Search results for: project progress prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8411

Search results for: project progress prediction

7331 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic

Authors: Fei Gao, Rodolfo C. Raga Jr.

Abstract:

This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.

Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle

Procedia PDF Downloads 75
7330 The Implementation of the Lean Six Sigma Production Process in a Telecommunications Company in Brazil

Authors: Carlos Fontanillas

Abstract:

The implementation of the lean six sigma methodology aims to implement practices to systematically improve processes by eliminating defects, making them cheaper. The implementation of projects with the methodology uses a division into five phases: definition, measurement, analysis, implementation, and control. In this process, it is understood that the implementation of said methodology generates benefits to organizations that adhere through the improvement of their processes. In the case of a telecommunications company, it was realized that the implementation of a lean six sigma project contributed to the improvement of the presented process, generating a financial return with the avoided cost. However, such study has limitations such as a specific segment of performance and procedure, i.e., it can not be defined that return under other circumstances will be the same. It is also concluded that lean six sigma projects tend to contribute to improved processes evaluated due to their methodology that is based on statistical analysis and quality management tools and can generate a financial return. It is hoped that the present study can be used to provide a clearer view of the methodology for entrepreneurs who wish to implement process improvement actions in their companies, as well as to provide a foundation for professionals working with lean six sigma projects. After the review of the processes, the completion of the project stages and the monitoring for three months in partnership with the owner of the process to ensure the effectiveness of the actions, the project was completed with the objective reached. There was an average of 60% reduction with the issuance of undue invoices generated after the deactivation and it was possible to extend the project to other companies, which allowed a reduction well above the initially stipulated target.

Keywords: quality, process, lean six sigma, organization

Procedia PDF Downloads 129
7329 Data Management System for Environmental Remediation

Authors: Elizaveta Petelina, Anton Sizo

Abstract:

Environmental remediation projects deal with a wide spectrum of data, including data collected during site assessment, execution of remediation activities, and environmental monitoring. Therefore, an appropriate data management is required as a key factor for well-grounded decision making. The Environmental Data Management System (EDMS) was developed to address all necessary data management aspects, including efficient data handling and data interoperability, access to historical and current data, spatial and temporal analysis, 2D and 3D data visualization, mapping, and data sharing. The system focuses on support of well-grounded decision making in relation to required mitigation measures and assessment of remediation success. The EDMS is a combination of enterprise and desktop level data management and Geographic Information System (GIS) tools assembled to assist to environmental remediation, project planning, and evaluation, and environmental monitoring of mine sites. EDMS consists of seven main components: a Geodatabase that contains spatial database to store and query spatially distributed data; a GIS and Web GIS component that combines desktop and server-based GIS solutions; a Field Data Collection component that contains tools for field work; a Quality Assurance (QA)/Quality Control (QC) component that combines operational procedures for QA and measures for QC; Data Import and Export component that includes tools and templates to support project data flow; a Lab Data component that provides connection between EDMS and laboratory information management systems; and a Reporting component that includes server-based services for real-time report generation. The EDMS has been successfully implemented for the Project CLEANS (Clean-up of Abandoned Northern Mines). Project CLEANS is a multi-year, multimillion-dollar project aimed at assessing and reclaiming 37 uranium mine sites in northern Saskatchewan, Canada. The EDMS has effectively facilitated integrated decision-making for CLEANS project managers and transparency amongst stakeholders.

Keywords: data management, environmental remediation, geographic information system, GIS, decision making

Procedia PDF Downloads 161
7328 COVID-19 Analysis with Deep Learning Model Using Chest X-Rays Images

Authors: Uma Maheshwari V., Rajanikanth Aluvalu, Kumar Gautam

Abstract:

The COVID-19 disease is a highly contagious viral infection with major worldwide health implications. The global economy suffers as a result of COVID. The spread of this pandemic disease can be slowed if positive patients are found early. COVID-19 disease prediction is beneficial for identifying patients' health problems that are at risk for COVID. Deep learning and machine learning algorithms for COVID prediction using X-rays have the potential to be extremely useful in solving the scarcity of doctors and clinicians in remote places. In this paper, a convolutional neural network (CNN) with deep layers is presented for recognizing COVID-19 patients using real-world datasets. We gathered around 6000 X-ray scan images from various sources and split them into two categories: normal and COVID-impacted. Our model examines chest X-ray images to recognize such patients. Because X-rays are commonly available and affordable, our findings show that X-ray analysis is effective in COVID diagnosis. The predictions performed well, with an average accuracy of 99% on training photographs and 88% on X-ray test images.

Keywords: deep CNN, COVID–19 analysis, feature extraction, feature map, accuracy

Procedia PDF Downloads 79
7327 Environmental Impact Assessment of OMI Irrigation Scheme, Nigeria

Authors: Olumuyiwa I. Ojo, Kola Amao, Josiah A. Adeyemo, Fred A. O. Otieno

Abstract:

A study was carried out to assess the environmental impact of Kampe (Omi) irrigation scheme with respect to public health hazards, the rising water table, salinity and alkalinity problems on the project site. A structured questionnaire was used as the main tool to gather information on the effect of the irrigation project on the various communities around the project site. The different sections of the questionnaire enabled the gathering of information ranging from general to more specific information. The results obtained from the study showed that the two effects are obvious: the 'positive effects' which include increasing the socioeconomic development of the entire communities, resulting in an increase in employment opportunities and better lifestyle and the 'negative effects' in which malaria (100% occurrence) and schistosomiasis (66.7%) were found to be active diseases caused by irrigation activities. Increase in height of water table and salinity is eminent in the irrigation site unless adequate drainage is provided. The collection and experimental analyses of representation soil and water samples from each scheme were used to assess the current status of each receptor. Results obtained indicate the absence of soil with sodium adsorption ration (SAR) values ranging from 3.0 to 3.89, exchangeable sodium percentage (ESP) ranged from 3.8% to 5.5% while pH values ranged from 6.60 to 7.00. Drainage facilities of the project site are inadequate, therefore making it difficult to leach the soil and flood history is occasional.

Keywords: irrigation, impact, soil analysis, Nigeria

Procedia PDF Downloads 294
7326 Occupational Safety in Construction Projects

Authors: Heba Elbibas, Esra Gnijeewa, Zedan Hatush

Abstract:

This paper presents research on occupational safety in construction projects, where the importance of safety management in projects was studied, including the preparation of a safety plan and program for each project and the identification of the responsibilities of each party to the contract. The research consists of two parts: 1-Field visits: which were field visits to three construction projects, including building projects, road projects, and tower installation. The safety level of these projects was evaluated through a checklist that includes the most important safety elements in terms of the application of these items in the projects. 2-Preparation of a questionnaire: which included supervisors and engineers and aimed to determine the level of awareness and commitment of different project categories to safety standards. The results showed the following: i) There is a moderate occupational safety policy. ii) The preparation and storage of maintenance reports are not fully complied with. iii) There is a moderate level of training on occupational safety for project workers. iv) The company does not impose penalties on safety violators permanently. v) There is a moderate policy for equipment and machinery safety. vi) Self-injuries occur due to (fatigue, lack of attention, deliberate error, and emotional factors), with a rate of 82.4%.

Keywords: management, safety, occupational safety, classification

Procedia PDF Downloads 105
7325 The Changes in Motivations and the Use of Translation Strategies in Crowdsourced Translation: A Case Study on Global Voices’ Chinese Translation Project

Authors: Ya-Mei Chen

Abstract:

Online crowdsourced translation, an innovative translation practice brought by Web 2.0 technologies and the democratization of information, has become increasingly popular in the Internet era. Carried out by grass-root internet users, crowdsourced translation contains fundamentally different features from its off-line traditional counterpart, such as voluntary participation and parallel collaboration. To better understand such a participatory and collaborative nature, this paper will use the online Chinese translation project of Global Voices as a case study to investigate the following issues: (1) the changes in volunteer translators’ and reviewers’ motivations for participation, (2) translators’ and reviewers’ use of translation strategies and (3) the correlations of translators’ and reviewers’ motivations and strategies with the organizational mission, the translation style guide, the translator-reviewer interaction, the mediation of the translation platform and various types of capital within the translation field. With an aim to systematically explore the above three issues, this paper will collect both quantitative and qualitative data and then draw upon Engestrom’s activity theory and Bourdieu’s field theory as a theoretical framework to analyze the data in question. An online anonymous questionnaire will be conducted to obtain the quantitative data. The questionnaire will contain questions related to volunteer translators’ and reviewers’ backgrounds, participation motivations, translation strategies and mutual relations as well as the operation of the translation platform. Concerning the qualitative data, they will come from (1) a comparative study between some English news texts published on Global Voices and their Chinese translations, (2) an analysis of the online discussion forum associated with Global Voices’ Chinese translation project and (3) the information about the project’s translation mission and guidelines. It is hoped that this research, through a detailed sociological analysis of a cause-driven crowdsourced translation project, can enable translation researchers and practitioners to adequately meet the translation challenges appearing in the digital age.

Keywords: crowdsourced translation, global voices, motivation, translation strategies

Procedia PDF Downloads 371
7324 Project Management and International Development: Competencies for International Assignment

Authors: M. P. Leroux, C. Coulombe

Abstract:

Projects are popular vehicles through which international aid is delivered in developing countries. To achieve their objectives, many northern organizations develop projects with local partner organizations in the developing countries through technical assistance projects. International aid and international development projects precisely have long been criticized for poor results although billions are spent every year. Little empirical research in the field of project management has the focus on knowledge transfer in international development context. This paper focuses particularly on personal dimensions of international assignees participating in project within local team members in the host country. We propose to explore the possible links with a human resource management perspective in order to shed light on the less research problematic of knowledge transfer in development cooperation projects. The process leading to capacity building being far complex, involving multiple dimensions and far from being linear, we propose here to assess if traditional research on expatriate in multinational corporations pertain to the field of project management in developing countries. The following question is addressed: in the context of international development project cooperation, what personal determinants should the selection process focus when looking to fill a technical assistance position in a developing country? To answer that question, we first reviewed the literature on expatriate in the context of inter organizational knowledge transfer. Second, we proposed a theoretical framework combining perspectives of development studies and management to explore if parallels can be draw between traditional international assignment and technical assistance project assignment in developing countries. We conducted an exploratory study using case studies from technical assistance initiatives led in Haiti, a country in Central America. Data were collected from multiple sources following qualitative study research methods. Direct observations in the field were allowed by local leaders of six organization; individual interviews with present and past international assignees, individual interview with local team members, and focus groups were organized in order to triangulate information collected. Contrary from empirical research on knowledge transfer in multinational corporations, results tend to show that technical expertise rank well behind many others characteristics. Results tend to show the importance of soft skills, as a prerequisite to succeed in projects where local team have to collaborate. More importantly, international assignees who were talking knowledge sharing instead of knowledge transfer seemed to feel more satisfied at the end of their mandate than the others. Reciprocally, local team members who perceived to have participated in a project with an expat looking to share instead of aiming to transfer knowledge seemed to describe the results of project in more positive terms than the others. Results obtained from this exploratory study open the way for a promising research agenda in the field of project management. It emphasises the urgent need to achieve a better understanding on the complex set of soft skills project managers or project chiefs would benefit to develop, in particular, the ability to absorb knowledge and the willingness to share one’s knowledge.

Keywords: international assignee, international project cooperation, knowledge transfer, soft skills

Procedia PDF Downloads 142
7323 Inclusive Cultural Heritage Tourism Project

Authors: L. Cruz-Lopes, M. Sell, P. Escudeiro, B. Esteves

Abstract:

It might be difficult for deaf people to communicate since spoken and written languages are different from sign language. When it comes to getting information, going to places of cultural heritage, or using services and infrastructure, there is a clear lack of inclusiveness. By creating assistive technology that enables deaf individuals to get around communication hurdles and encourage inclusive tourism, the ICHT- Inclusive Cultural Heritage Tourism initiative hopes to increase knowledge of sign language. The purpose of the Inclusive Cultural Heritage Tourism (ICHT) project is to develop online and on-site sign language tools and material for usage at popular tourist destinations in the northern region of Portugal, including Torre dos Clérigos, the Lello bookstore, Maia Zoo, Porto wine cellars, and São Pedro do Sul (Viseu) thermae. The ICHT system consists of an application using holography, a mobile game, an online platform for collaboration with deaf and hearing users, and a collection of International Sign training courses. The project also offers a prospect for a more inclusive society by introducing a method of teaching sign languages to tourism industry professionals. As a result, the teaching and learning of sign language along with the assistive technology tools created by the project sets up an inclusive environment for the deaf community, producing results in the area of automatic sign language translation and aiding in the global recognition of the Portuguese tourism industry.

Keywords: inclusive tourism, games, international sign training, deaf community

Procedia PDF Downloads 116
7322 Pattern Recognition Using Feature Based Die-Map Clustering in the Semiconductor Manufacturing Process

Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek

Abstract:

Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.

Keywords: die-map clustering, feature extraction, pattern recognition, semiconductor manufacturing process

Procedia PDF Downloads 402
7321 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics

Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy

Abstract:

Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.

Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance

Procedia PDF Downloads 150
7320 Haiti and Power Symbolic: An Analysis Understanding of the Impact of the Presidential Political Speeches

Authors: Marc Arthur Bien Aimé, Julio da Silveira Moreira

Abstract:

This study examines the political speech in Haiti over the course of the decade 2011-2021, focusing on the speeches of the presidents Michel J. Martelly and Jovenel Moïse and their impacts on their awareness collective. In using a qualitative approach, we have analyzed the speech of the president pronounced in response to the political instability of countries, as well as interviews with a group of 20 Haitians living in Port- Au-Prince. Our results put in evidence their complex relationship between politics, awareness collective, and the influence of the powers imperialists. We show that the situation in Haiti's disastrous social and political situation is driven by personal political interests and the absence of a state political project. Moreover, the speeches of the president’s analysis are meaningless, transforming concepts such as social progress and justice in simple words. This political rhetoric contributes to the domination symbolic of the population of Haitian. This study is also linked to the theme “Constitutions, processes democratic and critical of the state in Latin America,” emphasizing the importance of analysis of political speech to understand the complexities of the democratic process and criticism of the State in their Latin American region. We suggest future research to deepen our understanding of these political dynamics and their impact on public policies and developments of the constitutions throughout Latin America.

Keywords: political discourse, conscience collective, inequality social, democratic processes, constitutions, Haiti

Procedia PDF Downloads 61
7319 Clinical Prediction Rules for Using Open Kinetic Chain Exercise in Treatment of Knee Osteoarthritis

Authors: Mohamed Aly, Aliaa Rehan Youssef, Emad Sawerees, Mounir Guirgis

Abstract:

Relevance: Osteoarthritis (OA) is the most common degenerative disease seen in all populations. It causes disability and substantial socioeconomic burden. Evidence supports that exercise are the most effective conservative treatment for patients with OA. Therapists experience and clinical judgment play major role in exercise prescription and scientific evidence for this regard is lacking. The development of clinical prediction rules to identify patients who are most likely benefit from exercise may help solving this dilemma. Purpose: This study investigated whether body mass index and functional ability at baseline can predict patients’ response to a selected exercise program. Approach: Fifty-six patients, aged 35 to 65 years, completed an exercise program consisting of open kinetic chain strengthening and passive stretching exercises. The program was given for 3 sessions per week, 45 minutes per session, for 6 weeks Evaluation: At baseline and post treatment, pain severity was assessed using the numerical pain rating scale, whereas functional ability was being assessed by step test (ST), time up and go test (TUG) and 50 feet time walk test (50 FTW). After completing the program, global rate of change (GROC) score of greater than 4 was used to categorize patients as successful and non-successful. Thirty-eight patients (68%) had successful response to the intervention. Logistic regression showed that BMI and 50 FTW test were the only significant predictors. Based on the results, patients with BMI less than 34.71 kg/m2 and 50 FTW test less than 25.64 sec are 68% to 89% more likely to benefit from the exercise program. Conclusions: Clinicians should consider the described strengthening and flexibility exercise program for patents with BMI less than 34.7 Kg/m2 and 50 FTW faster than 25.6 seconds. The validity of these predictors should be investigated for other exercise.

Keywords: clinical prediction rule, knee osteoarthritis, physical therapy exercises, validity

Procedia PDF Downloads 422
7318 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material

Authors: Sukhbir Singh

Abstract:

This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.

Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector

Procedia PDF Downloads 120
7317 Exploration of Abuse of Position for Sexual Gain by UK Police

Authors: Terri Cole, Fay Sweeting

Abstract:

Abuse of position for sexual gain by police is defined as behavior involving individuals taking advantage of their role to pursue a sexual or improper relationship. Previous research has considered whether it involves ‘bad apples’ - individuals with poor moral ethos or ‘bad barrels’ – broader organizational flaws which may unconsciously allow, minimize, or do not effectively deal with such behavior. Low level sexual misconduct (e.g., consensual sex on duty) is more common than more serious offences (e.g., rape), yet the impact of such behavior can have severe implications not only for those involved but can also negatively undermine public confidence in the police. This ongoing, collaborative research project has identified variables from 514 historic case files from 35 UK police forces in order to identify potential risk indicators which may lead to such behavior. Quantitative analysis using logistic regression and the Cox proportion hazard model has resulted in the identification of specific risk factors of significance in prediction. Factors relating to both perpetrator background such as a history of intimate partner violence, debt, and substance misuse coupled with in work behavior such as misusing police systems increase the risk. Findings are able to provide pragmatic recommendations for those tasked with identifying potential or investigating suspected perpetrators of misconduct.

Keywords: abuse of position, forensic psychology, misconduct, sexual abuse

Procedia PDF Downloads 194
7316 Using Action Research to Digitize Theses and Journal Articles at the Main Library, Sultan Qaboos University, Oman

Authors: Nabhan H. N. Al-Harrasi

Abstract:

Action Research (AR) plays an important role in improving the problematical situation. It is a process that enhances thinking and practise and bridges the gap between abstract and concrete thinking. Nowadays, AR as a methodology is wildly used to implement projects based on understanding the needs of owners, considering the organizational culture, meeting the requirements, encouraging partnership, representing different viewpoints, and building the project. This research describes the whole processes of digitizing Post-graduate theses and all articles published in 6 Journals at Sultan Qaboos University. AR implemented to respond to the university needs to enhance accessibilities to its information resources and make them available through the national repository. In order to prepare the action plan, the library administration met to discuss several points related to the proposed project, the most important of which are: • Providing digitalization devices. • Locating a specific part of the Library as a Digitization Unit. • Choosing a team. • Defining tasks. • Implementing the proposed project and evaluating the whole processes.

Keywords: action research, digitization, Theses, Journal articles, open access, Oman

Procedia PDF Downloads 179
7315 The Theory behind Logistic Regression

Authors: Jan Henrik Wosnitza

Abstract:

The logistic regression has developed into a standard approach for estimating conditional probabilities in a wide range of applications including credit risk prediction. The article at hand contributes to the current literature on logistic regression fourfold: First, it is demonstrated that the binary logistic regression automatically meets its model assumptions under very general conditions. This result explains, at least in part, the logistic regression's popularity. Second, the requirement of homoscedasticity in the context of binary logistic regression is theoretically substantiated. The variances among the groups of defaulted and non-defaulted obligors have to be the same across the level of the aggregated default indicators in order to achieve linear logits. Third, this article sheds some light on the question why nonlinear logits might be superior to linear logits in case of a small amount of data. Fourth, an innovative methodology for estimating correlations between obligor-specific log-odds is proposed. In order to crystallize the key ideas, this paper focuses on the example of credit risk prediction. However, the results presented in this paper can easily be transferred to any other field of application.

Keywords: correlation, credit risk estimation, default correlation, homoscedasticity, logistic regression, nonlinear logistic regression

Procedia PDF Downloads 426
7314 A Method for Rapid Evaluation of Ore Breakage Parameters from Core Images

Authors: A. Nguyen, K. Nguyen, J. Jackson, E. Manlapig

Abstract:

With the recent advancement in core imaging systems, a large volume of high resolution drill core images can now be collected rapidly. This paper presents a method for rapid prediction of ore-specific breakage parameters from high resolution mineral classified core images. The aim is to allow for a rapid assessment of the variability in ore hardness within a mineral deposit with reduced amount of physical breakage tests. This method sees its application primarily in project evaluation phase, where proper evaluation of the variability in ore hardness of the orebody normally requires prolong and costly metallurgical test work program. Applying this image-based texture analysis method on mineral classified core images, the ores are classified according to their textural characteristics. A small number of physical tests are performed to produce a dataset used for developing the relationship between texture classes and measured ore hardness. The paper also presents a case study in which this method has been applied on core samples from a copper porphyry deposit to predict the ore-specific breakage A*b parameter, obtained from JKRBT tests.

Keywords: geometallurgy, hyperspectral drill core imaging, process simulation, texture analysis

Procedia PDF Downloads 361
7313 Runoff Simulation by Using WetSpa Model in Garmabrood Watershed of Mazandaran Province, Iran

Authors: Mohammad Reza Dahmardeh Ghaleno, Mohammad Nohtani, Saeedeh Khaledi

Abstract:

Hydrological models are applied to simulation and prediction floods in watersheds. WetSpa is a distributed, continuous and physically model with daily or hourly time step that explains of precipitation, runoff and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave Equation which depend on the slope, velocity and flow route characteristics. Garmabrood watershed located in Mazandaran province in Iran and passing over coordinates 53° 10´ 55" to 53° 38´ 20" E and 36° 06´ 45" to 36° 25´ 30"N. The area of the catchment is about 1133 km2 and elevations in the catchment range from 213 to 3136 m at the outlet, with average slope of 25.77 %. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe Model Efficiency Coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 61% and 83.17 % respectively.

Keywords: watershed simulation, WetSpa, runoff, flood prediction

Procedia PDF Downloads 335
7312 Establishment of Standardized Bill of Material for Korean Urban Rail Transit System

Authors: J. E. Jung, J. M. Yang, J. W. Kim

Abstract:

The railway market across the world has been standardized with the globalization strategy of Europe. On the other hand, the Korean urban railway system is operated by 10 operators which have established their standards and independently managed BOMs. When operators manage different BOMs, lack of system compatibility prevents them from sharing information and hinders work linkage and efficiency. Europe launched a large-scale railway project in 1993 when the European Union went into effect. In particular, the recent standardization efforts of the EU-funded MODTRAIN project are similar to the approach of the urban rail system standardization research that is underway in Korea. This paper looks into the BOMs of Koran urban rail transit operators and suggests the standard BOM for the rail transit system in Korea by reviewing rail vehicle technologies and the MODTRAIN project of Europe. The standard BOM is structured up to the key device level or module level, and it allows vehicle manufacturers and component manufacturers to manage their lower-level BOMs and share them with each other and with operators.

Keywords: BOM, Korean rail, urban rail, standardized

Procedia PDF Downloads 313
7311 Recognition of Spelling Problems during the Text in Progress: A Case Study on the Comments Made by Portuguese Students Newly Literate

Authors: E. Calil, L. A. Pereira

Abstract:

The acquisition of orthography is a complex process, involving both lexical and grammatical questions. This learning occurs simultaneously with the domain of multiple textual aspects (e.g.: graphs, punctuation, etc.). However, most of the research on orthographic acquisition focus on this acquisition from an autonomous point of view, separated from the process of textual production. This means that their object of analysis is the production of words selected by the researcher or the requested sentences in an experimental and controlled setting. In addition, the analysis of the Spelling Problems (SP) are identified by the researcher on the sheet of paper. Considering the perspective of Textual Genetics, from an enunciative approach, this study will discuss the SPs recognized by dyads of newly literate students, while they are writing a text collaboratively. Six proposals of textual production were registered, requested by a 2nd year teacher of a Portuguese Primary School between January and March 2015. In our case study we discuss the SPs recognized by the dyad B and L (7 years old). We adopted as a methodological tool the Ramos System audiovisual record. This system allows real-time capture of the text in process and of the face-to-face dialogue between both students and their teacher, and also captures the body movements and facial expressions of the participants during textual production proposals in the classroom. In these ecological conditions of multimodal registration of collaborative writing, we could identify the emergence of SP in two dimensions: i. In the product (finished text): SP identification without recursive graphic marks (without erasures) and the identification of SPs with erasures, indicating the recognition of SP by the student; ii. In the process (text in progress): identification of comments made by students about recognized SPs. Given this, we’ve analyzed the comments on identified SPs during the text in progress. These comments characterize a type of reformulation referred to as Commented Oral Erasure (COE). The COE has two enunciative forms: Simple Comment (SC) such as ' 'X' is written with 'Y' '; or Unfolded Comment (UC), such as ' 'X' is written with 'Y' because...'. The spelling COE may also occur before or during the SP (Early Spelling Recognition - ESR) or after the SP has been entered (Later Spelling Recognition - LSR). There were 631 words entered in the 6 stories written by the B-L dyad, 145 of them containing some type of SP. During the text in progress, the students recognized orally 174 SP, 46 of which were identified in advance (ESRs) and 128 were identified later (LSPs). If we consider that the 88 erasure SPs in the product indicate some form of SP recognition, we can observe that there were twice as many SPs recognized orally. The ESR was characterized by SC when students asked their colleague or teacher how to spell a given word. The LSR presented predominantly UC, verbalizing meta-orthographic arguments, mostly made by L. These results indicate that writing in dyad is an important didactic strategy for the promotion of metalinguistic reflection, favoring the learning of spelling.

Keywords: collaborative writing, erasure, learning, metalinguistic awareness, spelling, text production

Procedia PDF Downloads 163
7310 Project Based Learning in Language Lab: An Analysis in ESP Learning Context

Authors: S. Priya

Abstract:

A project based learning assignment in English for Specific Purposes (ESP) context based on Communicative English as prescribed in the university syllabus for engineering students and its learning outcome from ESP context is the focus of analysis through this paper. The task based on Project Based Learning (PBL) was conducted in the digital language lab which had audio visual aids to support the team presentation. The total strength of 48 students of Mechanical Branch were divided into 6 groups, each consisting of 8 students. The group members were selected on random numbering basis. They were given a group task to represent a power point presentation on a topic related to their core branch. They had to discuss the issue and choose their topic and represent in a given format. It provided the individual role of each member in the presentation. A brief overview of the project and the outcome of its technical aspects were also had to be included. Each group had to highlight the contributions of that innovative technology through their presentation. The power point should be provided in a CD format. The variations in the choice of subjects, their usage of digital technologies, co-ordination for competition, learning experience of first time stage presentation, challenges of team cohesiveness were some criteria observed as their learning experience. For many other students undergoing the stages of planning, preparation and practice as steps for presentation had been the learning outcomes as given through their feedback form. The evaluation pattern is distributed for individual contribution and group effectiveness which promotes quality of presentation. The evaluated skills are communication skills, group cohesiveness, and audience response, quality of technicality and usage of technical terms. This paper thus analyses how project based learning improves the communication, life skills and technical skills in English for Specific learning context through PBL.

Keywords: language lab, ESP context, communicative skills, life skills

Procedia PDF Downloads 239
7309 Virtual Metrology for Copper Clad Laminate Manufacturing

Authors: Misuk Kim, Seokho Kang, Jehyuk Lee, Hyunchang Cho, Sungzoon Cho

Abstract:

In semiconductor manufacturing, virtual metrology (VM) refers to methods to predict properties of a wafer based on machine parameters and sensor data of the production equipment, without performing the (costly) physical measurement of the wafer properties (Wikipedia). Additional benefits include avoidance of human bias and identification of important factors affecting the quality of the process which allow improving the process quality in the future. It is however rare to find VM applied to other areas of manufacturing. In this work, we propose to use VM to copper clad laminate (CCL) manufacturing. CCL is a core element of a printed circuit board (PCB) which is used in smartphones, tablets, digital cameras, and laptop computers. The manufacturing of CCL consists of three processes: Treating, lay-up, and pressing. Treating, the most important process among the three, puts resin on glass cloth, heat up in a drying oven, then produces prepreg for lay-up process. In this process, three important quality factors are inspected: Treated weight (T/W), Minimum Viscosity (M/V), and Gel Time (G/T). They are manually inspected, incurring heavy cost in terms of time and money, which makes it a good candidate for VM application. We developed prediction models of the three quality factors T/W, M/V, and G/T, respectively, with process variables, raw material, and environment variables. The actual process data was obtained from a CCL manufacturer. A variety of variable selection methods and learning algorithms were employed to find the best prediction model. We obtained prediction models of M/V and G/T with a high enough accuracy. They also provided us with information on “important” predictor variables, some of which the process engineers had been already aware and the rest of which they had not. They were quite excited to find new insights that the model revealed and set out to do further analysis on them to gain process control implications. T/W did not turn out to be possible to predict with a reasonable accuracy with given factors. The very fact indicates that the factors currently monitored may not affect T/W, thus an effort has to be made to find other factors which are not currently monitored in order to understand the process better and improve the quality of it. In conclusion, VM application to CCL’s treating process was quite successful. The newly built quality prediction model allowed one to reduce the cost associated with actual metrology as well as reveal some insights on the factors affecting the important quality factors and on the level of our less than perfect understanding of the treating process.

Keywords: copper clad laminate, predictive modeling, quality control, virtual metrology

Procedia PDF Downloads 350
7308 On the Bias and Predictability of Asylum Cases

Authors: Panagiota Katsikouli, William Hamilton Byrne, Thomas Gammeltoft-Hansen, Tijs Slaats

Abstract:

An individual who demonstrates a well-founded fear of persecution or faces real risk of being subjected to torture is eligible for asylum. In Danish law, the exact legal thresholds reflect those established by international conventions, notably the 1951 Refugee Convention and the 1950 European Convention for Human Rights. These international treaties, however, remain largely silent when it comes to how states should assess asylum claims. As a result, national authorities are typically left to determine an individual’s legal eligibility on a narrow basis consisting of an oral testimony, which may itself be hampered by several factors, including imprecise language interpretation, insecurity or lacking trust towards the authorities among applicants. The leaky ground, on which authorities must assess their subjective perceptions of asylum applicants' credibility, questions whether, in all cases, adjudicators make the correct decision. Moreover, the subjective element in these assessments raises questions on whether individual asylum cases could be afflicted by implicit biases or stereotyping amongst adjudicators. In fact, recent studies have uncovered significant correlations between decision outcomes and the experience and gender of the assigned judge, as well as correlations between asylum outcomes and entirely external events such as weather and political elections. In this study, we analyze a publicly available dataset containing approximately 8,000 summaries of asylum cases, initially rejected, and re-tried by the Refugee Appeals Board (RAB) in Denmark. First, we look for variations in the recognition rates, with regards to a number of applicants’ features: their country of origin/nationality, their identified gender, their identified religion, their ethnicity, whether torture was mentioned in their case and if so, whether it was supported or not, and the year the applicant entered Denmark. In order to extract those features from the text summaries, as well as the final decision of the RAB, we applied natural language processing and regular expressions, adjusting for the Danish language. We observed interesting variations in recognition rates related to the applicants’ country of origin, ethnicity, year of entry and the support or not of torture claims, whenever those were made in the case. The appearance (or not) of significant variations in the recognition rates, does not necessarily imply (or not) bias in the decision-making progress. None of the considered features, with the exception maybe of the torture claims, should be decisive factors for an asylum seeker’s fate. We therefore investigate whether the decision can be predicted on the basis of these features, and consequently, whether biases are likely to exist in the decisionmaking progress. We employed a number of machine learning classifiers, and found that when using the applicant’s country of origin, religion, ethnicity and year of entry with a random forest classifier, or a decision tree, the prediction accuracy is as high as 82% and 85% respectively. tentially predictive properties with regards to the outcome of an asylum case. Our analysis and findings call for further investigation on the predictability of the outcome, on a larger dataset of 17,000 cases, which is undergoing.

Keywords: asylum adjudications, automated decision-making, machine learning, text mining

Procedia PDF Downloads 95
7307 Multiple-Material Flow Control in Construction Supply Chain with External Storage Site

Authors: Fatmah Almathkour

Abstract:

Managing and controlling the construction supply chain (CSC) are very important components of effective construction project execution. The goals of managing the CSC are to reduce uncertainty and optimize the performance of a construction project by improving efficiency and reducing project costs. The heart of much SC activity is addressing risk, and the CSC is no different. The delivery and consumption of construction materials is highly variable due to the complexity of construction operations, rapidly changing demand for certain components, lead time variability from suppliers, transportation time variability, and disruptions at the job site. Current notions of managing and controlling CSC, involve focusing on one project at a time with a push-based material ordering system based on the initial construction schedule and, then, holding a tremendous amount of inventory. A two-stage methodology was proposed to coordinate the feed-forward control of advanced order placement with a supplier to a feedback local control in the form of adding the ability to transship materials between projects to improve efficiency and reduce costs. It focused on the single supplier integrated production and transshipment problem with multiple products. The methodology is used as a design tool for the CSC because it includes an external storage site not associated with one of the projects. The idea is to add this feature to a highly constrained environment to explore its effectiveness in buffering the impact of variability and maintaining project schedule at low cost. The methodology uses deterministic optimization models with objectives that minimizing the total cost of the CSC. To illustrate how this methodology can be used in practice and the types of information that can be gleaned, it is tested on a number of cases based on the real example of multiple construction projects in Kuwait.

Keywords: construction supply chain, inventory control supply chain, transshipment

Procedia PDF Downloads 122
7306 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance

Authors: Ammar Alali, Mahmoud Abughaban

Abstract:

Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.

Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe

Procedia PDF Downloads 226
7305 Cooling Profile Analysis of Hot Strip Coil Using Finite Volume Method

Authors: Subhamita Chakraborty, Shubhabrata Datta, Sujay Kumar Mukherjea, Partha Protim Chattopadhyay

Abstract:

Manufacturing of multiphase high strength steel in hot strip mill have drawn significant attention due to the possibility of forming low temperature transformation product of austenite under continuous cooling condition. In such endeavor, reliable prediction of temperature profile of hot strip coil is essential in order to accesses the evolution of microstructure at different location of hot strip coil, on the basis of corresponding Continuous Cooling Transformation (CCT) diagram. Temperature distribution profile of the hot strip coil has been determined by using finite volume method (FVM) vis-à-vis finite difference method (FDM). It has been demonstrated that FVM offer greater computational reliability in estimation of contact pressure distribution and hence the temperature distribution for curved and irregular profiles, owing to the flexibility in selection of grid geometry and discrete point position, Moreover, use of finite volume concept allows enforcing the conservation of mass, momentum and energy, leading to enhanced accuracy of prediction.

Keywords: simulation, modeling, thermal analysis, coil cooling, contact pressure, finite volume method

Procedia PDF Downloads 472
7304 Incentivize Contracting Partners of Public Projects

Authors: Sai On Cheung, Qiuwen Ma, Fong Chung Lee

Abstract:

Due to increased project complexity and technological advancement in the last decade, the designers and contractors are expected to put more efforts to achieve project goals. To render extra efforts from the agents, incentivization has become one of the primary strategies for the client. Despite increased academia interest in the design of incentive strategies, there is still a need for discussion about the underlying motivations and favourable conditions to make incentives effective. Therefore, this study focuses on the effects of motivations and favourable conditions for the use of incentives in public projects. Questionnaire survey is used as the data collection tool. The questionnaire survey was piloted through interviews with professionals from Hong Kong public sector. A total of 100 responses were collected for this survey. Accountability and organizational effectiveness were found to be the prime objectives of incentives installed by public clients. Furthermore, a list of favourable conditions for incentivization and its consequent effects on cost, schedule, risk and public opinions were identified. To conclude, this study analyses the means and ends of the use of incentives in public projects in Hong Kong.

Keywords: incentives, public accountability, project effectiveness, public opinions

Procedia PDF Downloads 67
7303 An Active Solar Energy System to Supply Heating Demands of the Teaching Staff Dormitory of Islamic Azad University Ramhormoz Branch

Authors: M. Talebzadegan, S. Bina, I. Riazi

Abstract:

The purpose of this paper is to present an active solar energy system to supply heating demands of the teaching staff dormitory of the Islamic Azad University of Ramhormoz. The design takes into account the solar radiations and climate data of Ramhormoz town and is based on the daily warm water consumption for health demands of 450 residents of the dormitory, which is equal to 27000 lit of 50-C° water, and building heating requirements with an area of 3500 m² well-protected by heatproof materials. First, heating demands of the building were calculated, then a hybrid system made up of solar and fossil energies was developed and finally, the design was economically evaluated. Since there is only roof space for using 110 flat solar water heaters, the calculations were made to hybridize solar water heating system with heat pumping system in which solar energy contributes 67% of the heat generated. According to calculations, the net present value “N.P.V.” of revenue stream exceeds “N.P.V.” of cash paid off in this project over three years, which makes economically quite promising. The return of investment and payback period of the project is 4 years. Also, the internal rate of return (IRR) of the project was 25%, which exceeds bank rate of interest in Iran and emphasizes the desirability of the project.

Keywords: Solar energy, Heat Demand, Renewable , Pollution

Procedia PDF Downloads 252
7302 Artificial Neural Network Based Approach in Prediction of Potential Water Pollution Across Different Land-Use Patterns

Authors: M.Rüştü Karaman, İsmail İşeri, Kadir Saltalı, A.Reşit Brohi, Ayhan Horuz, Mümin Dizman

Abstract:

Considerable relations has recently been given to the environmental hazardous caused by agricultural chemicals such as excess fertilizers. In this study, a neural network approach was investigated in the prediction of potential nitrate pollution across different land-use patterns by using a feedforward multilayered computer model of artificial neural network (ANN) with proper training. Periodical concentrations of some anions, especially nitrate (NO3-), and cations were also detected in drainage waters collected from the drain pipes placed in irrigated tomato field, unirrigated wheat field, fallow and pasture lands. The soil samples were collected from the irrigated tomato field and unirrigated wheat field on a grid system with 20 m x 20 m intervals. Site specific nitrate concentrations in the soil samples were measured for ANN based simulation of nitrate leaching potential from the land profiles. In the application of ANN model, a multi layered feedforward was evaluated, and data sets regarding with training, validation and testing containing the measured soil nitrate values were estimated based on spatial variability. As a result of the testing values, while the optimal structures of 2-15-1 was obtained (R2= 0.96, P < 0.01) for unirrigated field, the optimal structures of 2-10-1 was obtained (R2= 0.96, P < 0.01) for irrigated field. The results showed that the ANN model could be successfully used in prediction of the potential leaching levels of nitrate, based on different land use patterns. However, for the most suitable results, the model should be calibrated by training according to different NN structures depending on site specific soil parameters and varied agricultural managements.

Keywords: artificial intelligence, ANN, drainage water, nitrate pollution

Procedia PDF Downloads 310