Search results for: land cover classification
4022 Spatio-Temporal Variability in Reciprocal Resource Subsidies across Adjacent Terrestrial and Aquatic Eastern Cape Ecosystems
Authors: Tiyisani L. Chavalala, Nicole B. Richoux, Martin H. Villet
Abstract:
Rivers and their adjacent ecosystems are linked by reciprocal ecological subsidies. Rivers receive nutrients and energy from land, and these transfers can represent important food subsidies, a phenomenon known as allochthony. Emergence of adult aquatic invertebrates can also provide important food sources to terrestrial consumers. Reciprocal subsidies are influenced by factors such as canopy cover, river flow rate and channel width, which can be highly variable through space and time. The aim of this study is to identify and quantify the main trophic links between adjacent ecosystems (terrestrial and freshwater systems) in several Eastern Cape Rivers with different catchment sizes and flow rates and to develop an understanding of the factors that affect the strength of these links and their spatial dynamics. Food sources and consumers were sampled during four seasons (August 2016, November 2016, February 2017 and May 2017), and stable isotope ratios will serve as tracers to estimate the food web structures. Emergence traps are being used to quantify the rates of emergence of adult aquatic insects, and infall-pan traps are being used to quantify the terrestrial insects falling into rivers as potential food subsidies.Keywords: emerging aquatic insects, in-falling terrestrial insects, reciprocal resource subsidies, stable isotopes
Procedia PDF Downloads 2054021 Using the Smith-Waterman Algorithm to Extract Features in the Classification of Obesity Status
Authors: Rosa Figueroa, Christopher Flores
Abstract:
Text categorization is the problem of assigning a new document to a set of predetermined categories, on the basis of a training set of free-text data that contains documents whose category membership is known. To train a classification model, it is necessary to extract characteristics in the form of tokens that facilitate the learning and classification process. In text categorization, the feature extraction process involves the use of word sequences also known as N-grams. In general, it is expected that documents belonging to the same category share similar features. The Smith-Waterman (SW) algorithm is a dynamic programming algorithm that performs a local sequence alignment in order to determine similar regions between two strings or protein sequences. This work explores the use of SW algorithm as an alternative to feature extraction in text categorization. The dataset used for this purpose, contains 2,610 annotated documents with the classes Obese/Non-Obese. This dataset was represented in a matrix form using the Bag of Word approach. The score selected to represent the occurrence of the tokens in each document was the term frequency-inverse document frequency (TF-IDF). In order to extract features for classification, four experiments were conducted: the first experiment used SW to extract features, the second one used unigrams (single word), the third one used bigrams (two word sequence) and the last experiment used a combination of unigrams and bigrams to extract features for classification. To test the effectiveness of the extracted feature set for the four experiments, a Support Vector Machine (SVM) classifier was tuned using 20% of the dataset. The remaining 80% of the dataset together with 5-Fold Cross Validation were used to evaluate and compare the performance of the four experiments of feature extraction. Results from the tuning process suggest that SW performs better than the N-gram based feature extraction. These results were confirmed by using the remaining 80% of the dataset, where SW performed the best (accuracy = 97.10%, weighted average F-measure = 97.07%). The second best was obtained by the combination of unigrams-bigrams (accuracy = 96.04, weighted average F-measure = 95.97) closely followed by the bigrams (accuracy = 94.56%, weighted average F-measure = 94.46%) and finally unigrams (accuracy = 92.96%, weighted average F-measure = 92.90%).Keywords: comorbidities, machine learning, obesity, Smith-Waterman algorithm
Procedia PDF Downloads 2974020 A Novel Method for Face Detection
Authors: H. Abas Nejad, A. R. Teymoori
Abstract:
Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, etc. in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as the user stays neutral for the majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this work, we propose a light-weight neutral vs. emotion classification engine, which acts as a preprocessor to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at Key Emotion (KE) points using a textural statistical model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a textural statistical model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves ER accuracy and simultaneously reduces the computational complexity of ER system, as validated on multiple databases.Keywords: neutral vs. emotion classification, Constrained Local Model, procrustes analysis, Local Binary Pattern Histogram, statistical model
Procedia PDF Downloads 3394019 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals
Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer
Abstract:
Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).Keywords: diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography (VOG)
Procedia PDF Downloads 2604018 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources
Authors: Mustafa Alhamdi
Abstract:
Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification
Procedia PDF Downloads 1504017 6D Posture Estimation of Road Vehicles from Color Images
Authors: Yoshimoto Kurihara, Tad Gonsalves
Abstract:
Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.Keywords: 6D posture estimation, image recognition, deep learning, AlexNet
Procedia PDF Downloads 1554016 Adapting to Rural Demographic Change: Impacts, Challenges and Opportunities for Ageing Farmers in Prachin Buri Province, Thailand
Authors: Para Jansuwan, Kerstin K. Zander
Abstract:
Most people in rural Thailand still depend on agriculture. The rural areas are undergoing changes in their demographic structures with an increasing older population, out migration of younger people and a shift away from work in the agricultural sector towards manufacturing and service provisioning. These changes may lead to a decline in agricultural productivity and food insecurity. Our research aims to examine perceptions of older farmers on how rural demographic change affects them, to investigate how farmers may change their agricultural practices to cope with their ageing and to explore the factors affecting these changes, including the opportunities and challenges arising from them. The data were collected through a household survey with 368 farmers in the Prachin Buri province in central Thailand, the main area for agricultural production. A series of binomial logistic regression models were applied to analyse the data. We found that most farmers suffered from age-related diseases, which compromised their working capacity. Most farmers attempted to reduce labour intense work, by either stopping farming through transferring farmland to their children (41%), stopping farming by giving the land to the others (e.g., selling, leasing out) (28%) and continuing farming with making some changes (e.g., changing crops, employing additional workers) (24%). Farmers’ health and having a potential farm successor were positively associated with the probability of stopping farming by transferring the land to the children. Farmers with a successor were also less likely to stop farming by giving the land to the others. Farmers’ age was negatively associated with the likelihood of continuing farming by making some changes. The results show that most farmers base their decisions on the hope that their children will take over the farms, and that without successor, farmers lease out or sell the land. Without successor, they also no longer invest in expansion and improvement of their farm production, especially adoption of innovative technologies that could help them to maintain their farm productivity. To improve farmers’ quality of life and sustain their farm productivity, policies are needed to support the viability of farms, the access to a pension system and the smooth and successful transfer of the land to a successor of farmers.Keywords: rural demographic change, older farmer, stopping farming, continuing farming, health and age, farm successor, Thailand
Procedia PDF Downloads 1144015 Impact of Land-Use and Climate Change on the Population Structure and Distribution Range of the Rare and Endangered Dracaena ombet and Dobera glabra in Northern Ethiopia
Authors: Emiru Birhane, Tesfay Gidey, Haftu Abrha, Abrha Brhan, Amanuel Zenebe, Girmay Gebresamuel, Florent Noulèkoun
Abstract:
Dracaena ombet and Dobera glabra are two of the most rare and endangered tree species in dryland areas. Unfortunately, their sustainability is being compromised by different anthropogenic and natural factors. However, the impacts of ongoing land use and climate change on the population structure and distribution of the species are less explored. This study was carried out in the grazing lands and hillside areas of the Desa'a dry Afromontane forest, northern Ethiopia, to characterize the population structure of the species and predict the impact of climate change on their potential distributions. In each land-use type, abundance, diameter at breast height, and height of the trees were collected using 70 sampling plots distributed over seven transects spaced one km apart. The geographic coordinates of each individual tree were also recorded. The results showed that the species populations were characterized by low abundance and unstable population structure. The latter was evinced by a lack of seedlings and mature trees. The study also revealed that the total abundance and dendrometric traits of the trees were significantly different between the two land uses. The hillside areas had a denser abundance of bigger and taller trees than the grazing lands. Climate change predictions using the MaxEnt model highlighted that future temperature increases coupled with reduced precipitation would lead to significant reductions in the suitable habitats of the species in northern Ethiopia. The species' suitable habitats were predicted to decline by 48–83% for D. ombet and 35–87% for D. glabra. Hence, to sustain the species populations, different strategies should be adopted, namely the introduction of alternative livelihoods (e.g., gathering NTFP) to reduce the overexploitation of the species for subsistence income and the protection of the current habitats that will remain suitable in the future using community-based exclosures. Additionally, the preservation of the species' seeds in gene banks is crucial to ensure their long-term conservation.Keywords: grazing lands, hillside areas, land-use change, MaxEnt, range limitation, rare and endangered tree species
Procedia PDF Downloads 974014 Gender Recognition with Deep Belief Networks
Authors: Xiaoqi Jia, Qing Zhu, Hao Zhang, Su Yang
Abstract:
A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets.Keywords: gender recognition, beep belief net-works, semi-supervised learning, greedy-layer wise RBMs
Procedia PDF Downloads 4534013 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification
Authors: Oumaima Khlifati, Khadija Baba
Abstract:
Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.Keywords: distress pavement, hyperparameters, automatic classification, deep learning
Procedia PDF Downloads 934012 Land Use and Natal Multimammate Mouse Abundance in Lassa Fever Endemic Villages of Eastern Sierra Leone
Authors: J. T. Koininga, J. E. Teigen, A. Wilkinson, D. Kanneh, F. Kanneh, M. Foday, D. S. Grant, M. Leach, L. M. Moses
Abstract:
Lassa fever (LF) is a severe febrile illness endemic to West Africa. While human-to-human transmission occurs, evidence suggests most LF cases originate from exposure to rodents, particularly the Natal multimammate mouse, Mastomys natalensis. Within West Africa, LF occurs primarily in rural communities where agriculture is the main economic activity. Seasonality of LF has also been linked to agricultural cycles, with peak incidence occurring in the dry season when fields are burned and plowed. To investigate this pattern of seasonality, four agricultural communities were selected for this two-year longitudinal study. Each community was to be sampled four times each year, but this was interrupted by the Ebola virus disease outbreak. Agricultural land use, forested, and fallow areas were identified through participatory mapping. Transects were plotted in each area and Sherman traps were set for four nights. Captured small mammals were identified, ear tagged, and released. Mastomys natalensis abundance was found to be highest in areas of converted fallow land and rice swamps in the dry season and upland mixed crop areas toward the onset of the rainy season. All peak times were associated with heavy perturbation of soil. All ages and genders were present during these time points. These results suggest that peak abundance of the Mastomys natalensis in agricultural areas coincides with peak incidence of LF reported in this region. Although contact with rodents may be higher in villages, our study suggests human behaviors in agricultural areas may increase risk of transmission of Lassa virus.Keywords: agriculture, land use, Lassa Fever, rodent abundance
Procedia PDF Downloads 1204011 The Asymmetric Proximal Support Vector Machine Based on Multitask Learning for Classification
Authors: Qing Wu, Fei-Yan Li, Heng-Chang Zhang
Abstract:
Multitask learning support vector machines (SVMs) have recently attracted increasing research attention. Given several related tasks, the single-task learning methods trains each task separately and ignore the inner cross-relationship among tasks. However, multitask learning can capture the correlation information among tasks and achieve better performance by training all tasks simultaneously. In addition, the asymmetric squared loss function can better improve the generalization ability of the models on the most asymmetric distributed data. In this paper, we first make two assumptions on the relatedness among tasks and propose two multitask learning proximal support vector machine algorithms, named MTL-a-PSVM and EMTL-a-PSVM, respectively. MTL-a-PSVM seeks a trade-off between the maximum expectile distance for each task model and the closeness of each task model to the general model. As an extension of the MTL-a-PSVM, EMTL-a-PSVM can select appropriate kernel functions for shared information and private information. Besides, two corresponding special cases named MTL-PSVM and EMTLPSVM are proposed by analyzing the asymmetric squared loss function, which can be easily implemented by solving linear systems. Experimental analysis of three classification datasets demonstrates the effectiveness and superiority of our proposed multitask learning algorithms.Keywords: multitask learning, asymmetric squared loss, EMTL-a-PSVM, classification
Procedia PDF Downloads 1344010 Spatial Relationship of Drug Smuggling Based on Geographic Information System Knowledge Discovery Using Decision Tree Algorithm
Authors: S. Niamkaeo, O. Robert, O. Chaowalit
Abstract:
In this investigation, we focus on discovering spatial relationship of drug smuggling along the northern border of Thailand. Thailand is no longer a drug production site, but Thailand is still one of the major drug trafficking hubs due to its topographic characteristics facilitating drug smuggling from neighboring countries. Our study areas cover three districts (Mae-jan, Mae-fahluang, and Mae-sai) in Chiangrai city and four districts (Chiangdao, Mae-eye, Chaiprakarn, and Wienghang) in Chiangmai city where drug smuggling of methamphetamine crystal and amphetamine occurs mostly. The data on drug smuggling incidents from 2011 to 2017 was collected from several national and local published news. Geo-spatial drug smuggling database was prepared. Decision tree algorithm was applied in order to discover the spatial relationship of factors related to drug smuggling, which was converted into rules using rule-based system. The factors including land use type, smuggling route, season and distance within 500 meters from check points were found that they were related to drug smuggling in terms of rules-based relationship. It was illustrated that drug smuggling was occurred mostly in forest area in winter. Drug smuggling exhibited was discovered mainly along topographic road where check points were not reachable. This spatial relationship of drug smuggling could support the Thai Office of Narcotics Control Board in surveillance drug smuggling.Keywords: decision tree, drug smuggling, Geographic Information System, GIS knowledge discovery, rule-based system
Procedia PDF Downloads 1694009 The Coverage of Women's Sport of Greek Sports Websites
Authors: Eleni Tsalkatidou
Abstract:
Despite the fact that women's sport has flourished in recent years, its media coverage remains low, as it is observed that every day men’s sports stories dominate the most popular sports websites and the same doesn’t apply to women. Many studies in the past have demonstrated that the participation of women in sport is greatly underrepresented in the media and even when it does get covered, the focus is often on femininity and attractiveness, not athleticism. This means that female athletes are often portrayed in a sexist manner and, in general, they are more deserving of media coverage as celebrities rather than because of their sporting achievements. Scholars have argued that sport is a place where sexism is cultivated, as gender roles are constructed and disputed based on social context. Although images and information about women athletes are now more than ever, thanks to Social Media where they also act as 'producers', sport is still considered as «masculine». There are many reasons why this happens, the most important of which are: a. It is considered that females don’t have the physical and athletic qualifications such as men and b. Women's sport is less commercial than men’s, so the interest is lower. Moreover, scholars have pointed out that men journalists/reporters don’t cover the women’s sport: it is more common for a woman to write about a women's sport or a female athlete. This has its roots in the conception that sport is synonymous with masculinity - which is defined as the opposite of femininity – and so if men deal with women’s sport, this will probably menace their association with masculinity. Given the above, this paper seeks to examine the amount of women’s sport coverage of five Greek popular sports websites (metrosport.gr, gazzeta.gr, sport24.gr, sdna.gr, sport-fm.gr). The posted articles from these Greek websites from January to June 2020 were selected for my content analysis, which will be used to categorize the themes in order that the following research questions could be answered: 1) Are there any articles that cover women's sports or that refer to female athletes?, 2) And if so, are they articles/reports or is it a reproduction of the press release?, 3) What kind of sports do they refer to (individual-team sport)?, 4) Are the articles signed? And if so, are they written by men or women?, 5) What textual practices are used to cover women's sport/female athletes?, 6) Based on the findings, could we argue that we have entered a new age of media coverage of women’s sport in Greece with a shift towards greater gender equality or not?Keywords: Coverage, Greek websites, Sport, Women
Procedia PDF Downloads 1434008 Analyzing Middle Actors' Influence on Land Use Policy: A Case Study in Central Kalimantan, Indonesia
Authors: Kevin Soubly, Kaysara Khatun
Abstract:
This study applies the existing Middle-Out Perspective (MOP) as a complementing analytical alternative to the customary dichotomous options of top-down vs. bottom-up strategies of international development and commons governance. It expands the framework by applying it to a new context of land management and environmental change, enabling fresh understandings of decision making around land use. Using a case study approach in Central Kalimantan, Indonesia among a village of indigenous Dayak, this study explores influences from both internal and external middle actors, utilizing qualitative empirical evidence and incorporating responses across 25 village households and 11 key stakeholders. Applying the factors of 'agency' and 'capacity' specific to the MOP, this study demonstrates middle actors’ unique capabilities and criticality to change due to their influence across various levels of decision-making. Study results indicate that middle actors play a large role, both passively and actively, both directly and indirectly, across various levels of decision-making, perception-shaping, and commons governance. In addition, the prominence of novel 'passive' middle actors, such as the internet, can provide communities themselves with a level of agency beyond that provided by other middle actors such as NGOs and palm oil industry entities – which often operate at the behest of the 'top' or out of self-interest. Further, the study posits that existing development and decision-making frameworks may misidentify the 'bottom' as the 'middle,' raising questions about traditional development and livelihood discourse, strategies, and support, from agricultural production to forest management. In conclusion, this study provides recommendations including that current policy preconceptions be reevaluated to engage middle actors in locally-adapted, integrative manners in order to improve governance and rural development efforts more broadly.Keywords: environmental management, governance, Indonesia, land use, middle actors, middle-out perspective
Procedia PDF Downloads 1154007 Modeling Thermal Changes of Urban Blocks in Relation to the Landscape Structure and Configuration in Guilan Province
Authors: Roshanak Afrakhteh, Abdolrasoul Salman Mahini, Mahdi Motagh, Hamidreza Kamyab
Abstract:
Urban Heat Islands (UHIs) are distinctive urban areas characterized by densely populated central cores surrounded by less densely populated peripheral lands. These areas experience elevated temperatures, primarily due to impermeable surfaces and specific land use patterns. The consequences of these temperature variations are far-reaching, impacting the environment and society negatively, leading to increased energy consumption, air pollution, and public health concerns. This paper emphasizes the need for simplified approaches to comprehend UHI temperature dynamics and explains how urban development patterns contribute to land surface temperature variation. To illustrate this relationship, the study focuses on the Guilan Plain, utilizing techniques like principal component analysis and generalized additive models. The research centered on mapping land use and land surface temperature in the low-lying area of Guilan province. Satellite data from Landsat sensors for three different time periods (2002, 2012, and 2021) were employed. Using eCognition software, a spatial unit known as a "city block" was utilized through object-based analysis. The study also applied the normalized difference vegetation index (NDVI) method to estimate land surface radiance. Predictive variables for urban land surface temperature within residential city blocks were identified categorized as intrinsic (related to the block's structure) and neighboring (related to adjacent blocks) variables. Principal Component Analysis (PCA) was used to select significant variables, and a Generalized Additive Model (GAM) approach, implemented using R's mgcv package, modeled the relationship between urban land surface temperature and predictor variables.Notable findings included variations in urban temperature across different years attributed to environmental and climatic factors. Block size, shared boundary, mother polygon area, and perimeter-to-area ratio were identified as main variables for the generalized additive regression model. This model showed non-linear relationships, with block size, shared boundary, and mother polygon area positively correlated with temperature, while the perimeter-to-area ratio displayed a negative trend. The discussion highlights the challenges of predicting urban surface temperature and the significance of block size in determining urban temperature patterns. It also underscores the importance of spatial configuration and unit structure in shaping urban temperature patterns. In conclusion, this study contributes to the growing body of research on the connection between land use patterns and urban surface temperature. Block size, along with block dispersion and aggregation, emerged as key factors influencing urban surface temperature in residential areas. The proposed methodology enhances our understanding of parameter significance in shaping urban temperature patterns across various regions, particularly in Iran.Keywords: urban heat island, land surface temperature, LST modeling, GAM, Gilan province
Procedia PDF Downloads 734006 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture
Authors: Thrivikraman Aswathi, S. Advaith
Abstract:
As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.Keywords: GAN, transformer, classification, multivariate time series
Procedia PDF Downloads 1304005 Blame Classification through N-Grams in E-Commerce Customer Reviews
Authors: Subhadeep Mandal, Sujoy Bhattacharya, Pabitra Mitra, Diya Guha Roy, Seema Bhattacharya
Abstract:
E-commerce firms allow customers to evaluate and review the things they buy as a positive or bad experience. The e-commerce transaction processes are made up of a variety of diverse organizations and activities that operate independently but are connected together to complete the transaction (from placing an order to the goods reaching the client). After a negative shopping experience, clients frequently disregard the critical assessment of these businesses and submit their feedback on an all-over basis, which benefits certain enterprises but is tedious for others. In this article, we solely dealt with negative reviews and attempted to distinguish between negative reviews where the e-commerce firm is explicitly blamed by customers for a bad purchasing experience and other negative reviews.Keywords: e-commerce, online shopping, customer reviews, customer behaviour, text analytics, n-grams classification
Procedia PDF Downloads 2574004 Tombs Covers "Kiswa" in Ottoman Period
Authors: Tamer Mokhtar Mohamed Ahmed
Abstract:
Throughout the ages the Caliphs, Sultans and rulers have paid great care to tomb covers and in particular to the cover of the tomb of the Prophet Muhammad as well as other prophets. For that purpose they established waqfs and ensured that the covers appeared in the most magnificent manner to befit their purpose, as we can see in the beautiful examples in museums across the world. In fact tomb covers are some of the most beautiful examples of Islamic art in their detail of craftsmanship which have made them great works of art. It became the custom that the Kiswa or the tomb covers were made of silk or satin with gold and silver threads. Museums across the word preserve examples of the highest craftsmanship of tomb covers produced in the capital of the Ottomans and other capital cities, all differing in their designs or colors reflecting the work of the individual cities like Cairo, Istanbul or Bursa. Other than the cover for the tomb of the Prophet, many other tomb covers were produced for the tombs of other prophets and their wives in Hebron. In addition tomb covers were made for the sufi saints as well as for the Ottoman sultans and for their wives and children. In this paper I will Study the Kiswa or the tomb covers in Ottoman period.Keywords: kiswa, ottoman period, textiles, silk, tomb of the Prophet Muhammad
Procedia PDF Downloads 754003 Benchmarking Bert-Based Low-Resource Language: Case Uzbek NLP Models
Authors: Jamshid Qodirov, Sirojiddin Komolov, Ravilov Mirahmad, Olimjon Mirzayev
Abstract:
Nowadays, natural language processing tools play a crucial role in our daily lives, including various techniques with text processing. There are very advanced models in modern languages, such as English, Russian etc. But, in some languages, such as Uzbek, the NLP models have been developed recently. Thus, there are only a few NLP models in Uzbek language. Moreover, there is no such work that could show which Uzbek NLP model behaves in different situations and when to use them. This work tries to close this gap and compares the Uzbek NLP models existing as of the time this article was written. The authors try to compare the NLP models in two different scenarios: sentiment analysis and sentence similarity, which are the implementations of the two most common problems in the industry: classification and similarity. Another outcome from this work is two datasets for classification and sentence similarity in Uzbek language that we generated ourselves and can be useful in both industry and academia as well.Keywords: NLP, benchmak, bert, vectorization
Procedia PDF Downloads 544002 Assessing the Community Change Effects of Transit Oriented Development in Jabodetabek, Indonesia
Authors: Hayati Sari Hasibuan, Tresna P. Soemardi, Raldi H. Koestoer, Setyo S. Moersidik
Abstract:
Facing the severe transportation system in daily basis, the government of Indonesia were searching an alternative solution to combat the acute traffic jam and the socio-economic negative effects and pollutions resulted. Transit-oriented development as a strategy in reformulating and restructuring of the urban land uses as well as the transport system will be implemented in many urban areas in Indonesia, especially in Jabodetabek. Jabodetabek is the greatest metropolitan area in Indonesia with 27.9 million inhabitants. The Jabodetabek is also the center of economic activity with gross domestic product around 22 percent of gross national product. This study aims to assess the potential of economic development and community change effects with implementing the transit oriented development. This study found that using transit oriented development as an alternative approach in reconstructing of urban land uses in metropolitan region will effect to the behaviour of urban mobilities, the housing choices, and the cost of transportation. The sustainable of socio-economic aspects resulting from the transit oriented development is the main focus of this paper. The challenge here is to explore the characteristics of transit oriented development that suitable for metropolitan region in developing country,which considering the uniqueness of nature and socio-cultural that shapes this urban.Keywords: economic development, community change, restructuring, land use, transportation, environment
Procedia PDF Downloads 4074001 Corn Production in the Visayas: An Industry Study from 2002-2019
Authors: Julie Ann L. Gadin, Andrearose C. Igano, Carl Joseph S. Ignacio, Christopher C. Bacungan
Abstract:
Corn production has become an important and pervasive industry in the Visayas for many years. Its role as a substitute commodity to rice heightens demand for health-particular consumers. Unfortunately, the corn industry is confronted with several challenges, such as weak institutions. Considering these issues, the paper examined the factors that influence corn production in the three administrative regions in the Visayas, namely, Western Visayas, Central Visayas, and Eastern Visayas. The data used was retrieved from a variety of publicly available data sources such as the Philippine Statistics Authority, the Department of Agriculture, the Philippine Crop Insurance Corporation, and the International Disaster Database. Utilizing a dataset from 2002 to 2019, the indicators were tested using three multiple linear regression (MLR) models. Results showed that the land area harvested (p=0.02), and the value of corn production (p=0.00) are statistically significant variables that influence corn production in the Visayas. Given these findings, it is suggested that the policy of forest conversion and sustainable land management should be effective in enabling farmworkers to obtain land to grow corn crops, especially in rural regions. Furthermore, the Biofuels Act of 2006, the Livestock Industry Restructuring and Rationalization Act, and supported policy, Senate Bill No. 225, or an Act Establishing the Philippine Corn Research Institute and Appropriating Funds, should be enforced inclusively in order to improve the demand for the corn-allied industries which may lead to an increase in the value and volume of corn production in the Visayas.Keywords: corn, industry, production, MLR, Visayas
Procedia PDF Downloads 2124000 Transformer-Driven Multi-Category Classification for an Automated Academic Strand Recommendation Framework
Authors: Ma Cecilia Siva
Abstract:
This study introduces a Bidirectional Encoder Representations from Transformers (BERT)-based machine learning model aimed at improving educational counseling by automating the process of recommending academic strands for students. The framework is designed to streamline and enhance the strand selection process by analyzing students' profiles and suggesting suitable academic paths based on their interests, strengths, and goals. Data was gathered from a sample of 200 grade 10 students, which included personal essays and survey responses relevant to strand alignment. After thorough preprocessing, the text data was tokenized, label-encoded, and input into a fine-tuned BERT model set up for multi-label classification. The model was optimized for balanced accuracy and computational efficiency, featuring a multi-category classification layer with sigmoid activation for independent strand predictions. Performance metrics showed an F1 score of 88%, indicating a well-balanced model with precision at 80% and recall at 100%, demonstrating its effectiveness in providing reliable recommendations while reducing irrelevant strand suggestions. To facilitate practical use, the final deployment phase created a recommendation framework that processes new student data through the trained model and generates personalized academic strand suggestions. This automated recommendation system presents a scalable solution for academic guidance, potentially enhancing student satisfaction and alignment with educational objectives. The study's findings indicate that expanding the data set, integrating additional features, and refining the model iteratively could improve the framework's accuracy and broaden its applicability in various educational contexts.Keywords: tokenized, sigmoid activation, transformer, multi category classification
Procedia PDF Downloads 93999 Indirect Solar Desalination: Value Engineering and Cost Benefit Analysis
Authors: Grace Rachid, Mutasem El Fadel, Mahmoud Al Hindi, Ibrahim Jamali, Daniel Abdel Nour
Abstract:
This study examines the feasibility of indirect solar desalination in oil producing countries in the Middle East and North Africa (MENA) region. It relies on value engineering (VE) and cost-benefit with sensitivity analyses to identify optimal coupling configurations of desalination and solar energy technologies. A comparative return on investment was assessed as a function of water costs for varied plant capacities (25,000 to 75,000 m3/day), project lifetimes (15 to 25 years), and discount rates (5 to 15%) taking into consideration water and energy subsidies, land cost as well as environmental externalities in the form of carbon credit related to greenhouse gas (GHG) emissions reduction. The results showed reverse osmosis (RO) coupled with photovoltaic technologies (PVs) as the most promising configuration, robust across different prices for Brent oil, discount rates, as well as different project lifetimes. Environmental externalities and subsidies analysis revealed that a 16% reduction in existing subsidy on water tariffs would ensure economic viability. Additionally, while land costs affect investment attractiveness, the viability of RO coupled with PV remains possible for a land purchase cost < $ 80/m2 or a lease rate < $1/m2/yr. Beyond those rates, further subsidy lifting is required.Keywords: solar energy, desalination, value engineering, CBA, carbon credit, subsidies
Procedia PDF Downloads 5763998 Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling
Authors: Ali Ben Abbes, ImedRiadh Farah, Vincent Barra
Abstract:
Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images I1, I2, … In at different periods (t = 1, 2, ..., n). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method.Keywords: multi-temporal satellite image, urban growth, non-stationary, stochastic model
Procedia PDF Downloads 4283997 Effect of Coaching Related Incompetency to Stand Trial on Symptom Validity Test: Robustness, Sensitivity, and Specificity
Authors: Natthawut Arin
Abstract:
In forensic contexts, competency to stand trial assessments are the most common referrals. The defendants may attempt to endorse psychopathology symptoms and feign incompetent. Coaching, which can be teaching them test-taking strategies to avoid detection of psychopathological symptoms feigning. Recently, the Symptom Validity Testings (SVTs) were created to detect feigning. Moreover, the works of the literature showed that the effects of coaching on SVTs may be more robust to the effects of coaching. Thai Symptom Validity Test (SVT-Th) was designed as SVTs which demonstrated adequate psychometric properties and ability to classify between feigners and honest responders. Thus, the current study to examine the utility as the robustness of SVT-Th in the detection of feigned psychopathology. Participants consisted of 120 were recruited from undergraduate courses in psychology, randomly assigned to one of three groups. The SVT-Th was administered to those three scenario-experimental groups: (a) Uncoached group were asked to respond honestly (n=40), (b) Symptom-coached without warning group were asked to feign psychiatric symptoms to gain incompetency to stand trial (n=40), while (c) Test-coached with warning group were asked to feign psychiatric symptoms to avoid test detection but being incompetency to stand trial (n=40). Group differences were analyzed using one-way ANOVAs. The result revealed an uncoached group (M = 4.23, SD.= 5.20) had significantly lower SVT-Th mean scores than those both coached groups (M =185.00, SD.= 72.88 and M = 132.10, SD.= 54.06, respectively). Classification rates were calculated to determine the classification accuracy. Result indicated that SVT-Th had overall classification accuracy rates of 96.67% with acceptable of 95% sensitivity and 100% specificity rates. Overall, the results of the present study indicate that the SVT-Th yielded high adequate indices of accuracy and these findings suggest that the SVT-Th is robustness against coaching.Keywords: incompetency to stand trial, coaching, robustness, classification accuracy
Procedia PDF Downloads 1383996 Determining Optimal Number of Trees in Random Forests
Authors: Songul Cinaroglu
Abstract:
Background: Random Forest is an efficient, multi-class machine learning method using for classification, regression and other tasks. This method is operating by constructing each tree using different bootstrap sample of the data. Determining the number of trees in random forests is an open question in the literature for studies about improving classification performance of random forests. Aim: The aim of this study is to analyze whether there is an optimal number of trees in Random Forests and how performance of Random Forests differ according to increase in number of trees using sample health data sets in R programme. Method: In this study we analyzed the performance of Random Forests as the number of trees grows and doubling the number of trees at every iteration using “random forest” package in R programme. For determining minimum and optimal number of trees we performed Mc Nemar test and Area Under ROC Curve respectively. Results: At the end of the analysis it was found that as the number of trees grows, it does not always means that the performance of the forest is better than forests which have fever trees. In other words larger number of trees only increases computational costs but not increases performance results. Conclusion: Despite general practice in using random forests is to generate large number of trees for having high performance results, this study shows that increasing number of trees doesn’t always improves performance. Future studies can compare different kinds of data sets and different performance measures to test whether Random Forest performance results change as number of trees increase or not.Keywords: classification methods, decision trees, number of trees, random forest
Procedia PDF Downloads 3953995 Assessment of the Impact of Road Transportation Improvement on Rural Development
Authors: Mohammad Mirwais Arghandiwal, Fujita Motohiro, Wisinee Wisetjindawat
Abstract:
Since 2001, the new government of Afghanistan addressed the improvement of transportation in rural areas as one of the key issues for the country development. This paper thus, aims to show the impotency of transportation in the rural area of Kabul province. A field survey in Kabul Province capital of Afghanistan has been conducted during March, 2015, and 201 questionnaires were collected from four districts named Shakar Dara, Paghman, Char Asyab, and Khak Jabar to investigate the impacts of road transportation on the people’s daily life. The districts had their road projects constructed during the last 3-5 years. The interviewees are chosen randomly from a different category of districts residences. As transportation is one of the most important factors for the development of the communities, during the survey it was very easily to observe a positive effect on the life of people. The improvement on the accessibility has had a positive impact on the land and land price. In this paper, a model is created to show the relationship between different factors and the land price improvement. In the end, a recommendation is presented on the establishment of the community council for a better use and maintenance of road projects. We emphasize on a public and private partnership at a community level in the districts during the construction period too. In addition, the communities should be encouraged on their positive role in the improvement of transportation through their participation and collaboration with the local government.Keywords: accessibility, Afghanistan, poverty, rural area, transportation development
Procedia PDF Downloads 4363994 The Utilization of Rain Water to Ground Water with Tube in the Area of Tourism in Yogyakarta
Authors: Kurniawan Agung Pambudi, Alfian Deo Pradipta
Abstract:
Yogyakarta is the famous tourism city in Indonesia. The Tugu Jogja is a tourism center located in Jetis. To support the tourism activities required facilities such as tourist hotel and guest house. The existence of tourism also has an impact on the environment. The surface of the land is covered by cement and a local company dealing in ceramics, then an infiltration process is not running. The existence of the building in layers resulting in the amount of water resource in Jetis decreases. The purpose of this research is to know the impact of the construction of the building in layers in Jetis. To obtain the data done by observation, measurements and taking the land profile, along with the interview to people in Jetis. The results of the study showed that the number of water sources in Jetis, Yogyakarta start decreases as a result of the construction of the building on stilts as a result, the height of the surface of the groundwater decreases and digging a pit must be in to get the source of the waters. Based on the results of research it can be concluded that the height of the surface of the groundwater decreases. To resolve the issue required a method to rainwater can seep into the ground for maximum. The rain that fell upon the precarious houses or other buildings is channeled toward the ground through the tubes with the depth of 1-2 meters. Rainwater will be absorbed into the land and increase the amount of ground water.Keywords: rain water, tube, water resource, groundwater
Procedia PDF Downloads 2233993 Ecological Planning Method of Reclamation Area Based on Ecological Management of Spartina Alterniflora: A Case Study of Xihu Harbor in Xiangshan County
Abstract:
The study region Xihu Harbor in Xiangshan County, Ningbo City is located in the central coast of Zhejiang Province. Concerning the wave dispating issue, Ningbo government firstly introduced Spartina alterniflora in 1980s. In the 1990s, S. alterniflora spread so rapidly thus a ‘grassland’ in the sea has been created nowadays. It has become the most important invasive plant of China’s coastal tidal flats. Although S. alterniflora had some ecological and economic functions, it has also brought series of hazards. It has ecological hazards on many aspects, including biomass and biodiversity, hydrodynamic force and sedimentation process, nutrient cycling of tidal flat, succession sequence of soil and plants and so on. On engineering, it courses problems of poor drainage and channel blocking. On economy, the hazard mainly reflected in the threat on aquaculture industry. The purpose of this study is to explore an ecological, feasible and economical way to manage Spartina alterniflora and use the land formed by it, taking Xihu Harbor in Xiangshan County as a case. Comparison method, mathematical modeling, qualitative and quantitative analysis are utilized to proceed the study. Main outcomes are as follows. By comparing a series of S. alterniflora managing methods which include the combination of mechanical cutting and hydraulic reclamation, waterlogging, herbicide and biological substitution from three standpoints – ecology, engineering and economy. It is inferred that the combination of mechanical cutting and hydraulic reclamation is among the top rank of S. alternifora managing methods. The combination of mechanical cutting and hydraulic reclamation means using large-scale mechanical equipment like large screw seagoing dredger to excavate the S. alterniflora with root and mud together. Then the mix of mud and grass was blown off nearby coastal tidal zone transported by pipelines, which can cushion the silt of tidal zone to form a land. However, as man-made land by coast, the reclamation area’s ecological sensitivity is quite high and will face high possibility of flood threat. Therefore, the reclamation area has many reasonability requirements, including ones on location, specific scope, water surface rate, direction of main watercourse, site of water-gate, the ratio of ecological land to urban construction land. These requirements all became important basis when the planning was being made. The water system planning, green space system planning, road structure and land use all need to accommodate the ecological requests. Besides, the profits from the formed land is the managing project’s source of funding, so how to utilize land efficiently is another considered point in the planning. It is concluded that by aiming at managing a large area of S. alterniflora, the combination of mechanical cutting and hydraulic reclamation is an ecological, feasible and economical method. The planning of reclamation area should fully respect the natural environment and possible disasters. Then the planning which makes land use efficient, reasonable, ecological will promote the development of the area’s city construction.Keywords: ecological management, ecological planning method, reclamation area, Spartina alternifora, Xihu harbor
Procedia PDF Downloads 309