-hoc techniques. Formal M&S appeared in order to try to improve the development task of very complex simulation systems. Some of these techniques proved to be successful in providing a sound base for the development of discrete-event simulation models, improving the ease of model definition and enhancing the application development tasks; reducing costs and favoring reuse. The DEVS formalism is one of these techniques, which proved to be successful in providing means for modeling while reducing development complexity and costs. DEVS model development is based on a sound theoretical framework. The independence of M&S tasks made possible to run DEVS models on different environments (personal computers, parallel computers, real-time equipment, and distributed simulators) and middleware. We will present a historical perspective of discrete-event M&S methodologies, showing different modeling techniques. We will introduce DEVS origins and general ideas, and compare it with some of these techniques. We will then show the current status of DEVS M&S, and we will discuss a technological perspective to solve current M&S problems (including real-time simulation, interoperability, and model-centered development techniques). We will show some examples of the current use of DEVS, including applications in different fields. We will finally show current open topics in the area, which include advanced methods for centralized, parallel or distributed simulation, the need for real-time modeling techniques, and our view in these fields.Keywords: modeling and simulation, discrete-event simulation, hybrid systems modeling, parallel and distributed simulation
Procedia PDF Downloads 323555 Spectral Mixture Model Applied to Cannabis Parcel Determination
Authors: Levent Basayigit, Sinan Demir, Yusuf Ucar, Burhan Kara
Abstract:
Many research projects require accurate delineation of the different land cover type of the agricultural area. Especially it is critically important for the definition of specific plants like cannabis. However, the complexity of vegetation stands structure, abundant vegetation species, and the smooth transition between different seconder section stages make vegetation classification difficult when using traditional approaches such as the maximum likelihood classifier. Most of the time, classification distinguishes only between trees/annual or grain. It has been difficult to accurately determine the cannabis mixed with other plants. In this paper, a mixed distribution models approach is applied to classify pure and mix cannabis parcels using Worldview-2 imagery in the Lakes region of Turkey. Five different land use types (i.e. sunflower, maize, bare soil, and cannabis) were identified in the image. A constrained Gaussian mixture discriminant analysis (GMDA) was used to unmix the image. In the study, 255 reflectance ratios derived from spectral signatures of seven bands (Blue-Green-Yellow-Red-Rededge-NIR1-NIR2) were randomly arranged as 80% for training and 20% for test data. Gaussian mixed distribution model approach is proved to be an effective and convenient way to combine very high spatial resolution imagery for distinguishing cannabis vegetation. Based on the overall accuracies of the classification, the Gaussian mixed distribution model was found to be very successful to achieve image classification tasks. This approach is sensitive to capture the illegal cannabis planting areas in the large plain. This approach can also be used for monitoring and determination with spectral reflections in illegal cannabis planting areas.Keywords: Gaussian mixture discriminant analysis, spectral mixture model, Worldview-2, land parcels
Procedia PDF Downloads 197554 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19
Authors: M. Bilal Ishfaq, Adnan N. Qureshi
Abstract:
COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.Keywords: COVID-19, feature engineering, artificial neural networks, radiology images
Procedia PDF Downloads 75