Search results for: multi and inter-disciplinary
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4525

Search results for: multi and inter-disciplinary

3445 Convergence and Stability in Federated Learning with Adaptive Differential Privacy Preservation

Authors: Rizwan Rizwan

Abstract:

This paper provides an overview of Federated Learning (FL) and its application in enhancing data security, privacy, and efficiency. FL utilizes three distinct architectures to ensure privacy is never compromised. It involves training individual edge devices and aggregating their models on a server without sharing raw data. This approach not only provides secure models without data sharing but also offers a highly efficient privacy--preserving solution with improved security and data access. Also we discusses various frameworks used in FL and its integration with machine learning, deep learning, and data mining. In order to address the challenges of multi--party collaborative modeling scenarios, a brief review FL scheme combined with an adaptive gradient descent strategy and differential privacy mechanism. The adaptive learning rate algorithm adjusts the gradient descent process to avoid issues such as model overfitting and fluctuations, thereby enhancing modeling efficiency and performance in multi-party computation scenarios. Additionally, to cater to ultra-large-scale distributed secure computing, the research introduces a differential privacy mechanism that defends against various background knowledge attacks.

Keywords: federated learning, differential privacy, gradient descent strategy, convergence, stability, threats

Procedia PDF Downloads 30
3444 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions

Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins

Abstract:

The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.

Keywords: dimensional affect prediction, output-associative RVM, multivariate regression, fast testing

Procedia PDF Downloads 286
3443 Social Network Analysis as a Research and Pedagogy Tool in Problem-Focused Undergraduate Social Innovation Courses

Authors: Sean McCarthy, Patrice M. Ludwig, Will Watson

Abstract:

This exploratory case study explores the deployment of Social Network Analysis (SNA) in mapping community assets in an interdisciplinary, undergraduate, team-taught course focused on income insecure populations in a rural area in the US. Specifically, it analyzes how students were taught to collect data on community assets and to visualize the connections between those assets using Kumu, an SNA data visualization tool. Further, the case study shows how social network data was also collected about student teams via their written communications in Slack, an enterprise messaging tool, which enabled instructors to manage and guide student research activity throughout the semester. The discussion presents how SNA methods can simultaneously inform both community-based research and social innovation pedagogy through the use of data visualization and collaboration-focused communication technologies.

Keywords: social innovation, social network analysis, pedagogy, problem-based learning, data visualization, information communication technologies

Procedia PDF Downloads 147
3442 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.

Keywords: computer vision, human motion analysis, random forest, machine learning

Procedia PDF Downloads 36
3441 Smart Demand Response: A South African Pragmatic, Non-Destructive and Alternative Advanced Metering Infrastructure-Based Maximum Demand Reduction Methodology

Authors: Christo Nicholls

Abstract:

The National Electricity Grid (NEG) in South Africa has been under strain for the last five years. This overburden of the NEG led Eskom (the State-Owned Entity responsible for the NEG) to implement a blunt methodology to assist them in reducing the maximum demand (MD) on the NEG, when required, called Loadshedding. The challenge of this methodology is that not only does it lead to immense technical issues with the distribution network equipment, e.g., transformers, due to the frequent abrupt off and on switching, it also has a broader negative fiscal impact on the distributors, as their key consumers (commercial & industrial) are now grid defecting due to the lack of Electricity Security Provision (ESP). This paper provides a pragmatic alternative methodology utilizing specific functionalities embedded within direct-connect single and three-phase Advanced Meter Infrastructure (AMI) Solutions deployed within the distribution network, in conjunction with a Multi-Agent Systems Based AI implementation focused on Automated Negotiation Peer-2-Peer trading. The results of this research clearly illustrate, not only does methodology provide a factual percentage contribution towards the NEG MD at the point of consideration, it also allows the distributor to leverage the real-time MD data from key consumers to activate complex, yet impact-measurable Demand Response (DR) programs.

Keywords: AI, AMI, demand response, multi-agent

Procedia PDF Downloads 112
3440 Advances in Fiber Optic Technology for High-Speed Data Transmission

Authors: Salim Yusif

Abstract:

Fiber optic technology has revolutionized telecommunications and data transmission, providing unmatched speed, bandwidth, and reliability. This paper presents the latest advancements in fiber optic technology, focusing on innovations in fiber materials, transmission techniques, and network architectures that enhance the performance of high-speed data transmission systems. Key advancements include the development of ultra-low-loss optical fibers, multi-core fibers, advanced modulation formats, and the integration of fiber optics into next-generation network architectures such as Software-Defined Networking (SDN) and Network Function Virtualization (NFV). Additionally, recent developments in fiber optic sensors are discussed, extending the utility of optical fibers beyond data transmission. Through comprehensive analysis and experimental validation, this research offers valuable insights into the future directions of fiber optic technology, highlighting its potential to drive innovation across various industries.

Keywords: fiber optics, high-speed data transmission, ultra-low-loss optical fibers, multi-core fibers, modulation formats, coherent detection, software-defined networking, network function virtualization, fiber optic sensors

Procedia PDF Downloads 61
3439 A Statistical Model for the Geotechnical Parameters of Cement-Stabilised Hightown’s Soft Soil: A Case Stufy of Liverpool, UK

Authors: Hassnen M. Jafer, Khalid S. Hashim, W. Atherton, Ali W. Alattabi

Abstract:

This study investigates the effect of two important parameters (length of curing period and percentage of the added binder) on the strength of soil treated with OPC. An intermediate plasticity silty clayey soil with medium organic content was used in this study. This soft soil was treated with different percentages of a commercially available cement type 32.5-N. laboratory experiments were carried out on the soil treated with 0, 1.5, 3, 6, 9, and 12% OPC by the dry weight to determine the effect of OPC on the compaction parameters, consistency limits, and the compressive strength. Unconfined compressive strength (UCS) test was carried out on cement-treated specimens after exposing them to different curing periods (1, 3, 7, 14, 28, and 90 days). The results of UCS test were used to develop a non-linear multi-regression model to find the relationship between the predicted and the measured maximum compressive strength of the treated soil (qu). The results indicated that there was a significant improvement in the index of plasticity (IP) by treating with OPC; IP was decreased from 20.2 to 14.1 by using 12% of OPC; this percentage was enough to increase the UCS of the treated soil up to 1362 kPa after 90 days of curing. With respect to the statistical model of the predicted qu, the results showed that the regression coefficients (R2) was equal to 0.8534 which indicates a good reproducibility for the constructed model.

Keywords: cement admixtures, soft soil stabilisation, geotechnical parameters, multi-regression model

Procedia PDF Downloads 366
3438 Verifying Environmental Performance through Inventory and Assessment: Case Study of the Los Alamos National Laboratory Waste Compliance and Tracking System

Authors: Oral S. Saulters, Shanon D. Goldberg, Wendy A. Staples, Ellena I. Martinez, Lorie M. Sanchez, Diego E. Archuleta, Deborah L. Williams, Scot D. Johnson

Abstract:

To address an important set of unverified field conditions, the Los Alamos National Laboratory Waste Compliance and Tracking System (WCATS) Wall-to-Wall Team performed an unprecedented and advanced inventory. This reconciliation involved confirmation analysis for approximately 5850 hazardous, low-level, mixed low-level, and transuranic waste containers located in more than 200 staging and storage areas across 33 technical areas. The interdisciplinary team scoped, planned, and developed the multidimensional assessments. Through coordination with cross-functional site hosts, they were able to verify and validate data while resolving discrepancies identified in WCATS. The results were extraordinary with an updated inventory, tailored outreach, more cohesive communications, and timely closed-loop feedback.

Keywords: circular economy, environmental performance data, social-ecological-technological systems, waste management

Procedia PDF Downloads 128
3437 Multi-Tooled Robotic Hand for Tele-Operation of Explosive Devices

Authors: Faik Derya Ince, Ugur Topgul, Alp Gunay, Can Bayoglu, Dante J. Dorantes-Gonzalez

Abstract:

Explosive attacks are arguably the most lethal threat that may occur in terrorist attacks. In order to counteract this issue, explosive ordnance disposal operators put their lives on the line to dispose of a possible improvised explosive device. Robots can make the disposal process more accurately and saving human lives. For this purpose, there is a demand for more accurate and dexterous manipulating robotic hands that can be teleoperated from a distance. The aim of this project is to design a robotic hand that contains two active and two passive DOF for each finger, as well as a minimum set of tools for mechanical cutting and screw driving within the same robotic hand. Both hand and toolset, are teleoperated from a distance from a haptic robotic glove in order to manipulate dangerous objects such as improvised explosive devices. SolidWorks® Computer-Aided Design, computerized dynamic simulation, and MATLAB® kinematic and static analysis were used for the robotic hand and toolset design. Novel, dexterous and robust solutions for the fingers were obtained, and six servo motors are used in total to remotely control the multi-tooled robotic hand. This project is still undergoing and presents currents results. Future research steps are also presented.

Keywords: Explosive Manipulation, Robotic Hand, Tele-Operation, Tool Integration

Procedia PDF Downloads 140
3436 Artificial Neural Network for Forecasting of Daily Reservoir Inflow: Case Study of the Kotmale Reservoir in Sri Lanka

Authors: E. U. Dampage, Ovindi D. Bandara, Vinushi S. Waraketiya, Samitha S. R. De Silva, Yasiru S. Gunarathne

Abstract:

The knowledge of water inflow figures is paramount in decision making on the allocation for consumption for numerous purposes; irrigation, hydropower, domestic and industrial usage, and flood control. The understanding of how reservoir inflows are affected by different climatic and hydrological conditions is crucial to enable effective water management and downstream flood control. In this research, we propose a method using a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) to assist the aforesaid decision-making process. The Kotmale reservoir, which is the uppermost reservoir in the Mahaweli reservoir complex in Sri Lanka, was used as the test bed for this research. The ANN uses the runoff in the Kotmale reservoir catchment area and the effect of Sea Surface Temperatures (SST) to make a forecast for seven days ahead. Three types of ANN are tested; Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and LSTM. The extensive field trials and validation endeavors found that the LSTM ANN provides superior performance in the aspects of accuracy and latency.

Keywords: convolutional neural network, CNN, inflow, long short-term memory, LSTM, multi-layer perceptron, MLP, neural network

Procedia PDF Downloads 151
3435 Spatial Analysis of Survival Pattern and Treatment Outcomes of Multi-Drug Resistant Tuberculosis (MDR-TB) Patients in Lagos, Nigeria

Authors: Akinsola Oluwatosin, Udofia Samuel, Odofin Mayowa

Abstract:

The study is aimed at assessing the Geographic Information System (GIS)-based spatial analysis of Survival Pattern and Treatment Outcomes of Multi-Drug Resistant Tuberculosis (MDR-TB) cases for Lagos, Nigeria, with an objective to inform priority areas for public health planning and resource allocation. Multi-drug resistant tuberculosis (MDR-TB) develops due to problems such as irregular drug supply, poor drug quality, inappropriate prescription, and poor adherence to treatment. The shapefile(s) for this study were already georeferenced to Minna datum. The patient’s information was acquired on MS Excel and later converted to . CSV file for easy processing to ArcMap from various hospitals. To superimpose the patient’s information the spatial data, the addresses was geocoded to generate the longitude and latitude of the patients. The database was used for the SQL query to the various pattern of the treatment. To show the pattern of disease spread, spatial autocorrelation analysis was used. The result was displayed in a graphical format showing the areas of dispersing, random and clustered of patients in the study area. Hot and cold spot analysis was analyzed to show high-density areas. The distance between these patients and the closest health facility was examined using the buffer analysis. The result shows that 22% of the points were successfully matched, while 15% were tied. However, the result table shows that a greater percentage of it was unmatched; this is evident in the fact that most of the streets within the State are unnamed, and then again, most of the patients are likely to supply the wrong addresses. MDR-TB patients of all age groups are concentrated within Lagos-Mainland, Shomolu, Mushin, Surulere, Oshodi-Isolo, and Ifelodun LGAs. MDR-TB patients between the age group of 30-47 years had the highest number and were identified to be about 184 in number. The outcome of patients on ART treatment revealed that a high number of patients (300) were not ART treatment while a paltry 45 patients were on ART treatment. The result shows the Z-score of the distribution is greater than 1 (>2.58), which means that the distribution is highly clustered at a significance level of 0.01.

Keywords: tuberculosis, patients, treatment, GIS, MDR-TB

Procedia PDF Downloads 152
3434 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network

Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin

Abstract:

In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network. The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters. Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output. This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc. From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.

Keywords: project profitability, multi-objective optimization, genetic algorithm, Pareto set, neural networks

Procedia PDF Downloads 445
3433 Frequency Analysis Using Multiple Parameter Probability Distributions for Rainfall to Determine Suitable Probability Distribution in Pakistan

Authors: Tasir Khan, Yejuan Wang

Abstract:

The study of extreme rainfall events is very important for flood management in river basins and the design of water conservancy infrastructure. Evaluation of quantiles of annual maximum rainfall (AMRF) is required in different environmental fields, agriculture operations, renewable energy sources, climatology, and the design of different structures. Therefore, the annual maximum rainfall (AMRF) was performed at different stations in Pakistan. Multiple probability distributions, log normal (LN), generalized extreme value (GEV), Gumbel (max), and Pearson type3 (P3) were used to find out the most appropriate distributions in different stations. The L moments method was used to evaluate the distribution parameters. Anderson darling test, Kolmogorov- Smirnov test, and chi-square test showed that two distributions, namely GUM (max) and LN, were the best appropriate distributions. The quantile estimate of a multi-parameter PD offers extreme rainfall through a specific location and is therefore important for decision-makers and planners who design and construct different structures. This result provides an indication of these multi-parameter distribution consequences for the study of sites and peak flow prediction and the design of hydrological maps. Therefore, this discovery can support hydraulic structure and flood management.

Keywords: RAMSE, multiple frequency analysis, annual maximum rainfall, L-moments

Procedia PDF Downloads 81
3432 Love and Loss: The Emergence of Shame in Romantic Information Communication Technology

Authors: C. Caudwell, R. Syed, C. Lacey

Abstract:

While the development and advancement of information communication technologies (ICTs) offers powerful opportunities for meaningful connections and relationships, shame is a significant barrier to social and cultural acceptance. In particular, artificial intelligence and socially oriented robots are increasingly becoming partners in romantic relationships with people, offering bonding, support, comfort, growth, and reciprocity. However, these relationships suffer hierarchical, anthropocentric shame that is a significant barrier to their success and longevity. This paper will present case studies of human and artificially intelligent agent relationships, in the context of internal and external shame, as cultivated, propagated, and communicated through ICT. Using an interdisciplinary methodology we aim to present a framework for technological shame, building on the experimental and emergent psychoanalytical theories of emotions. Our study finds principally that socialization is a powerful factor in the vectors of shame as experienced by humans. On a wider scale, we contribute understanding of social emotion and the phenomenon of shame proliferated through ICTs, which is at present under-explored, but vital, as society and culture is increasingly mediated through this medium.

Keywords: shame, artificial intelligence, romance, society

Procedia PDF Downloads 133
3431 Risk Assessment and Management Using Machine Learning Models

Authors: Lagnajeet Mohanty, Mohnish Mishra, Pratham Tapdiya, Himanshu Sekhar Nayak, Swetapadma Singh

Abstract:

In the era of global interconnectedness, effective risk assessment and management are critical for organizational resilience. This review explores the integration of machine learning (ML) into risk processes, examining its transformative potential and the challenges it presents. The literature reveals ML's success in sectors like consumer credit, demonstrating enhanced predictive accuracy, adaptability, and potential cost savings. However, ethical considerations, interpretability issues, and the demand for skilled practitioners pose limitations. Looking forward, the study identifies future research scopes, including refining ethical frameworks, advancing interpretability techniques, and fostering interdisciplinary collaborations. The synthesis of limitations and future directions highlights the dynamic landscape of ML in risk management, urging stakeholders to navigate challenges innovatively. This abstract encapsulates the evolving discourse on ML's role in shaping proactive and effective risk management strategies in our interconnected and unpredictable global landscape.

Keywords: machine learning, risk assessment, ethical considerations, financial inclusion

Procedia PDF Downloads 72
3430 Hemocompatible Thin-Film Materials Recreating the Structure of the Cell Niches with High Potential for Endothelialization

Authors: Roman Major, Klaudia Trembecka- Wojciga, Juergen Markus Lackner, Boguslaw Major

Abstract:

The future and the development of science is therefore seen in interdisciplinary areas such as bio medical engineering. Self-assembled structures, similar to stem cell niches would inhibit fast division process and subsequently capture the stem cells from the blood flow. By means of surface topography and the stiffness as well as micro structure progenitor cells should be differentiated towards the formation of endothelial cells monolayer which effectively will inhibit activation of the coagulation cascade. The idea of the material surface development met the interest of the clinical institutions, which support the development of science in this area and are waiting for scientific solutions that could contribute to the development of heart assist systems. This would improve the efficiency of the treatment of patients with myocardial failure, supported with artificial heart assist systems. Innovative materials would enable the redesign, in the post project activity, construction of ventricular heart assist.

Keywords: bio-inspired materials, electron microscopy, haemocompatibility, niche-like structures, thin coatings

Procedia PDF Downloads 478
3429 Coefficient of Performance (COP) Optimization of an R134a Cross Vane Expander Compressor Refrigeration System

Authors: Y. D. Lim, K. S. Yap, K. T. Ooi

Abstract:

Cross Vane Expander Compressor (CVEC) is a newly invented expander-compressor combined unit, where it is introduced to replace the compressor and the expansion valve in traditional refrigeration system. The mathematical model of CVEC has been developed to examine its performance, and it was found that the energy consumption of a conventional refrigeration system was reduced by as much as 18%. It is believed that energy consumption can be further reduced by optimizing the device. In this study, the coefficient of performance (COP) of CVEC has been optimized under predetermined operational parameters and constrained main design parameters. Several main design parameters of CVEC were selected to be the variables, and the optimization was done with theoretical model in a simulation program. The theoretical model consists of geometrical model, dynamic model, heat transfer model and valve dynamics model. Complex optimization method, which is a constrained, direct search and multi-variables method was used in the study. As a result, the optimization study suggested that with an appropriate combination of design parameters, a 58% COP improvement in CVEC R134a refrigeration system is possible.

Keywords: COP, cross vane expander-compressor, CVEC, design, simulation, refrigeration system, air-conditioning, R134a, multi variables

Procedia PDF Downloads 333
3428 Mapping Identity: Algerian Diasporic Voices in Literature

Authors: Salma Kaouthar Letaief

Abstract:

This article investigates the experience of diaspora in the writings of Algerian diasporic writers, namely: Leila Sebbar’s Silence on the Shores (2000), Keltoum Staali’ December’s Mimosa (2012). The study discusses the collective trauma of violence in Algeria and overseas. The experience of displacement of the characters to an alien territory compel their journey with issues related to nostalgia, identity crisis, alienation, racism, and in-betweeness. The focus in this research is, thus, on Algerian immigrants’ experience in the host country and their psychological conflicts. The theories Multiculturalism and Psychoanalysis are used to analyse the novels in this paper. While Multiculturalism examines how characters negotiate and navigate their identities in multicultural settings, Psychoanalysis enables the analysis of how characters in diasporic novels grapple with issues of identity, belonging, and self-discovery. Hence, interweaving multiculturalism and psychoanalysis provides an interdisciplinary framework that addresses both the socio-cultural and psychological aspects of the diasporic experience. Accordingly, this paper is an attempt to examine the diasporic experience and cultural dialectics.

Keywords: diaspora, algerian diasporic writers, trauma, algeria, displacement, identity crisis, cultural dialects

Procedia PDF Downloads 307
3427 Translation, War and Humanitarian Action: A Case Study of the Kindertransporte to Switzerland

Authors: Lisa Mockli, Chelsea Sambells

Abstract:

By combining the methodologies of history and translation studies, this study will explore the interplay between humanitarian action, politics, and translation within the advertising for a lesser-known Swiss child evacuation project of some 60.000 Belgium and French children to Switzerland for three month periods from 1940 to 1945. Inspired by Descriptive-Explanatory Translation Studies, this project compares Swiss speeches published between May and September 1942 (the termination of the evacuations). Radio broadcasts, leaflets and newspapers will triangulate the data. First, linguistic and content-related differences will be identified and described. Second, based on findings from the Swiss Federal Archives, the evidence from the comparative textual analysis will then be evaluated in order to explore how the speeches were modified, for what purpose, and which key issues were raised during their modification. By exploring these questions, this paper provides new insights into (I) Switzerland’s understanding of Swiss neutrality and humanitarianism during the Second World War, (II) the role of children in war and (III) the role of translation in shaping political discourse and humanitarian action. Moreover, this interdisciplinary approach also demonstrates how scholarly collaboration may help to make some elements of humanitarian action more self-reflexive and effective.

Keywords: children, history, humanitarianism, politics, translation

Procedia PDF Downloads 295
3426 MhAGCN: Multi-Head Attention Graph Convolutional Network for Web Services Classification

Authors: Bing Li, Zhi Li, Yilong Yang

Abstract:

Web classification can promote the quality of service discovery and management in the service repository. It is widely used to locate developers desired services. Although traditional classification methods based on supervised learning models can achieve classification tasks, developers need to manually mark web services, and the quality of these tags may not be enough to establish an accurate classifier for service classification. With the doubling of the number of web services, the manual tagging method has become unrealistic. In recent years, the attention mechanism has made remarkable progress in the field of deep learning, and its huge potential has been fully demonstrated in various fields. This paper designs a multi-head attention graph convolutional network (MHAGCN) service classification method, which can assign different weights to the neighborhood nodes without complicated matrix operations or relying on understanding the entire graph structure. The framework combines the advantages of the attention mechanism and graph convolutional neural network. It can classify web services through automatic feature extraction. The comprehensive experimental results on a real dataset not only show the superior performance of the proposed model over the existing models but also demonstrate its potentially good interpretability for graph analysis.

Keywords: attention mechanism, graph convolutional network, interpretability, service classification, service discovery

Procedia PDF Downloads 135
3425 A Multimodal Dialogue Management System for Achieving Natural Interaction with Embodied Conversational Agents

Authors: Ozge Nilay Yalcin

Abstract:

Dialogue has been proposed to be the natural basis for the human-computer interaction, which is behaviorally rich and includes different modalities such as gestures, posture changes, gaze, para-linguistic parameters and linguistic context. However, equipping the system with these capabilities might have consequences on the usability of the system. One issue is to be able to find a good balance between rich behavior and fluent behavior, as planning and generating these behaviors is computationally expensive. In this work, we propose a multi-modal dialogue management system that automates the conversational flow from text-based dialogue examples and uses synchronized verbal and non-verbal conversational cues to achieve a fluent interaction. Our system is integrated with Smartbody behavior realizer to provide real-time interaction with embodied agent. The nonverbal behaviors are used according to turn-taking behavior, emotions, and personality of the user and linguistic analysis of the dialogue. The verbal behaviors are responsive to the emotional value of the utterance and the feedback from the user. Our system is aimed for online planning of these affective multi-modal components, in order to achieve enhanced user experience with richer and more natural interaction.

Keywords: affect, embodied conversational agents, human-agent interaction, multimodal interaction, natural interfaces

Procedia PDF Downloads 175
3424 Multi-Criteria Selection and Improvement of Effective Design for Generating Power from Sea Waves

Authors: Khaled M. Khader, Mamdouh I. Elimy, Omayma A. Nada

Abstract:

Sustainable development is the nominal goal of most countries at present. In general, fossil fuels are the development mainstay of most world countries. Regrettably, the fossil fuel consumption rate is very high, and the world is facing the problem of conventional fuels depletion soon. In addition, there are many problems of environmental pollution resulting from the emission of harmful gases and vapors during fuel burning. Thus, clean, renewable energy became the main concern of most countries for filling the gap between available energy resources and their growing needs. There are many renewable energy sources such as wind, solar and wave energy. Energy can be obtained from the motion of sea waves almost all the time. However, power generation from solar or wind energy is highly restricted to sunny periods or the availability of suitable wind speeds. Moreover, energy produced from sea wave motion is one of the cheapest types of clean energy. In addition, renewable energy usage of sea waves guarantees safe environmental conditions. Cheap electricity can be generated from wave energy using different systems such as oscillating bodies' system, pendulum gate system, ocean wave dragon system and oscillating water column device. In this paper, a multi-criteria model has been developed using Analytic Hierarchy Process (AHP) to support the decision of selecting the most effective system for generating power from sea waves. This paper provides a widespread overview of the different design alternatives for sea wave energy converter systems. The considered design alternatives have been evaluated using the developed AHP model. The multi-criteria assessment reveals that the off-shore Oscillating Water Column (OWC) system is the most appropriate system for generating power from sea waves. The OWC system consists of a suitable hollow chamber at the shore which is completely closed except at its base which has an open area for gathering moving sea waves. Sea wave's motion pushes the air up and down passing through a suitable well turbine for generating power. Improving the power generation capability of the OWC system is one of the main objectives of this research. After investigating the effect of some design modifications, it has been concluded that selecting the appropriate settings of some effective design parameters such as the number of layers of Wells turbine fans and the intermediate distance between the fans can result in significant improvements. Moreover, simple dynamic analysis of the Wells turbine is introduced. Furthermore, this paper strives for comparing the theoretical and experimental results of the built experimental prototype.

Keywords: renewable energy, oscillating water column, multi-criteria selection, Wells turbine

Procedia PDF Downloads 162
3423 Towards Computational Fluid Dynamics Based Methodology to Accelerate Bioprocess Scale Up and Scale Down

Authors: Vishal Kumar Singh

Abstract:

Bioprocess development is a time-constrained activity aimed at harnessing the full potential of culture performance in an ambience that is not natural to cells. Even with the use of chemically defined media and feeds, a significant amount of time is devoted in identifying the apt operating parameters. In addition, the scale-up of these processes is often accompanied by loss of antibody titer and product quality, which further delays the commercialization of the drug product. In such a scenario, the investigation of this disparity of culture performance is done by further experimentation at a smaller scale that is representative of at-scale production bioreactors. These scale-down model developments are also time-intensive. In this study, a computation fluid dynamics-based multi-objective scaling approach has been illustrated to speed up the process transfer. For the implementation of this approach, a transient multiphase water-air system has been studied in Ansys CFX to visualize the air bubble distribution and volumetric mass transfer coefficient (kLa) profiles, followed by the design of experiment based parametric optimization approach to define the operational space. The proposed approach is completely in silico and requires minimum experimentation, thereby rendering a high throughput to the overall process development.

Keywords: bioprocess development, scale up, scale down, computation fluid dynamics, multi-objective, Ansys CFX, design of experiment

Procedia PDF Downloads 82
3422 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment

Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang

Abstract:

2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn  features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.

Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks

Procedia PDF Downloads 211
3421 Thermophysical Properties of Water-Based Carboxylated Multi-Wall Carbon Nanotubes Nanofluids

Authors: Ahmad Amiri, Hamed Khajeh Arzani, Md. Salim Newaz Kazi, Bee Teng Chew

Abstract:

Obviously, the behavior of thermophysical properties of covalently functionalized MWNT-based water nanofluids cannot be predicted from the predicted models. We present a study of the specific heat capacity, effective thermal conductivity, density and viscosity of coolants containing functionalized multi-wall carbon nanotubes (MWNT-COOH) with carboxyl groups at different temperatures. After synthesizing of MWNT-COOH-based water, measurements on the prepared coolants were made at various concentrations by different experimental methods. While thermal conductivity of nanofluids illustrated a significant increase, the specific heat capacity of the samples showed a downward behavior with increasing temperature. The viscosity was investigated in different shear rates and temperatures. Interestingly, the specific heat capacity of all prepared nanofluids was decreased with increasing concentration. Also, the density of the MWNT-COOH-based water nanofluids increased and decreased smoothly with increasing MWNT-COOH concentration and temperature, respectively.

Keywords: carbon nanotubes, coolant, heat capacity, density, viscosity, thermal conductivity

Procedia PDF Downloads 195
3420 Study on the Layout of 15-Minute Community-Life Circle in the State of “Community Segregation” Based on Poi: Shengwei Community and Other Two Communities in Chongqing

Authors: Siyuan Cai

Abstract:

This paper takes community segregation during major infectious diseases as the background, based on the physiological needs and safety needs of citizens during home segregation, and based on the selection of convenient facilities and medical facilities as the main research objects. Based on the POI data of public facilities in Chongqing, the spatial distribution characteristics of the convenience and medical facilities in the 15-minute living circle centered on three neighborhoods in Shapingba, namely Shengwei Community, Anju Commmunity and Fengtian Garden Community, were explored by means of GIS spatial analysis. The results show that the spatial distribution of convenience and medical facilities in this area has significant clustering characteristics, with a point-like distribution pattern of "dense in the west and sparse in the east", and a grouped and multi-polar spatial structure. The spatial structure is multi-polar and has an obvious tendency to the intersections and residential areas with dense pedestrian flow. This study provides a preliminary exploration of the distribution of medical and convenience facilities within the 15-minute living circle of a segregated community, which makes up for the lack of spatial research in this area.

Keywords: ArcGIS, community segregation, convenient facilities; distribution pattern, medical facilities, POI, 15-minute community life circle

Procedia PDF Downloads 120
3419 Focus on Sustainable Future of New Vernacular Architecture — Building "Vernacular Consciousness" in the New Ara

Authors: Ji Min China

Abstract:

The 20th century was the century of globalization. Developed transportation and the progress of information media made the earth into a global village. The differences between regions is increasingly reduced, "cultural convergence" phenomenon intensified, regional specialties and traditional culture has been eroded. In the field of architecture, while experienced orderly rational modernism baptism, it is increasingly recognized that set the expense of cultural differences and forced to follow the universal international-style building has been outdated. At the same time, in the 21st century environmental issues has been paid more and more attention, and the concept of sustainable development and sustainable building have been proposed.This makes the domestic and foreign architects began to explore the possibilities of building and reflect local cultural characteristics of the new vernacular architecture as a viable diversified architectural tendencies by domestic and foreign architects’ favor. The author will use the production and creative process of the new vernacular architecture at home and abroad as the background, and select some outstanding examples of the analysis and discussion, then reinterpret the "new vernacular architecture" in China now. This paper will pay more attention to how to master the true meaning of the here and now "new vernacular" as well as its multiple dimensions of sustainability in the future. It also determines the paper will be a two-way aspect and multi-dimensional understanding and mining of the "new vernacular".

Keywords: new vernacular architecture, regional culture, multi dimension, sustainable

Procedia PDF Downloads 455
3418 Parallel Gripper Modelling and Design Optimization Using Multi-Objective Grey Wolf Optimizer

Authors: Golak Bihari Mahanta, Bibhuti Bhusan Biswal, B. B. V. L. Deepak, Amruta Rout, Gunji Balamurali

Abstract:

Robots are widely used in the manufacturing industry for rapid production with higher accuracy and precision. With the help of End-of-Arm Tools (EOATs), robots are interacting with the environment. Robotic grippers are such EOATs which help to grasp the object in an automation system for improving the efficiency. As the robotic gripper directly influence the quality of the product due to the contact between the gripper surface and the object to be grasped, it is necessary to design and optimize the gripper mechanism configuration. In this study, geometric and kinematic modeling of the parallel gripper is proposed. Grey wolf optimizer algorithm is introduced for solving the proposed multiobjective gripper optimization problem. Two objective functions developed from the geometric and kinematic modeling along with several nonlinear constraints of the proposed gripper mechanism is used to optimize the design variables of the systems. Finally, the proposed methodology compared with a previously proposed method such as Teaching Learning Based Optimization (TLBO) algorithm, NSGA II, MODE and it was seen that the proposed method is more efficient compared to the earlier proposed methodology.

Keywords: gripper optimization, metaheuristics, , teaching learning based algorithm, multi-objective optimization, optimal gripper design

Procedia PDF Downloads 188
3417 Climate Variability on Hydro-Energy Potential: An MCDM and Neural Network Approach

Authors: Apu Kumar Saha, Mrinmoy Majumder

Abstract:

The increase in the concentration of Green House gases all over the World has induced global warming phenomena whereby the average temperature of the world has aggravated to impact the pattern of climate in different regions. The frequency of extreme event has increased, early onset of season and change in an average amount of rainfall all are engrossing the conclusion that normal pattern of climate is changing. Sophisticated and complex models are prepared to estimate the future situation of the climate in different zones of the Earth. As hydro-energy is directly related to climatic parameters like rainfall and evaporation such energy resources will have to sustain the onset of the climatic abnormalities. The present investigation has tried to assess the impact of climatic abnormalities upon hydropower potential of different regions of the World. In this regard multi-criteria, decision making, and the neural network is used to predict the impact of the change cognitively by an index. The results from the study show that hydro-energy potential of Asian region is mostly vulnerable with respect to other regions of the world. The model results also encourage further application of the index to analyze the impact of climate change on the potential of hydro-energy.

Keywords: hydro-energy potential, neural networks, multi criteria decision analysis, environmental and ecological engineering

Procedia PDF Downloads 549
3416 Reliability and Cost Focused Optimization Approach for a Communication Satellite Payload Redundancy Allocation Problem

Authors: Mehmet Nefes, Selman Demirel, Hasan H. Ertok, Cenk Sen

Abstract:

A typical reliability engineering problem regarding communication satellites has been considered to determine redundancy allocation scheme of power amplifiers within payload transponder module, whose dominant function is to amplify power levels of the received signals from the Earth, through maximizing reliability against mass, power, and other technical limitations. Adding each redundant power amplifier component increases not only reliability but also hardware, testing, and launch cost of a satellite. This study investigates a multi-objective approach used in order to solve Redundancy Allocation Problem (RAP) for a communication satellite payload transponder, focusing on design cost due to redundancy and reliability factors. The main purpose is to find the optimum power amplifier redundancy configuration satisfying reliability and capacity thresholds simultaneously instead of analyzing respectively or independently. A mathematical model and calculation approach are instituted including objective function definitions, and then, the problem is solved analytically with different input parameters in MATLAB environment. Example results showed that payload capacity and failure rate of power amplifiers have remarkable effects on the solution and also processing time.

Keywords: communication satellite payload, multi-objective optimization, redundancy allocation problem, reliability, transponder

Procedia PDF Downloads 261