Search results for: monitoring networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5724

Search results for: monitoring networks

4644 Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging

Authors: Paola Causin, Andrea Aspri, Alessandro Benfenati

Abstract:

Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise.

Keywords: inverse problem in tomography, deep learning, diffuse optical tomography, regularization

Procedia PDF Downloads 74
4643 Design and Implementation of PD-NN Controller Optimized Neural Networks for a Quad-Rotor

Authors: Chiraz Ben Jabeur, Hassene Seddik

Abstract:

In this paper, a full approach of modeling and control of a four-rotor unmanned air vehicle (UAV), known as quad-rotor aircraft, is presented. In fact, a PD and a PD optimized Neural Networks Approaches (PD-NN) are developed to be applied to control a quad-rotor. The goal of this work is to concept a smart self-tuning PD controller based on neural networks able to supervise the quad-rotor for an optimized behavior while tracking the desired trajectory. Many challenges could arise if the quad-rotor is navigating in hostile environments presenting irregular disturbances in the form of wind added to the model on each axis. Thus, the quad-rotor is subject to three-dimensional unknown static/varying wind disturbances. The quad-rotor has to quickly perform tasks while ensuring stability and accuracy and must behave rapidly with regard to decision-making facing disturbances. This technique offers some advantages over conventional control methods such as PD controller. Simulation results are obtained with the use of Matlab/Simulink environment and are founded on a comparative study between PD and PD-NN controllers based on wind disturbances. These later are applied with several degrees of strength to test the quad-rotor behavior. These simulation results are satisfactory and have demonstrated the effectiveness of the proposed PD-NN approach. In fact, this controller has relatively smaller errors than the PD controller and has a better capability to reject disturbances. In addition, it has proven to be highly robust and efficient, facing turbulences in the form of wind disturbances.

Keywords: hostile environment, PD and PD-NN controllers, quad-rotor control, robustness against disturbance

Procedia PDF Downloads 137
4642 A Contemporary Advertising Strategy on Social Networking Sites

Authors: M. S. Aparna, Pushparaj Shetty D.

Abstract:

Nowadays social networking sites have become so popular that the producers or the sellers look for these sites as one of the best options to target the right audience to market their products. There are several tools available to monitor or analyze the social networks. Our task is to identify the right community web pages and find out the behavior analysis of the members by using these tools and formulate an appropriate strategy to market the products or services to achieve the set goals. The advertising becomes more effective when the information of the product/ services come from a known source. The strategy explores great buying influence in the audience on referral marketing. Our methodology proceeds with critical budget analysis and promotes viral influence propagation. In this context, we encompass the vital bits of budget evaluation such as the number of optimal seed nodes or primary influential users activated onset, an estimate coverage spread of nodes and maximum influence propagating distance from an initial seed to an end node. Our proposal for Buyer Prediction mathematical model arises from the urge to perform complex analysis when the probability density estimates of reliable factors are not known or difficult to calculate. Order Statistics and Buyer Prediction mapping function guarantee the selection of optimal influential users at each level. We exercise an efficient tactics of practicing community pages and user behavior to determine the product enthusiasts on social networks. Our approach is promising and should be an elementary choice when there is little or no prior knowledge on the distribution of potential buyers on social networks. In this strategy, product news propagates to influential users on or surrounding networks. By applying the same technique, a user can search friends who are capable to advise better or give referrals, if a product interests him.

Keywords: viral marketing, social network analysis, community web pages, buyer prediction, influence propagation, budget constraints

Procedia PDF Downloads 262
4641 Acoustic Emission Techniques in Monitoring Low-Speed Bearing Conditions

Authors: Faisal AlShammari, Abdulmajid Addali, Mosab Alrashed

Abstract:

It is widely acknowledged that bearing failures are the primary reason for breakdowns in rotating machinery. These failures are extremely costly, particularly in terms of lost production. Roller bearings are widely used in industrial machinery and need to be maintained in good condition to ensure the continuing efficiency, effectiveness, and profitability of the production process. The research presented here is an investigation of the use of acoustic emission (AE) to monitor bearing conditions at low speeds. Many machines, particularly large, expensive machines operate at speeds below 100 rpm, and such machines are important to the industry. However, the overwhelming proportion of studies have investigated the use of AE techniques for condition monitoring of higher-speed machines (typically several hundred rpm, or even higher). Few researchers have investigated the application of these techniques to low-speed machines ( < 100 rpm). This paper addressed this omission and has established which, of the available, AE techniques are suitable for the detection of incipient faults and measurement of fault growth in low-speed bearings. The first objective of this paper program was to assess the applicability of AE techniques to monitor low-speed bearings. It was found that the measured statistical parameters successfully monitored bearing conditions at low speeds (10-100 rpm). The second objective was to identify which commonly used statistical parameters derived from the AE signal (RMS, kurtosis, amplitude and counts) could identify the onset of a fault in the out race. It was found that these parameters effectually identify the presence of a small fault seeded into the outer races. Also, it is concluded that rotational speed has a strong influence on the measured AE parameters but that they are entirely independent of the load under such load and speed conditions.

Keywords: acoustic emission, condition monitoring, NDT, statistical analysis

Procedia PDF Downloads 248
4640 A Hybrid MAC Protocol for Delay Constrained Mobile Wireless Sensor Networks

Authors: Hanefi Cinar, Musa Cibuk, Ismail Erturk, Fikri Aggun, Munip Geylani

Abstract:

Mobile Wireless Sensor Networks (MWSNs) carry heterogeneous data traffic with different urgency and quality of service (QoS) requirements. There are a lot of studies made on energy efficiency, bandwidth, and communication methods in literature. But delay, high throughput, utility parameters are not well considered. Increasing demand for real-time data transfer makes these parameters more important. In this paper we design new MAC protocol which is delay constrained and targets for improving delay, utility, and throughput performance of the network and finding solutions on collision and interference problems. Protocol improving QoS requirements by using TDMA, FDM, and OFDMA hybrid communication methods with multi-channel communication.

Keywords: MWSN, delay, hybrid MAC, TDMA, FDM, OFDMA

Procedia PDF Downloads 480
4639 Online Authenticity Verification of a Biometric Signature Using Dynamic Time Warping Method and Neural Networks

Authors: Gałka Aleksandra, Jelińska Justyna, Masiak Albert, Walentukiewicz Krzysztof

Abstract:

An offline signature is well-known however not the safest way to verify identity. Nowadays, to ensure proper authentication, i.e. in banking systems, multimodal verification is more widely used. In this paper the online signature analysis based on dynamic time warping (DTW) coupled with machine learning approaches has been presented. In our research signatures made with biometric pens were gathered. Signature features as well as their forgeries have been described. For verification of authenticity various methods were used including convolutional neural networks using DTW matrix and multilayer perceptron using sums of DTW matrix paths. System efficiency has been evaluated on signatures and signature forgeries collected on the same day. Results are presented and discussed in this paper.

Keywords: dynamic time warping, handwritten signature verification, feature-based recognition, online signature

Procedia PDF Downloads 175
4638 Random Access in IoT Using Naïve Bayes Classification

Authors: Alhusein Almahjoub, Dongyu Qiu

Abstract:

This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.

Keywords: random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation

Procedia PDF Downloads 145
4637 Determining the Effectiveness of Radiation Shielding and Safe Time for Radiation Worker by Employing Monitoring of Accumulation Dose in the Operator Room of CT Scan

Authors: Risalatul Latifah, Bunawas Bunawas, Lailatul Muqmiroh, Anggraini D. Sensusiati

Abstract:

Along with the increasing frequency of the use of CT-Scan for radiodiagnostics purposes, it is necessary to study radiation protection. This study examined aspects of radiation protection of workers. This study tried using thermoluminescent dosimeter (TLD) for evaluating radiation shielding and estimating safe time for workers during CT Scan examination. Six TLDs were placed on door, wall, and window inside and outside of the CT Scan room for 1 month. By using TLD monitoring, it could be seen how much radiation was exposed in the operator room. The results showed the effective dose at door, window, and wall was respectively 0.04 mSv, 0.05 mSv, and 0.04 mSv. With these values, it could be evaluated the effectiveness of radiation shielding on doors, glass and walls were respectively 90.6%, 95.5%, and 92.2%. By applying the dose constraint and the estimation of the accumulated dose for one month, radiation workers were still safe to perform the irradiation for 180 patients.

Keywords: CT scan room, TLD, radiation worker, dose constraint

Procedia PDF Downloads 288
4636 Awareness on Department of Education’s Disaster Risk Reduction Management Program at Oriental Mindoro National High School: Basis for Support School DRRM Program

Authors: Nimrod Bantigue

Abstract:

The Department of Education is continuously providing safe teaching-learning facilities and hazard-free environments to the learners. To achieve this goal, teachers’ awareness of DepEd’s DRRM programs and activities is extremely important; thus, this descriptive correlational quantitative study was conceptualized. This research answered four questions on the profile and level of awareness of the 153 teacher respondents of Oriental Mindoro National High School for the academic year 2018-2019. Stratified proportional sampling was employed, and both descriptive and inferential statistics were utilized to treat data. The findings revealed that the majority of the teachers at OMNHS are female and are in the age bracket of 20-40. Most are married and pursue graduate studies. They have moderate awareness of the Department of Education’s DRRM programs and activities in terms of assessment of risks activities, planning activities, implementation activities during disaster and evaluation and monitoring activities with 3.32, 3.12, 3.40 and 3.31 as computed means, respectively. Further, the result showed a significant relationship between the profile of the respondents such as age, civil status and educational attainment and the level of awareness. On the contrary, sex does not have a significant relationship with the level of awareness. The Support School DRRM program with Utilization Guide on School DRRM Manual was proposed to increase, improve and strengthen the weakest areas of awareness rated in each DRRM activity, such as assessment of risks, planning, and implementation during disasters and monitoring and evaluation.

Keywords: awareness, management, monitoring, risk reduction

Procedia PDF Downloads 219
4635 Wavelength Conversion of Dispersion Managed Solitons at 100 Gbps through Semiconductor Optical Amplifier

Authors: Kadam Bhambri, Neena Gupta

Abstract:

All optical wavelength conversion is essential in present day optical networks for transparent interoperability, contention resolution, and wavelength routing. The incorporation of all optical wavelength convertors leads to better utilization of the network resources and hence improves the efficiency of optical networks. Wavelength convertors that can work with Dispersion Managed (DM) solitons are attractive due to their superior transmission capabilities. In this paper, wavelength conversion for dispersion managed soliton signals was demonstrated at 100 Gbps through semiconductor optical amplifier and an optical filter. The wavelength conversion was achieved for a 1550 nm input signal to1555nm output signal. The output signal was measured in terms of BER, Q factor and system margin.    

Keywords: all optical wavelength conversion, dispersion managed solitons, semiconductor optical amplifier, cross gain modultation

Procedia PDF Downloads 453
4634 Foot-and-Mouth Virus Detection in Asymptomatic Dairy Cows without Foot-and-Mouth Disease Outbreak

Authors: Duanghathai Saipinta, Tanittian Panyamongkol, Witaya Suriyasathaporn

Abstract:

Animal management aims to provide a suitable environment for animals allowing maximal productivity in those animals. Prevention of disease is an important part of animal management. Foot-and-mouth disease (FMD) is a highly contagious viral disease in cattle and is an economically important animal disease worldwide. Monitoring the FMD virus in farms is useful management for the prevention of the FMD outbreak. A recent publication indicated collection samples from nasal swabs can be used for monitoring FMD in symptomatic cows. Therefore, the objectives of this study were to determine the FMD virus in asymptomatic dairy cattle using nasal swab samples during the absence of an FMD outbreak. The study was conducted from December 2020 to June 2021 using 185 asymptomatic signs of FMD dairy cattle in Chiang Mai Province, Thailand. By random cow selection, nasal mucosal swabs were used to collect samples from the selected cows and then were to evaluate the presence of FMD viruses using the real-time rt-PCR assay. In total, 4.9% of dairy cattle detected FMD virus, including 2 dairy farms in Mae-on (8 samples; 9.6%) and 1 farm in the Chai-Prakan district (1 sample; 1.2%). Interestingly, both farms in Mae-on were the outbreak of the FMD after this detection for 6 months. This indicated that the FMD virus presented in asymptomatic cattle might relate to the subsequent outbreak of FMD. The outbreak demonstrates the presence of the virus in the environment. In conclusion, monitoring of FMD can be performed by nasal swab collection. Further investigation is needed to show whether the FMD virus presented in asymptomatic FMD cattle could be the cause of the subsequent FMD outbreak or not.

Keywords: cattle, foot-and-mouth disease, nasal swab, real-time rt-PCR assay

Procedia PDF Downloads 232
4633 Distributed Framework for Pothole Detection and Monitoring Using Federated Learning

Authors: Ezil Sam Leni, Shalen S.

Abstract:

Transport service monitoring and upkeep are essential components of smart city initiatives. The main risks to the relevant departments and authorities are the ever-increasing vehicular traffic and the conditions of the roads. In India, the economy is greatly impacted by the road transport sector. In 2021, the Ministry of Road Transport and Highways Transport, Government of India, produced a report with statistical data on traffic accidents. The data included the number of fatalities, injuries, and other pertinent criteria. This study proposes a distributed infrastructure for the monitoring, detection, and reporting of potholes to the appropriate authorities. In a distributed environment, the nodes are the edge devices, and local edge servers, and global servers. The edge devices receive the initial model to be employed from the global server. The YOLOv8 model for pothole detection is used in the edge devices. The edge devices run the pothole detection model, gather the pothole images on their path, and send the updates to the nearby edge server. The local edge server selects the clients for its aggregation process, aggregates the model updates and sends the updates to the global server. The global server collects the updates from the local edge servers, performs aggregation and derives the updated model. The updated model has the information about the potholes received from the local edge servers and notifies the updates to the local edge servers and concerned authorities for monitoring and maintenance of road conditions. The entire process is implemented in FedCV distributed environment with the implementation using the client-server model and aggregation entities. After choosing the clients for its aggregation process, the local edge server gathers the model updates and transmits them to the global server. After gathering the updates from the regional edge servers, the global server aggregates them and creates the updated model. Performance indicators and the experimentation environment are assessed, discussed, and presented. Accelerometer data may be taken into consideration for improved performance in the future development of this study, in addition to the images captured from the transportation routes.

Keywords: federated Learning, pothole detection, distributed framework, federated averaging

Procedia PDF Downloads 104
4632 On-line Control of the Natural and Anthropogenic Safety in Krasnoyarsk Region

Authors: T. Penkova, A. Korobko, V. Nicheporchuk, L. Nozhenkova, A. Metus

Abstract:

This paper presents an approach of on-line control of the state of technosphere and environment objects based on the integration of Data Warehouse, OLAP and Expert systems technologies. It looks at the structure and content of data warehouse that provides consolidation and storage of monitoring data. There is a description of OLAP-models that provide a multidimensional analysis of monitoring data and dynamic analysis of principal parameters of controlled objects. The authors suggest some criteria of emergency risk assessment using expert knowledge about danger levels. It is demonstrated now some of the proposed solutions could be adopted in territorial decision making support systems. Operational control allows authorities to detect threat, prevent natural and anthropogenic emergencies and ensure a comprehensive safety of territory.

Keywords: decision making support systems, emergency risk assessment, natural and anthropogenic safety, on-line control, territory

Procedia PDF Downloads 406
4631 3D Object Model Reconstruction Based on Polywogs Wavelet Network Parametrization

Authors: Mohamed Othmani, Yassine Khlifi

Abstract:

This paper presents a technique for compact three dimensional (3D) object model reconstruction using wavelet networks. It consists to transform an input surface vertices into signals,and uses wavelet network parameters for signal approximations. To prove this, we use a wavelet network architecture founded on several mother wavelet families. POLYnomials WindOwed with Gaussians (POLYWOG) wavelet families are used to maximize the probability to select the best wavelets which ensure the good generalization of the network. To achieve a better reconstruction, the network is trained several iterations to optimize the wavelet network parameters until the error criterion is small enough. Experimental results will shown that our proposed technique can effectively reconstruct an irregular 3D object models when using the optimized wavelet network parameters. We will prove that an accurateness reconstruction depends on the best choice of the mother wavelets.

Keywords: 3d object, optimization, parametrization, polywog wavelets, reconstruction, wavelet networks

Procedia PDF Downloads 284
4630 Real-Time Inventory Management and Operational Efficiency in Manufacturing

Authors: Tom Wanyama

Abstract:

We have developed a weight-based parts inventory monitoring system utilizing the Industrial Internet of Things (IIoT) to enhance operational efficiencies in manufacturing. The system addresses various challenges, including eliminating downtimes caused by stock-outs, preventing human errors in parts delivery and product assembly, and minimizing motion waste by reducing unnecessary worker movements. The system incorporates custom QR codes for simplified inventory tracking and retrieval processes. The generated data serves a dual purpose by enabling real-time optimization of parts flow within manufacturing facilities and facilitating retroactive optimization of stock levels for informed decision-making in inventory management. The pilot implementation at SEPT Learning Factory successfully eradicated data entry errors, optimized parts delivery, and minimized workstation downtimes, resulting in a remarkable increase of over 10% in overall equipment efficiency across all workstations. Leveraging the IIoT features, the system seamlessly integrates information into the process control system, contributing to the enhancement of product quality. This approach underscores the importance of effective tracking of parts inventory in manufacturing to achieve transparency, improved inventory control, and overall profitability. In the broader context, our inventory monitoring system aligns with the evolving focus on optimizing supply chains and maintaining well-managed warehouses to ensure maximum efficiency in the manufacturing industry.

Keywords: industrial Internet of things, industrial systems integration, inventory monitoring, inventory control in manufacturing

Procedia PDF Downloads 36
4629 Training a Neural Network Using Input Dropout with Aggressive Reweighting (IDAR) on Datasets with Many Useless Features

Authors: Stylianos Kampakis

Abstract:

This paper presents a new algorithm for neural networks called “Input Dropout with Aggressive Re-weighting” (IDAR) aimed specifically at datasets with many useless features. IDAR combines two techniques (dropout of input neurons and aggressive re weighting) in order to eliminate the influence of noisy features. The technique can be seen as a generalization of dropout. The algorithm is tested on two different benchmark data sets: a noisy version of the iris dataset and the MADELON data set. Its performance is compared against three other popular techniques for dealing with useless features: L2 regularization, LASSO and random forests. The results demonstrate that IDAR can be an effective technique for handling data sets with many useless features.

Keywords: neural networks, feature selection, regularization, aggressive reweighting

Procedia PDF Downloads 455
4628 A Design of the Infrastructure and Computer Network for Distance Education, Online Learning via New Media, E-Learning and Blended Learning

Authors: Sumitra Nuanmeesri

Abstract:

The research focus on study, analyze and design the model of the infrastructure and computer networks for distance education, online learning via new media, e-learning and blended learning. The collected information from study and analyze process that information was evaluated by the index of item objective congruence (IOC) by 9 specialists to design model. The results of evaluate the model with the mean and standard deviation by the sample of 9 specialists value is 3.85. The results showed that the infrastructure and computer networks are designed to be appropriate to a great extent appropriate to a great extent.

Keywords: blended learning, new media, infrastructure and computer network, tele-education, online learning

Procedia PDF Downloads 402
4627 Application of Adaptive Neural Network Algorithms for Determination of Salt Composition of Waters Using Laser Spectroscopy

Authors: Tatiana A. Dolenko, Sergey A. Burikov, Alexander O. Efitorov, Sergey A. Dolenko

Abstract:

In this study, a comparative analysis of the approaches associated with the use of neural network algorithms for effective solution of a complex inverse problem – the problem of identifying and determining the individual concentrations of inorganic salts in multicomponent aqueous solutions by the spectra of Raman scattering of light – is performed. It is shown that application of artificial neural networks provides the average accuracy of determination of concentration of each salt no worse than 0.025 M. The results of comparative analysis of input data compression methods are presented. It is demonstrated that use of uniform aggregation of input features allows decreasing the error of determination of individual concentrations of components by 16-18% on the average.

Keywords: inverse problems, multi-component solutions, neural networks, Raman spectroscopy

Procedia PDF Downloads 528
4626 Bridging the Gap between M and E, and KM: Towards the Integration of Evidence-Based Information and Policy Decision-Making

Authors: Xueqing Ivy Chen, Christo De Coning

Abstract:

It is clear from practice that a gap exists between Result-Based Monitoring and Evaluation (RBME) as a discipline, and Knowledge Management (KM) on the other hand. Whereas various government departments have institutionalised these functions, KM and M&E has functioned in isolation from each other in a practical sense in the public sector. It’s therefore necessary to explore the relationship between KM and M&E and the necessity for integration, so that a convergence of these disciplines can be established. An integration of KM and M&E will lead to integration and improvement of evidence-based information and policy decision-making. M&E and KM process models are available but the complementarity between specific process steps of these process models are not exploited. A need exists to clarify the relationships between these functions in order to ensure evidence based information and policy decision-making. This paper will depart from the well-known policy process models, such as the generic model and consider recent on the interface between policy, M&E and KM.

Keywords: result-based monitoring and evaluation, RBME, knowledge management, KM, evident based decision making, public policy, information systems, institutional arrangement

Procedia PDF Downloads 152
4625 New Methodology for Monitoring Alcoholic Fermentation Processes Using Refractometry

Authors: Boukhiar Aissa, Iguergaziz Nadia, Halladj Fatima, Lamrani Yasmina, Benamara Salem

Abstract:

Determining the alcohol content in alcoholic fermentation bioprocess has a great importance. In fact, it is a key indicator for monitoring this fermentation bioprocess. Several methodologies (chemical, spectrophotometric, chromatographic...) are used to the determination of this parameter. However, these techniques are very long and require: rigorous preparations, sometimes dangerous chemical reagents, and/or expensive equipment. In the present study, the date juice is used as a substrate of alcoholic fermentation. The extracted juice undergoes an alcoholic fermentation by Saccharomyces cerevisiae. The study of the possible use of refractometry as a sole means for the in situ control of this process revealed a good correlation (R2 = 0.98) between initial and final ° Brix: ° Brix f = 0.377× ° Brixi. In addition, we verified the relationship between the variation in final and initial ° Brix (Δ ° Brix) and alcoholic rate produced (A exp): CΔ° Brix / A exp = 1.1. This allows the tracing of abacus isoresponses that permit to determine the alcoholic and residual sugar rates with a mean relative error (MRE) of 5.35%.

Keywords: refractometry, alcohol, residual sugar, fermentation, brix, date, juice

Procedia PDF Downloads 478
4624 Complex Network Analysis of Seismicity and Applications to Short-Term Earthquake Forecasting

Authors: Kahlil Fredrick Cui, Marissa Pastor

Abstract:

Earthquakes are complex phenomena, exhibiting complex correlations in space, time, and magnitude. Recently, the concept of complex networks has been used to shed light on the statistical and dynamical characteristics of regional seismicity. In this work, we study the relationships and interactions of seismic regions in Chile, Japan, and the Philippines through weighted and directed complex network analysis. Geographical areas are digitized into cells of fixed dimensions which in turn become the nodes of the network when an earthquake has occurred therein. Nodes are linked if a correlation exists between them as determined and measured by a correlation metric. The networks are found to be scale-free, exhibiting power-law behavior in the distributions of their different centrality measures: the in- and out-degree and the in- and out-strength. The evidence is also found of preferential interaction between seismically active regions through their degree-degree correlations suggesting that seismicity is dictated by the activity of a few active regions. The importance of a seismic region to the overall seismicity is measured using a generalized centrality metric taken to be an indicator of its activity or passivity. The spatial distribution of earthquake activity indicates the areas where strong earthquakes have occurred in the past while the passivity distribution points toward the likely locations an earthquake would occur whenever another one happens elsewhere. Finally, we propose a method that would project the location of the next possible earthquake using the generalized centralities coupled with correlations calculated between the latest earthquakes and a geographical point in the future.

Keywords: complex networks, correlations, earthquake, hazard assessment

Procedia PDF Downloads 212
4623 A Detection Method of Faults in Railway Pantographs Based on Dynamic Phase Plots

Authors: G. Santamato, M. Solazzi, A. Frisoli

Abstract:

Systems for detection of damages in railway pantographs effectively reduce the cost of maintenance and improve time scheduling. In this paper, we present an approach to design a monitoring tool fitting strong customer requirements such as portability and ease of use. Pantograph has been modeled to estimate its dynamical properties, since no data are available. With the aim to focus on suspensions health, a two Degrees of Freedom (DOF) scheme has been adopted. Parameters have been calculated by means of analytical dynamics. A Finite Element Method (FEM) modal analysis verified the former model with an acceptable error. The detection strategy seeks phase-plots topology alteration, induced by defects. In order to test the suitability of the method, leakage in the dashpot was simulated on the lumped model. Results are interesting because changes in phase plots are more appreciable than frequency-shift. Further calculations as well as experimental tests will support future developments of this smart strategy.

Keywords: pantograph models, phase plots, structural health monitoring, damage detection

Procedia PDF Downloads 363
4622 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.

Keywords: cyber security, vulnerability detection, neural networks, feature extraction

Procedia PDF Downloads 89
4621 Screening of Congenital Heart Diseases with Fetal Phonocardiography

Authors: F. Kovács, K. Kádár, G. Hosszú, Á. T. Balogh, T. Zsedrovits, N. Kersner, A. Nagy, Gy. Jeney

Abstract:

The paper presents a novel screening method to indicate congenital heart diseases (CHD), which otherwise could remain undetected because of their low level. Therefore, not belonging to the high-risk population, the pregnancies are not subject to the regular fetal monitoring with ultrasound echocardiography. Based on the fact that CHD is a morphological defect of the heart causing turbulent blood flow, the turbulence appears as a murmur, which can be detected by fetal phonocardiography (fPCG). The proposed method applies measurements on the maternal abdomen and from the recorded sound signal a sophisticated processing determines the fetal heart murmur. The paper describes the problems and the additional advantages of the fPCG method including the possibility of measurements at home and its combination with the prescribed regular cardiotocographic (CTG) monitoring. The proposed screening process implemented on a telemedicine system provides an enhanced safety against hidden cardiac diseases.

Keywords: cardiac murmurs, fetal phonocardiography, screening of CHDs, telemedicine system

Procedia PDF Downloads 332
4620 The Design of the Multi-Agent Classification System (MACS)

Authors: Mohamed R. Mhereeg

Abstract:

The paper discusses the design of a .NET Windows Service based agent system called MACS (Multi-Agent Classification System). MACS is a system aims to accurately classify spread-sheet developers competency over a network. It is designed to automatically and autonomously monitor spread-sheet users and gather their development activities based on the utilization of the software Multi-Agent Technology (MAS). This is accomplished in such a way that makes management capable to efficiently allow for precise tailor training activities for future spread-sheet development. The monitoring agents of MACS are intended to be distributed over the WWW in order to satisfy the monitoring and classification of the multiple developer aspect. The Prometheus methodology is used for the design of the agents of MACS. Prometheus has been used to undertake this phase of the system design because it is developed specifically for specifying and designing agent-oriented systems. Additionally, Prometheus specifies also the communication needed between the agents in order to coordinate to achieve their delegated tasks.

Keywords: classification, design, MACS, MAS, prometheus

Procedia PDF Downloads 399
4619 Monitoring Prolong Use of Intravenous Antibiotics: Antimicrobial Stewardship

Authors: Komal Fizza

Abstract:

Irrational and non-judicious use of antibiotics pave the way for an upsurge in antibiotic resistance, diminished effectiveness of different therapeutic regimens and as well as impounding effect on disease management leading to further morbidities. In the backdrop of this the current research is aimed to assess whether antimicrobial prescribing is in accordance with the Infectious Disease Society of America Guidelines in hospitalized patients at Shifa International Hospital, Islamabad, Pakistan. Shifa International Hospital, Islamabad is a 500 bed hospital. With the help of MIS team a form wad developed that gave the information about medical records number, name of the patient, day of start of antibiotic, the day antibiotic is supposed to be stopped and as well as the diagnosis of the patient. A ward pharmacist was employed to generate this report on a daily basis. The therapeutic regiment was reviewed by the pharmacist by monitoring the clinical progress, laboratory report and diagnosis. On the basis of this information, pharmacist made suggestions and forwarded to the hospital doctors responsible for prescribing antibiotics. If desired, changes were made regularly. In the current research our main focus was to implement this action and therefore, started monitoring patients who were on antibiotic regimens for more than 10-15 days. We took this initiative since November, 2013. At the start of the program a maximum 19 patients/day were reported to be on antibiotic regimen for more than 10-15 days. After the implementation of the initiative, the number of patients was decreased to fifteen patients per day in December, further decreased to 7 in the month of January and 9 and 6 in February and March respectively. The average patient census was 350. The current pilot study highlighted the role of pharmacist in initiating antibiotic stewardship programs in hospital settings.

Keywords: stewardship, antibiotics, resistance, clinical process

Procedia PDF Downloads 353
4618 The Effectiveness of Energy Index Technique in Bearing Condition Monitoring

Authors: Faisal Alshammari, Abdulmajid Addali, Mosab Alrashed, Taihiret Alhashan

Abstract:

The application of acoustic emission techniques is gaining popularity, as it can monitor the condition of gears and bearings and detect early symptoms of a defect in the form of pitting, wear, and flaking of surfaces. Early detection of these defects is essential as it helps to avoid major failures and the associated catastrophic consequences. Signal processing techniques are required for early defect detection – in this article, a time domain technique called the Energy Index (EI) is used. This article presents an investigation into the Energy Index’s effectiveness to detect early-stage defect initiation and deterioration, and compares it with the common r.m.s. index, Kurtosis, and the Kolmogorov-Smirnov statistical test. It is concluded that EI is a more effective technique for monitoring defect initiation and development than other statistical parameters.

Keywords: acoustic emission, signal processing, kurtosis, Kolmogorov-Smirnov test

Procedia PDF Downloads 366
4617 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing

Procedia PDF Downloads 188
4616 An Early Detection Type 2 Diabetes Using K - Nearest Neighbor Algorithm

Authors: Ng Liang Shen, Ngahzaifa Abdul Ghani

Abstract:

This research aimed at developing an early warning system for pre-diabetic and diabetics by analyzing simple and easily determinable signs and symptoms of diabetes among the people living in Malaysia using Particle Swarm Optimized Artificial. With the skyrocketing prevalence of Type 2 diabetes in Malaysia, the system can be used to encourage affected people to seek further medical attention to prevent the onset of diabetes or start managing it early enough to avoid the associated complications. The study sought to find out the best predictive variables of Type 2 Diabetes Mellitus, developed a system to diagnose diabetes from the variables using Artificial Neural Networks and tested the system on accuracy to find out the patent generated from diabetes diagnosis result in machine learning algorithms even at primary or advanced stages.

Keywords: diabetes diagnosis, Artificial Neural Networks, artificial intelligence, soft computing, medical diagnosis

Procedia PDF Downloads 336
4615 Portable Palpation Probe for Diabetic Foot Ulceration Monitoring

Authors: Bummo Ahn

Abstract:

Palpation is widely used to measure soft tissue firmness or stiffness in the living condition in order to apply detection, diagnosis, and treatment of tumors, scar tissue, abnormal muscle tone, or muscle spasticity. Since these methods are subjective and depend on the proficiency level, it is concluded that there are other diagnoses depending on the condition of the experts and the results are not objective. The mechanical property obtained by using the elasticity of the tissue is important to calculate a predictive variable for monitoring abnormal tissues. If the mechanical load such as reaction force on the foot increases in the same region under the same conditions, the mechanical property of the tissue is changed. Therefore, objective diagnosis is possible not only for experts but also for patients using this quantitative information. Furthermore, the portable system also allows non-experts to easily diagnose at home, not in hospitals or institutions. In this paper, we introduce a portable palpation system that can be used to measure the mechanical properties of human tissue, which can be applied to monitor diabetic foot ulceration patients with measuring the mechanical property change of foot tissue. The system was designed to be smaller and portable in comparison with the conventional palpation systems. It is consists of the probe, the force sensor, linear actuator, micro control unit, the display module, battery, and housing. Using this system, we performed validation experiments by applying different palpations (3 and 5 mm) to soft tissue (silicone rubber) and measured reaction forces. In addition, we estimated the elastic moduli of the soft tissue against different palpations and compare the estimated elastic moduli that show similar value even if the palpation depths are different.

Keywords: palpation probe, portable, diabetic foot ulceration, monitoring, mechanical property

Procedia PDF Downloads 120