Search results for: market data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27347

Search results for: market data

26267 Data Management and Analytics for Intelligent Grid

Authors: G. Julius P. Roy, Prateek Saxena, Sanjeev Singh

Abstract:

Power distribution utilities two decades ago would collect data from its customers not later than a period of at least one month. The origin of SmartGrid and AMI has subsequently increased the sampling frequency leading to 1000 to 10000 fold increase in data quantity. This increase is notable and this steered to coin the tern Big Data in utilities. Power distribution industry is one of the largest to handle huge and complex data for keeping history and also to turn the data in to significance. Majority of the utilities around the globe are adopting SmartGrid technologies as a mass implementation and are primarily focusing on strategic interdependence and synergies of the big data coming from new information sources like AMI and intelligent SCADA, there is a rising need for new models of data management and resurrected focus on analytics to dissect data into descriptive, predictive and dictatorial subsets. The goal of this paper is to is to bring load disaggregation into smart energy toolkit for commercial usage.

Keywords: data management, analytics, energy data analytics, smart grid, smart utilities

Procedia PDF Downloads 779
26266 Self-Determination Theory at the Workplace: Associations between Need Satisfaction and Employment Outcomes

Authors: Wendy I. E. Wesseling

Abstract:

The unemployment rate has been on the rise since the outbreak of the global financial crisis in 2008. Especially labor market entrants suffer from economic downfall. Despite the abundance of programs and agencies that help to reintegrate unemployed youth, considerable less research attention has been paid to 'fit' between these programs and its participants that ensure a durable labor market transition. According to Self-Determination Theory, need satisfaction is associated with better (mental) adjustment. As such, three hypothesis were formulated: when workers’ needs for competence (H1), relatedness (H2), and autonomy (H3) are satisfied in the workplace, they are more likely to remain employed at the same employer. To test these assumptions, a sample of approximately 800 young people enrolled in a youth unemployment policy participated in a longitudinal study. The unemployment policy was aimed at the development of generic and vocational competences, and had a maximum duration of six months. Need satisfaction during the program was measured, as well as their employment outcomes up to 12 months after completion of the policy. All hypotheses were (partly) supported. Some limitations should be noted. First, since our sample consisted primarily of highly educated white graduates, it remains to be tested whether our results generalize to other groups of unemployed youth. Moreover, we are unable to conclude whether the results are due to the intervention, participants (selection effect), or both, because of the lack of a control group.

Keywords: need satisfaction, person-job fit, self-determination theory, youth unemployment policy

Procedia PDF Downloads 255
26265 An Econometric Analysis of the Flat Tax Revolution

Authors: Wayne Tarrant, Ethan Petersen

Abstract:

The concept of a flat tax goes back to at least the Biblical tithe. A progressive income tax was first vociferously espoused in a small, but famous, pamphlet in 1848 (although England had an emergency progressive tax for war costs prior to this). Within a few years many countries had adopted the progressive structure. The flat tax was only reinstated in some small countries and British protectorates until Mart Laar was elected Prime Minister of Estonia in 1992. Since Estonia’s adoption of the flat tax in 1993, many other formerly Communist countries have likewise abandoned progressive income taxes. Economists had expectations of what would happen when a flat tax was enacted, but very little work has been done on actually measuring the effect. With a testbed of 21 countries in this region that currently have a flat tax, much comparison is possible. Several countries have retained progressive taxes, giving an opportunity for contrast. There are also the cases of Czech Republic and Slovakia, which have adopted and later abandoned the flat tax. Further, with over 20 years’ worth of economic history in some flat tax countries, we can begin to do some serious longitudinal study. In this paper we consider many economic variables to determine if there are statistically significant differences from before to after the adoption of a flat tax. We consider unemployment rates, tax receipts, GDP growth, Gini coefficients, and market data where the data are available. Comparisons are made through the use of event studies and time series methods. The results are mixed, but we draw statistically significant conclusions about some effects. We also look at the different implementations of the flat tax. In some countries there are equal income and corporate tax rates. In others the income tax has a lower rate, while in others the reverse is true. Each of these sends a clear message to individuals and corporations. The policy makers surely have a desired effect in mind. We group countries with similar policies, try to determine if the intended effect actually occurred, and then report the results. This is a work in progress, and we welcome the suggestion of variables to consider. Further, some of the data from before the fall of the Iron Curtain are suspect. Since there are new ruling regimes in these countries, the methods of computing different statistical measures has changed. Although we first look at the raw data as reported, we also attempt to account for these changes. We show which data seem to be fictional and suggest ways to infer the needed statistics from other data. These results are reported beside those on the reported data. Since there is debate about taxation structure, this paper can help inform policymakers of change the flat tax has caused in other countries. The work shows some strengths and weaknesses of a flat tax structure. Moreover, it provides beginnings of a scientific analysis of the flat tax in practice rather than having discussion based solely upon theory and conjecture.

Keywords: flat tax, financial markets, GDP, unemployment rate, Gini coefficient

Procedia PDF Downloads 339
26264 Privacy Preserving Data Publishing Based on Sensitivity in Context of Big Data Using Hive

Authors: P. Srinivasa Rao, K. Venkatesh Sharma, G. Sadhya Devi, V. Nagesh

Abstract:

Privacy Preserving Data Publication is the main concern in present days because the data being published through the internet has been increasing day by day. This huge amount of data was named as Big Data by its size. This project deals the privacy preservation in the context of Big Data using a data warehousing solution called hive. We implemented Nearest Similarity Based Clustering (NSB) with Bottom-up generalization to achieve (v,l)-anonymity. (v,l)-Anonymity deals with the sensitivity vulnerabilities and ensures the individual privacy. We also calculate the sensitivity levels by simple comparison method using the index values, by classifying the different levels of sensitivity. The experiments were carried out on the hive environment to verify the efficiency of algorithms with Big Data. This framework also supports the execution of existing algorithms without any changes. The model in the paper outperforms than existing models.

Keywords: sensitivity, sensitive level, clustering, Privacy Preserving Data Publication (PPDP), bottom-up generalization, Big Data

Procedia PDF Downloads 295
26263 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading

Authors: Robert Caulk

Abstract:

A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.

Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration

Procedia PDF Downloads 88
26262 International Student Mobility to China: A Fastest and Emerging Market for International Students among Developing Countries

Authors: Yasir Khan, Qiu Bin, Antonio-Mihi Ramirez

Abstract:

This study determines the inflow of international students to China in recent years and the corresponding internationalization strategies in the higher education sector. China has placed attracting international students on in its plan along with the growing of global impact. Acknowledging the stable economy, growth rate, trade, lower renminbi rate, high wages, employment opportunities, high level income per capita, relative low taxes and political system consolidate to attract more international students. A large number of international students making a vast contribution to the higher education sector of China. Understanding the significance of education mission as well as of financial ‘bottom line’ the Chinese government gave great importance to invite more international students from worldwide. The large number of international students in the China has been particularly notable from Asian countries specifically neighboring countries, Pakistan, Thailand, India, Vietnam, South Korea, Magnolia, Malaysia, and Russia. This study summarizes internationalization of higher education in China and also provides directions for future research in this regard.

Keywords: international student mobility, 2020 Govt Planning, emerging market, internationalization of higher education

Procedia PDF Downloads 252
26261 Development and Emerging Risks in the Derivative Market: A Comparison of Impact of Futures Trading on Spot Price Volatility and a Case of Developed, Emerging and Less Developed Economies

Authors: Rancy Chepchirchir Kosgey, John Olukuru

Abstract:

This study examines the impact of introduction of futures trading on the spot price volatility in the commodity market. The paper considers the United States of America, South Africa and Ethiopian economies. Three commodities i.e. coffee, maize and wheat from New York Merchantile Exchange, South African Futures Exchange and Ethiopian Commodity Exchange are analyzed. ARCH LM test is used to check for heteroskedasticity and GARCH and EGARCH are used to check for the behavior of volatility between the pre- and post-futures periods. For all the three economies, the results indicate presence of the ARCH effect in the log returns. For conditional and unconditional variances; spot price volatility for coffee has decreased after futures trading in all the economies and the EGARCH has also shown reduction in persistence of volatility in the post-futures period in the three economies; while that of maize has reduced for the Ethiopian economy while there has been an increase in both the US and South African economies. For wheat, the conditional variance has been found to rise in the post-futures period in all the three economies.

Keywords: derivatives, futures exchange, agricultural commodities, spot price volatility

Procedia PDF Downloads 426
26260 A Fuzzy Kernel K-Medoids Algorithm for Clustering Uncertain Data Objects

Authors: Behnam Tavakkol

Abstract:

Uncertain data mining algorithms use different ways to consider uncertainty in data such as by representing a data object as a sample of points or a probability distribution. Fuzzy methods have long been used for clustering traditional (certain) data objects. They are used to produce non-crisp cluster labels. For uncertain data, however, besides some uncertain fuzzy k-medoids algorithms, not many other fuzzy clustering methods have been developed. In this work, we develop a fuzzy kernel k-medoids algorithm for clustering uncertain data objects. The developed fuzzy kernel k-medoids algorithm is superior to existing fuzzy k-medoids algorithms in clustering data sets with non-linearly separable clusters.

Keywords: clustering algorithm, fuzzy methods, kernel k-medoids, uncertain data

Procedia PDF Downloads 215
26259 Democracy Bytes: Interrogating the Exploitation of Data Democracy by Radical Terrorist Organizations

Authors: Nirmala Gopal, Sheetal Bhoola, Audecious Mugwagwa

Abstract:

This paper discusses the continued infringement and exploitation of data by non-state actors for destructive purposes, emphasizing radical terrorist organizations. It will discuss how terrorist organizations access and use data to foster their nefarious agendas. It further examines how cybersecurity, designed as a tool to curb data exploitation, is ineffective in raising global citizens' concerns about how their data can be kept safe and used for its acquired purpose. The study interrogates several policies and data protection instruments, such as the Data Protection Act, Cyber Security Policies, Protection of Personal Information(PPI) and General Data Protection Regulations (GDPR), to understand data use and storage in democratic states. The study outcomes point to the fact that international cybersecurity and cybercrime legislation, policies, and conventions have not curbed violations of data access and use by radical terrorist groups. The study recommends ways to enhance cybersecurity and reduce cyber risks using democratic principles.

Keywords: cybersecurity, data exploitation, terrorist organizations, data democracy

Procedia PDF Downloads 204
26258 Stochastic Pi Calculus in Financial Markets: An Alternate Approach to High Frequency Trading

Authors: Jerome Joshi

Abstract:

The paper presents the modelling of financial markets using the Stochastic Pi Calculus model. The Stochastic Pi Calculus model is mainly used for biological applications; however, the feature of this model promotes its use in financial markets, more prominently in high frequency trading. The trading system can be broadly classified into exchange, market makers or intermediary traders and fundamental traders. The exchange is where the action of the trade is executed, and the two types of traders act as market participants in the exchange. High frequency trading, with its complex networks and numerous market participants (intermediary and fundamental traders) poses a difficulty while modelling. It involves the participants to seek the advantage of complex trading algorithms and high execution speeds to carry out large volumes of trades. To earn profits from each trade, the trader must be at the top of the order book quite frequently by executing or processing multiple trades simultaneously. This would require highly automated systems as well as the right sentiment to outperform other traders. However, always being at the top of the book is also not best for the trader, since it was the reason for the outbreak of the ‘Hot – Potato Effect,’ which in turn demands for a better and more efficient model. The characteristics of the model should be such that it should be flexible and have diverse applications. Therefore, a model which has its application in a similar field characterized by such difficulty should be chosen. It should also be flexible in its simulation so that it can be further extended and adapted for future research as well as be equipped with certain tools so that it can be perfectly used in the field of finance. In this case, the Stochastic Pi Calculus model seems to be an ideal fit for financial applications, owing to its expertise in the field of biology. It is an extension of the original Pi Calculus model and acts as a solution and an alternative to the previously flawed algorithm, provided the application of this model is further extended. This model would focus on solving the problem which led to the ‘Flash Crash’ which is the ‘Hot –Potato Effect.’ The model consists of small sub-systems, which can be integrated to form a large system. It is designed in way such that the behavior of ‘noise traders’ is considered as a random process or noise in the system. While modelling, to get a better understanding of the problem, a broader picture is taken into consideration with the trader, the system, and the market participants. The paper goes on to explain trading in exchanges, types of traders, high frequency trading, ‘Flash Crash,’ ‘Hot-Potato Effect,’ evaluation of orders and time delay in further detail. For the future, there is a need to focus on the calibration of the module so that they would interact perfectly with other modules. This model, with its application extended, would provide a basis for researchers for further research in the field of finance and computing.

Keywords: concurrent computing, high frequency trading, financial markets, stochastic pi calculus

Procedia PDF Downloads 77
26257 Healthcare Data Mining Innovations

Authors: Eugenia Jilinguirian

Abstract:

In the healthcare industry, data mining is essential since it transforms the field by collecting useful data from large datasets. Data mining is the process of applying advanced analytical methods to large patient records and medical histories in order to identify patterns, correlations, and trends. Healthcare professionals can improve diagnosis accuracy, uncover hidden linkages, and predict disease outcomes by carefully examining these statistics. Additionally, data mining supports personalized medicine by personalizing treatment according to the unique attributes of each patient. This proactive strategy helps allocate resources more efficiently, enhances patient care, and streamlines operations. However, to effectively apply data mining, however, and ensure the use of private healthcare information, issues like data privacy and security must be carefully considered. Data mining continues to be vital for searching for more effective, efficient, and individualized healthcare solutions as technology evolves.

Keywords: data mining, healthcare, big data, individualised healthcare, healthcare solutions, database

Procedia PDF Downloads 66
26256 Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering

Authors: Yunus Doğan, Ahmet Durap

Abstract:

Coastal regions are the one of the most commonly used places by the natural balance and the growing population. In coastal engineering, the most valuable data is wave behaviors. The amount of this data becomes very big because of observations that take place for periods of hours, days and months. In this study, some statistical methods such as the wave spectrum analysis methods and the standard statistical methods have been used. The goal of this study is the discovery profiles of the different coast areas by using these statistical methods, and thus, obtaining an instance based data set from the big data to analysis by using data mining algorithms. In the experimental studies, the six sample data sets about the wave behaviors obtained by 20 minutes of observations from Mersin Bay in Turkey and converted to an instance based form, while different clustering techniques in data mining algorithms were used to discover similar coastal places. Moreover, this study discusses that this summarization approach can be used in other branches collecting big data such as medicine.

Keywords: clustering algorithms, coastal engineering, data mining, data summarization, statistical methods

Procedia PDF Downloads 361
26255 Analysis of Histamine Content in Selected Food Products from the Serbian Market

Authors: Brizita Djordjevic, Bojana Vidovic, Milica Zrnic, Uros Cakar, Ivan Stankovic, Davor Korcok, Sladjana Sobajic

Abstract:

Histamine is a biogenic amine, which is formed by enzymatic decarboxylation from the amino acid histidine. It can be found in foods such as fish and fish products, meat and fermented meat products, cheese, wine and beer. The presence of histamine in these foods can indicate microbiological spoilage or poor manufacturing processes. The consumption of food containing large amounts of histamine can have toxicological consequences. In 62 food products (31 canned fish products, 19 wines and 12 cheeses) from the market of Serbia the content of histamine was determined using enzyme-linked immunosorbent assay (ELISA) test kit according to the manufacturer's instructions (Immunolab GmbH, Kassel, Germany). The detection limits of this assay were 20 µg/kg for fish and cheese and 4 µg/L for wine. The concentration of histamine varied between 0.16-207 mg/kg in canned fish products, 0.03-1.47 mg/kg in cheeses and 0.01- 0.18 mg/L in wines. In all analyzed canned fish products the results obtained for the histamine were below the limits set by European and national legislation, so they can be considered acceptable and safe for the health consumers. The levels of histamine in analyzed cheeses and wines were very low and did not pose safety concerns.

Keywords: cheese, enzyme-linked immunosorbent assay, histamine, fish products, wine

Procedia PDF Downloads 445
26254 Providing a Suitable Model for Launching New Home Appliances Products to the Market

Authors: Ebrahim Sabermaash Eshghi, Donna Sandsmark

Abstract:

In changing modern economic conditions of the world, one the most important issues facing managers of firms, is increasing the sales and profitability through sales of newly developed products. This is while purpose of decreasing unnecessary costs is one of the most essential programs of smart managers for more implementation with new conditions in current business. In modern life, condition of misgiving is dominant in all of the industries. Accordingly, in this research, influence of different aspects of presenting products to the market is investigated. This study is done through a Quantitative-Qualitative (Interviews and Questionnaire) approach. In sum, 103 of informed managers and experts of Pars-Khazar Company have been examined through census. Validity of measurement tools was approved through judgments of experts. Reliability of tools was gained through Cronbach's alpha coefficient in size of 0.930 and in sum, validity and reliability of tools were approved generally. Results of regression test revealed that the influence of all aspects of product introduction supported the performance of product, positively and significantly. In addition that influence of two new factors raised from the interview, namely Human Resource Management and Management of product’s pre-test on performance of products was approved.

Keywords: introducing products, performance, home appliances, price, advertisement, production

Procedia PDF Downloads 211
26253 Human Resource Development Strategy in Automotive Industry (Eco-Car) for ASEAN Hub

Authors: Phichak Phutrakhul

Abstract:

The purposes of this research were to study concepts and strategies of human resource development in the automotive manufacturers and to articulate the proposals against the government about the human resource development for automotive industry. In the present study, qualitative study was an in-depth interview in which the qualitative data were collected from the executive or the executive of human resource division from five automotive companies - Toyota Motor (Thailand) Co., Ltd., Nissan Motor (Thailand) Co., Ltd., Mitsubishi Motors (Thailand) Co., Ltd., Honda Automobile (Thailand) Co., Ltd., and Suzuki Motor (Thailand) Co., Ltd. Qualitative data analysis was performed by using inter-coder agreement technique. The research findings were as follows: The external factors included the current conditions of the automotive industry, government’s policy related to the automotive industry, technology, labor market and human resource development systems of the country. The internal factors included management, productive management, organizational strategies, leadership, organizational culture and philosophy of human resource development. These factors were affected to the different concept of human resources development -the traditional human resource development and the strategies of human resource development. The organization focuses on human resources as intellectual capital and uses the strategies of human resource development in all development processes. The strategies of human resource development will enhance the ability of human resources in the organization and the country.

Keywords: human resource development strategy, automotive industry, eco-cars, ASEAN

Procedia PDF Downloads 470
26252 Effect of Media Reputation on Financial Performance and Abnormal Returns of Corporate Social Responsibility Winner

Authors: Yu-Chen Wei, Dan-Leng Wang

Abstract:

This study examines whether the reputation from media press affect the financial performance and market abnormal returns around the announcement of corporate social responsibility (CSR) award in the Taiwan Stock Market. The differences between this study and prior literatures are that the media reputation of media coverage and net optimism are constructed by using content analyses. The empirical results show the corporation which won CSR awards could promote financial performance next year. The media coverage and net optimism related to CSR winner are higher than the non-CSR companies prior and after the CSR award is announced, and the differences are significant, but the difference would decrease when the day was closing to announcement. We propose that non-CSR companies may try to manipulate media press to increase the coverage and positive image received by investors compared to the CSR winners. The cumulative real returns and abnormal returns of CSR winners did not significantly higher than the non-CSR samples however the leading returns of CSR winners would higher after the award announcement two months. The comparisons of performances between CSR and non-CSR companies could be the consideration of portfolio management for mutual funds and investors.

Keywords: corporate social responsibility, financial performance, abnormal returns, media, reputation management

Procedia PDF Downloads 434
26251 Students’ Perception of Careers in Shared Services Industry

Authors: Oksana Koval, Stephen Nabareseh

Abstract:

Talent attraction is identified as a top priority between 2015 – 2020 for Shared Service Centers (SSCs) based on an industry-wide studies. Due to market dynamics and the structure of labour force, shared service industries in Eastern and Central Europe strive for qualified graduates with appropriate and unique skills to occupy such job places. The inbuilt interest and course prescriptions undertaken by prospective job seekers determine whether SSCs will eventually admit such professionals. This paper assesses students’ overall perception of careers in the shared services industry and further diagnosis gender impact and influence on the job preferences among students. Questionnaires were distributed among students in the Czech Republic universities using an online mode. Respondents vary by study year, gender, age, course of study, and work preferences. A total of 1283 student responses has been analyzed using Stata data analytics software. It was discovered that over 70% of respondents who are aware of SSCs are quite ignorant of the job opportunities offered by the centers. While majority of respondents are interested in support positions (e.g. procurement specialist, planning specialist, human resource specialist, process improvement specialist and payroll specialist, etc.), around a third of respondents (32.8 percent) will decline a job offer from SSCs. The analysis also revealed that males are more likely than females to seek careers in international companies, hence, tend to be more favorable towards shared service jobs. Females, however, have stronger preferences towards marketing and PR jobs. The research results provide insights into the job aspirations of students interviewed. The findings provide a huge resource for recruitment agencies and shared service industries to renew and redirect their search for talents into SSCs. Based on the fact that great portion of respondents are planning to start their career within 6-12 months, the research provides important highlights for the talent attraction and recruitment strategies in the industry and provides a curriculum direction in academia.

Keywords: Czech Republic labour market, gender, talent attraction, shared service centers, students

Procedia PDF Downloads 229
26250 Access to Health Data in Medical Records in Indonesia in Terms of Personal Data Protection Principles: The Limitation and Its Implication

Authors: Anny Retnowati, Elisabeth Sundari

Abstract:

This research aims to elaborate the meaning of personal data protection principles on patient access to health data in medical records in Indonesia and its implications. The method uses normative legal research by examining health law in Indonesia regarding the patient's right to access their health data in medical records. The data will be analysed qualitatively using the interpretation method to elaborate on the limitation of the meaning of personal data protection principles on patients' access to their data in medical records. The results show that patients only have the right to obtain copies of their health data in medical records. There is no right to inspect directly at any time. Indonesian health law limits the principle of patients' right to broad access to their health data in medical records. This restriction has implications for the reduction of personal data protection as part of human rights. This research contribute to show that a limitaion of personal data protection may abuse the human rights.

Keywords: access, health data, medical records, personal data, protection

Procedia PDF Downloads 93
26249 Conceptualizing the Knowledge to Manage and Utilize Data Assets in the Context of Digitization: Case Studies of Multinational Industrial Enterprises

Authors: Martin Böhmer, Agatha Dabrowski, Boris Otto

Abstract:

The trend of digitization significantly changes the role of data for enterprises. Data turn from an enabler to an intangible organizational asset that requires management and qualifies as a tradeable good. The idea of a networked economy has gained momentum in the data domain as collaborative approaches for data management emerge. Traditional organizational knowledge consequently needs to be extended by comprehensive knowledge about data. The knowledge about data is vital for organizations to ensure that data quality requirements are met and data can be effectively utilized and sovereignly governed. As this specific knowledge has been paid little attention to so far by academics, the aim of the research presented in this paper is to conceptualize it by proposing a “data knowledge model”. Relevant model entities have been identified based on a design science research (DSR) approach that iteratively integrates insights of various industry case studies and literature research.

Keywords: data management, digitization, industry 4.0, knowledge engineering, metamodel

Procedia PDF Downloads 356
26248 Assessment of Food Safety Culture in Select Restaurants and a Produce Market in Doha, Qatar

Authors: Ipek Goktepe, Israa Elnemr, Hammad Asim, Hao Feng, Mosbah Kushad, Hee Park, Sheikha Alzeyara, Mohammad Alhajri

Abstract:

Food safety management in Qatar is under the shared oversight of multiple agencies in two government ministries (Ministry of Public Health and Ministry of Municipality and Environment). Despite the increasing number and diversity of the food service establishments, no systematic food surveillance system is in place in the country, which creates a gap in terms of determining the food safety attitudes and practices applied in the food service operations. Therefore, this study seeks to partially address this gap through determination of food safety knowledge among food handlers, specifically with respect to food preparation and handling practices, and sanitation methods applied in food service providers (FSPs) and a major market in Doha, Qatar. The study covered a sample of 53 FSPs randomly selected out of 200 FSPs. Face-to-face interviews with managers at participating FSPs were conducted using a 40-questions survey. Additionally, 120 produce handlers who are in direct contact with fresh produce at the major produce market in Doha were surveyed using a questionnaire containing 21 questions. A written informed consent was obtained from each survey participant. The survey data were analyzed using the chi-square test and correlation test. The significance was evaluated at p ˂ 0.05. The results from the FSPs surveys indicated that the average age of FSPs was 11 years, with the oldest and newest being established in 1982 and 2015, respectively. Most managers (66%) had college degree and 68% of them were trained on the food safety management system known as HACCP. These surveys revealed that FSP managers’ training and education level were highly correlated with the probability of their employees receiving food safety training while managers with lower education level had no formal training on food safety for themselves nor for their employees. Casual sit-in and fine dine-in restaurants consistently kept records (100%), followed by fast food (36%), and catering establishments (14%). The produce handlers’ survey results showed that none of the workers had any training on safe produce handling practices. The majority of the workers were in the age range of 31-40 years (37%) and only 38% of them had high-school degree. Over 64% of produce handlers claimed to wash their hands 4-5 times per day but field observations pointed limited handwashing as there was soap in the settings. This observation suggests potential food safety risks since a significant correlation (p ˂ 0.01) between the educational level and the hand-washing practices was determined. This assessment on food safety culture through determination of food and produce handlers' level of knowledge and practices, the first of its kind in Qatar, demonstrated that training and education are important factors which directly impact the food safety culture in FSPs and produce markets. These findings should help in identifying the need for on-site training of food handlers for effective food safety practices in food establishments in Qatar.

Keywords: food safety, food safety culture, food service providers, food handlers

Procedia PDF Downloads 338
26247 A Concept for Flexible Battery Cell Manufacturing from Low to Medium Volumes

Authors: Tim Giesen, Raphael Adamietz, Pablo Mayer, Philipp Stiefel, Patrick Alle, Dirk Schlenker

Abstract:

The competitiveness and success of new electrical energy storages such as battery cells are significantly dependent on a short time-to-market. Producers who decide to supply new battery cells to the market need to be easily adaptable in manufacturing with respect to the early customers’ needs in terms of cell size, materials, delivery time and quantity. In the initial state, the required output rates do not yet allow the producers to have a fully automated manufacturing line nor to supply handmade battery cells. Yet there was no solution for manufacturing battery cells in low to medium volumes in a reproducible way. Thus, in terms of cell format and output quantity, a concept for the flexible assembly of battery cells was developed by the Fraunhofer-Institute for Manufacturing Engineering and Automation. Based on clustered processes, the modular system platform can be modified, enlarged or retrofitted in a short time frame according to the ordered product. The paper shows the analysis of the production steps from a conventional battery cell assembly line. Process solutions were found by using I/O-analysis, functional structures, and morphological boxes. The identified elementary functions were subsequently clustered by functional coherences for automation solutions and thus the single process cluster was generated. The result presented in this paper enables to manufacture different cell products on the same production system using seven process clusters. The paper shows the solution for a batch-wise flexible battery cell production using advanced process control. Further, the performed tests and benefits by using the process clusters as cyber-physical systems for an integrated production and value chain are discussed. The solution lowers the hurdles for SMEs to launch innovative cell products on the global market.

Keywords: automation, battery production, carrier, advanced process control, cyber-physical system

Procedia PDF Downloads 337
26246 An Alternative Credit Scoring System in China’s Consumer Lendingmarket: A System Based on Digital Footprint Data

Authors: Minjuan Sun

Abstract:

Ever since the late 1990s, China has experienced explosive growth in consumer lending, especially in short-term consumer loans, among which, the growth rate of non-bank lending has surpassed bank lending due to the development in financial technology. On the other hand, China does not have a universal credit scoring and registration system that can guide lenders during the processes of credit evaluation and risk control, for example, an individual’s bank credit records are not available for online lenders to see and vice versa. Given this context, the purpose of this paper is three-fold. First, we explore if and how alternative digital footprint data can be utilized to assess borrower’s creditworthiness. Then, we perform a comparative analysis of machine learning methods for the canonical problem of credit default prediction. Finally, we analyze, from an institutional point of view, the necessity of establishing a viable and nationally universal credit registration and scoring system utilizing online digital footprints, so that more people in China can have better access to the consumption loan market. Two different types of digital footprint data are utilized to match with bank’s loan default records. Each separately captures distinct dimensions of a person’s characteristics, such as his shopping patterns and certain aspects of his personality or inferred demographics revealed by social media features like profile image and nickname. We find both datasets can generate either acceptable or excellent prediction results, and different types of data tend to complement each other to get better performances. Typically, the traditional types of data banks normally use like income, occupation, and credit history, update over longer cycles, hence they can’t reflect more immediate changes, like the financial status changes caused by the business crisis; whereas digital footprints can update daily, weekly, or monthly, thus capable of providing a more comprehensive profile of the borrower’s credit capabilities and risks. From the empirical and quantitative examination, we believe digital footprints can become an alternative information source for creditworthiness assessment, because of their near-universal data coverage, and because they can by and large resolve the "thin-file" issue, due to the fact that digital footprints come in much larger volume and higher frequency.

Keywords: credit score, digital footprint, Fintech, machine learning

Procedia PDF Downloads 160
26245 Education Levels & University Student’s Income: Primary Data Analysis from the Universities of Punjab, Pakistan

Authors: Muhammad Ashraf

Abstract:

It is experimentally conceded reality that education not just promotes social and intellectual abilities yet, in addition, the incomes of people. The present study is directed to investigate the connection between education level and student income. Data of different education levels is acquired from 300 students through field review from four public sector Universities; two from upper Punjab (University of Gujarat and Government college university-Lahore) and two from lower Punjab (Islamia University-Bahawalpur and The University of Sahiwal). Two-phase estimation is based on the Mincerian human capital model. The first stage presents statistical/descriptive investigation, which shows positive linkage among higher education and income of the students. Econometric estimation is estimated in the second stage by applying Ordinary least Square Method (OLS). Econometric examination reaffirms the importance of higher education as the impact of higher education on students’ incomes accelerates as we move from lower-level education to higher-level education. Educational levels, experience, and working hours are sure and noteworthy with student’s income. Econometric estimation additionally investigated that M. Phil and Ph.D. students have a higher income than bachelor students. Concerning the students, the income profile study commended that the Government ought to give part-time jobs or internships to students as indicated to labor market demand.

Keywords: education, student’s income, experience, universities

Procedia PDF Downloads 117
26244 Evaluating Thailand’s Cosmetic Surgery Tourism by Taiwanese Female Tourists

Authors: Wen-Yu Chen, Chia-Yuan Hsu, Sasinee Vongsrikul

Abstract:

The present study is to explore the perception of Taiwanese females towards medical tourism in Thailand for the development of applicable marketing strategy, integrating travel motivation and cosmetic surgery trend to attract potential medical tourists from Taiwan. Since previous studies relevant to this research issue are limited, qualitative study is firstly employed by using one focus group interview and in-depth interviews with Taiwanese females. Moreover, the present research collected questionnaires from 290 Taiwanese females to provide greater understanding of research results. The top three factors that affect Taiwanese females’ decision for not going to Thailand for medical tourism are “physicians and nurses cannot speak Chinese”, “low quality of the cosmetic surgery product that I want to do”, and “the county does not have laws to protect medical tourists’ right”. The finding of the empirical part would suggest the area in medical tourism industry which Thailand should promote and emphasizes in order to increase its presence as a hub for cosmetic surgery and attract Taiwanese female market. Therefore, the study contributes to the potential development of marketing strategy for medical tourism, specifically in the area of cosmetic surgery in Thailand while targeting Taiwan market.

Keywords: Thailand, Taiwanese female tourists, medical tourism, cosmetic surgery

Procedia PDF Downloads 423
26243 Linkages between Innovation Policies and SMEs' Innovation Activities: Empirical Evidence from 15 Transition Countries

Authors: Anita Richter

Abstract:

Innovation is one of the key foundations of competitive advantage, generating growth and welfare worldwide. Consequently, all firms should innovate to bring new ideas to the market. Innovation is a vital growth driver, particularly for transition countries to move towards knowledge-based, high-income economies. However, numerous barriers, such as financial, regulatory or infrastructural constraints prevent, in particular, new and small firms in transition countries from innovating. Thus SMEs’ innovation output may benefit substantially from government support. This research paper aims to assess the effect of government interventions on innovation activities in SMEs in emerging countries. Until now academic research related to the innovation policies focused either on single country and/or high-income countries assessments and less on cross-country and/or low and middle-income countries. Therefore the paper seeks to close the research gap by providing empirical evidence from 8,500 firms in 15 transition countries (Eastern Europe, South Caucasus, South East Europe, Middle East and North Africa). Using firm-level data from the Business Environment and Enterprise Performance Survey of the World Bank and EBRD and policy data from the SME Policy Index of the OECD, the paper investigates how government interventions affect SME’s likelihood of investing in any technological and non-technological innovation. Using the Standard Linear Regression, the impact of government interventions on SMEs’ innovation output and R&D activities is measured. The empirical analysis suggests that a firm’s decision to invest into innovative activities is sensitive to government interventions. A firm’s likelihood to invest into innovative activities increases by 3% to 8%, if the innovation eco-system noticeably improves (measured by an increase of 1 level in the SME Policy Index). At the same time, a better eco-system encourages SMEs to invest more in R&D. Government reforms in establishing a dedicated policy framework (IP legislation), institutional infrastructure (science and technology parks, incubators) and financial support (public R&D grants, innovation vouchers) are particularly relevant to stimulate innovation performance in SMEs. Particular segments of the SME population, namely micro and manufacturing firms, are more likely to benefit from an increased innovation framework conditions. The marginal effects are particularly strong on product innovation, process innovation, and marketing innovation, but less on management innovation. In conclusion, government interventions supporting innovation will likely lead to higher innovation performance of SMEs. They increase productivity at both firm and country level, which is a vital step in transitioning towards knowledge-based market economies.

Keywords: innovation, research and development, government interventions, economic development, small and medium-sized enterprises, transition countries

Procedia PDF Downloads 324
26242 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment: A Practical Example

Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh

Abstract:

With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper, we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.

Keywords: mobile health, data integration, expert systems, disease-related malnutrition

Procedia PDF Downloads 477
26241 International Financial Reporting Standard Adoption and Value Relevance of Earnings in Listed Consumer Goods Companies in Nigerian

Authors: Muktar Haruna

Abstract:

This research work examines the International Financial Reporting Standard (IFRS) adoption and value relevance of earnings of listed consumer goods companies in the Nigerian. The population of the study comprises 22 listed consumer goods companies, out of which 15 were selected as sample size of the study. The scope of the study is a 12-year period covering from 2006 to 2018. Secondary data from the annual report of sampled companies were used, which consists of earnings per share (EPS), the book value of equity per share (BVE) as independent variables; firm size (FSZ) as a control variable, and market share price of sampled companies from Nigerian stock exchange as dependent variable. Multiple regressions were used to analyze the data. The results of the study showed that IFRS did not improve the value relevance of earnings after the adoption, which translates to a decrease in value relevance of accounting numbers in the post-adoption period. The major recommendation is that the Nigerian Reporting Council should ensure full compliance to all provisions of IFRS and provide uniformity in the presentation of non-current assets in the statement of financial position, where some present only net current assets leaving individual figures for current assets and liabilities invisible.

Keywords: IFRS, adoption, value relevance, earning per share, book value of equity per share

Procedia PDF Downloads 148
26240 The Prospects of Leveraging (Big) Data for Accelerating a Just Sustainable Transition around Different Contexts

Authors: Sombol Mokhles

Abstract:

This paper tries to show the prospects of utilising (big)data for enabling just the transition of diverse cities. Our key purpose is to offer a framework of applications and implications of utlising (big) data in comparing sustainability transitions across different cities. Relying on the cosmopolitan comparison, this paper explains the potential application of (big) data but also its limitations. The paper calls for adopting a data-driven and just perspective in including different cities around the world. Having a just and inclusive approach at the front and centre ensures a just transition with synergistic effects that leave nobody behind.

Keywords: big data, just sustainable transition, cosmopolitan city comparison, cities

Procedia PDF Downloads 99
26239 Physicochemical and Sensory Properties of Gluten-Free Semolina Produced from Blends of Cassava, Maize and Rice

Authors: Babatunde Stephen Oladeji, Gloria Asuquo Edet

Abstract:

The proximate, functional, pasting, and sensory properties of semolina from blends of cassava, maize, and rice were investigated. Cassava, maize, and rice were milled and sieved to pass through a 1000 µm sieve, then blended in the following ratios to produce five samples; FS₁ (40:30:30), FS₂ (20:50:30), FS₃ (25:25:50), FS₄ (34:33:33) and FS₅ (60:20:20) for cassava, maize, and rice, respectively. A market sample of wheat semolina labeled as FSc served as the control. The proximate composition, functional properties, pasting profile, and sensory characteristics of the blends were determined using standard analytical methods. The protein content of the samples ranged from 5.66% to 6.15%, with sample FS₂ having the highest value and being significantly different (p ≤ 0.05). The bulk density of the formulated samples ranged from 0.60 and 0.62 g/ml. The control (FSc) had a higher bulk density of 0.71 g/ml. The water absorption capacity of both the formulated and control samples ranged from 0.67% to 2.02%, with FS₃ having the highest value and FSc having the lowest value (0.67%). The peak viscosity of the samples ranged from 60.83-169.42 RVU, and the final viscosity of semolina samples ranged from 131.17 to 235.42 RVU. FS₅ had the highest overall acceptability score (7.46), but there was no significant difference (p ≤ 0.05) from other samples except for FS₂ (6.54) and FS₃ (6.29). This study establishes that high-quality and consumer-acceptable semolina that is comparable to the market sample could be produced from blends of cassava, maize, and rice.

Keywords: semolina, gluten, celiac disease, wheat allergies

Procedia PDF Downloads 103
26238 Consumer Behavior and the Demand for Sustainable Buildings in an Emerging Market: The Example of Brazil

Authors: Vinícius L. L. Morrone, David Douek, Helder M. F. Pereira, Bernadete L. M. Grandolpho

Abstract:

This work aimed to identify the relationships between the level of consumer environmental awareness and their search for sustainable properties, as well as to understand the main sustainability structures considered by these consumers during the decision process. Additionally, the paper looked up to the influence environmental awareness and financial status have over the disposition of buyers to pay more for sustainable properties. To achieve these objectives, 318 questionnaires were answered electronically, after being sent to the Green Building Brazil email basis, as to other Real Estate developers client basis. From all the questionnaires answered, 71 were discarded, leaving a total amount of 247 admitted questionnaires to be analyzed. The responses were evaluated based on the theory of consumer decision making, especially on the influence factors of this process. The data were processed using a PLS model, using the R software. The results have shown that the level of consumer environmental awareness effectively affects the consumer’s will of acquiring a sustainable property or, at least, a property with some environmental friendly structures. The consumer’s environmental awareness also positively impacts the importance consumers give to individual environmental friendly structures. Also, as a consumer value to those individual structures raises, it is also observed a raise in his will to buy a sustainable property. Additionally, the impact of consumer’s environmental awareness and financial status over the willingness to pay more for a property with those attributes. The results indicate that there was no relationship between consumers' environmental awareness and their willingness to pay more for a sustainable property. On the other hand, the financial status and the family income of the consumers showed a positive relation with the willingness to pay more for a sustainable property. This indicates that consumers with better financial conditions, which according to the analysis do not necessarily have a greater environmental awareness, are those who are willing to pay more for a sustainable property. Thus, this study indicates that, even if the environmental awareness impact positively the demand for sustainable structures and properties, this impact is not price reflected, due to the price elasticity of the consumption, especially for a category of lower income consumers. This paper adds to the literature in the way it projects some guidelines to the consumer’s decision process in the Real Estate market in emerging economies, as well as it presents some drivers to pricing decisions.

Keywords: consumer behavior, environmental awareness, real estate pricing, sustainable buildings

Procedia PDF Downloads 189