Search results for: image correlation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6520

Search results for: image correlation

5440 A Study of Evaporative Heat Loss from the Skin of Baby Elephants (Elephas maximus maximus) at Elephant Transit Home

Authors: G .D. B. N. Kulasaooriya, H. B. S. Ariyarathne, I. Abeygunawardene, A. A. J. Rafarathne, B. V. Perera

Abstract:

Elephant is the largest resident of the wild and has small surface to volume ratio as well as less number of sweat glands which cause challenges to the thermoregulation of this mammal. However, this megaherbivore has adopted specialised meachanisms to maintain its thermal balance through behavioral adaptations, ear flapping and well anastomosed arterioles and venules of the ear. Nevertheless, little is known on the involvement of the skin in the process of thermoregulation. The present study was undertaken to monitor the water evaporation rate from the skin of unrestrained wild elephant calves throughout the day and to understand its importance in the thermoregulation. Seven baby elephants housed in the elephant transit home, Udawalawe were used. Ambient temparature, relative humidity (RH) and radiation heat load was monitored throughout the day of the study period. Similarly, surface temparature of the skin was taken at six points including lateral ear pinna, lateral body and the rump during the same period. The skin water evaporation was also measured from the same sites using cobolt chloride method. The surface are of the skin was determined by assigning geometrical shapes to each body part. The results showed that the ambient temperature gradually increased with the day reaching maximum around 3.00 pm. The relative humidity was lowest early in the morning. The radiation heat load did not show any significant change in the study period. The skin temperature was different among lateral ear pinna, lateral body and the rump where the highest temperature was on the rump and the lowest on the lateral ear pinna. The skin temperature gradually increase with increasing ambient temperature but there was not a strong correlation (R2 =53.53) between these two. The skin temperature had strong correlation with RH (p<0.05 R2 =70.84% ) but a significant relationship was not considered since the radiation heat load was not varying in large scale. The skin evaporative water loss had a weak negative correlation with ambient temperature (correlation coefficient= -0.01) whereas strong positive correlation with RH (correlation coefficient= 25.275 ) and no corelation with radiation heat load. It also appeared that skin water loss increases as the skin temperature increased. In the present study, it was observed that on average, skin of the baby elephant looses 403 g/m2/h of water. Based on these observations it can be concluded that a large volume of water is evaporated from the skin of baby elephants and evaporative heat loss may be contributing significantly to the thermoregulation. However, further investigation on the influence of environmental factors on evaporative heat loss has to be conducted to understand the thermoregulatory mechanisms of the baby elephant.

Keywords: thermoregulation, behavioral adaptations, evaporation, elephant

Procedia PDF Downloads 378
5439 Examination of the Relationship between Managerial Competence and Job Satisfacti̇on and Career Satisfacti̇on in Sports Managers'

Authors: Omur F. Karakullukcu, Bilal Okudan, Yusuf Can

Abstract:

The aim of this study is to analyze sports managers’ managerial competence levels and job satisfaction’s correlation with career satisfaction. In the study, it has also been analyzed if there is any significant difference in sports managers’ managerial competence, job and career satisfaction in terms of gender, age, duty status, year of service and level of education. 256 sports managers, who work at department of sports service’s central and field organization at least as a chief in the manager position, have been chosen with random sampling method and they have voluntarily participated in the study. In the study, the managerial competence scale which was developed by Cetinkaya (2009), job satisfaction scale developed by Weiss at al.(1967) and Career Satisfaction Scale developed by Vatansever (2008) have been used as a data collection tool. The questionnaire form used as a data collection tool in the study includes a personal information form consisting of 5 questions; questioning gender, age, duty status, years of service and level of education. In the study, pearson correlation analysis has been used for defining the correlation of managerial competence levels, job satisfaction, and career satisfaction levels of sports managers. T-test analysis for binary grouping and anova analysis for more than binary groups have been used in the level of self-efficacy, collective and managerial competence in terms of the participants’ duty status, year of service and level of education. According to the research results, it has been found that there is a positive correlation between sports managers’ managerial competence levels, job satisfaction, and career satisfaction levels. Also, the results show that there is a significant difference in managerial competence levels, job satisfaction and career satisfaction of sports managers in terms of duty status, year of service and level of education; however, the results reveal that there is no significant difference in terms of age groups and gender.

Keywords: sports manager, managerial competence, job satisfaction, career satisfaction

Procedia PDF Downloads 263
5438 Black-Box-Base Generic Perturbation Generation Method under Salient Graphs

Authors: Dingyang Hu, Dan Liu

Abstract:

DNN (Deep Neural Network) deep learning models are widely used in classification, prediction, and other task scenarios. To address the difficulties of generic adversarial perturbation generation for deep learning models under black-box conditions, a generic adversarial ingestion generation method based on a saliency map (CJsp) is proposed to obtain salient image regions by counting the factors that influence the input features of an image on the output results. This method can be understood as a saliency map attack algorithm to obtain false classification results by reducing the weights of salient feature points. Experiments also demonstrate that this method can obtain a high success rate of migration attacks and is a batch adversarial sample generation method.

Keywords: adversarial sample, gradient, probability, black box

Procedia PDF Downloads 104
5437 Scintigraphic Image Coding of Region of Interest Based on SPIHT Algorithm Using Global Thresholding and Huffman Coding

Authors: A. Seddiki, M. Djebbouri, D. Guerchi

Abstract:

Medical imaging produces human body pictures in digital form. Since these imaging techniques produce prohibitive amounts of data, compression is necessary for storage and communication purposes. Many current compression schemes provide a very high compression rate but with considerable loss of quality. On the other hand, in some areas in medicine, it may be sufficient to maintain high image quality only in region of interest (ROI). This paper discusses a contribution to the lossless compression in the region of interest of Scintigraphic images based on SPIHT algorithm and global transform thresholding using Huffman coding.

Keywords: global thresholding transform, huffman coding, region of interest, SPIHT coding, scintigraphic images

Procedia PDF Downloads 367
5436 Changes of pH and Pseudomonas Aeruginosa Growth in Liquid Media

Authors: Sayaka Ono, Ryutaro Imai, Tomoko Ehara, Tetsuya Matsumoto, Hajime Matsumura

Abstract:

Background: Wound pH affects a number of important factors in wound healing. We previously measured the pH value of the exudates collected from second-degree burns and found that the increase in pH was observed in the burn wounds in which colonized by Staphylococcus spp., and the increase in pH was evident prior to the clinical findings of local infection. To investigate the relationship between the changes of pH value and bacterial growth, we performed in vitro study using Pseudomonas aeruginosa and liquid medium as a locally infected wound equivalent model. Methods: Pseudomonas aeruginosa standard strain (ATCCR 10145TM) was cultured at 37 °C environment in Luria Broth Miller medium. The absorbance rate which means the amount of bacteria was measured by a microplate reader 2300EnSpireTM). The pH was measured using pH-indicator strips (MColorpHastTM). The statistical analysis was performed using the product-moment correlation coefficient of Pearson's. Results: The absorbance rate and pH value were increased along with culture period. There was a positive correlation between pH value and absorbance rate (n = 27, Pearson's r = 0.985). Moreover, there was a positive correlation between pH value and the culture period (n = 18, Pearson's r = 0.901). The bacteria was well growth in the media from pH 6.6 to pH 8.0 and the pH of culture media converged at 8 -9 along with the bacterial growth. Conclusion: From these results, we conclude that pH value of the wound is correlated with the number of viable bacteria and bacterial growth periods.

Keywords: colonization, potential of hydrogen, Pseudomonas aeruginosa, wound

Procedia PDF Downloads 279
5435 Edge Enhancement Visual Methodology for Fat Amount and Distribution Assessment in Dry-Cured Ham Slices

Authors: Silvia Grassi, Stefano Schiavon, Ernestina Casiraghi, Cristina Alamprese

Abstract:

Dry-cured ham is an uncooked meat product particularly appreciated for its peculiar sensory traits among which lipid component plays a key role in defining quality and, consequently, consumers’ acceptability. Usually, fat content and distribution are chemically determined by expensive, time-consuming, and destructive analyses. Moreover, different sensory techniques are applied to assess product conformity to desired standards. In this context, visual systems are getting a foothold in the meat market envisioning more reliable and time-saving assessment of food quality traits. The present work aims at developing a simple but systematic and objective visual methodology to assess the fat amount of dry-cured ham slices, in terms of total, intermuscular and intramuscular fractions. To the aim, 160 slices from 80 PDO dry-cured hams were evaluated by digital image analysis and Soxhlet extraction. RGB images were captured by a flatbed scanner, converted in grey-scale images, and segmented based on intensity histograms as well as on a multi-stage algorithm aimed at edge enhancement. The latter was performed applying the Canny algorithm, which consists of image noise reduction, calculation of the intensity gradient for each image, spurious response removal, actual thresholding on corrected images, and confirmation of strong edge boundaries. The approach allowed for the automatic calculation of total, intermuscular and intramuscular fat fractions as percentages of the total slice area. Linear regression models were run to estimate the relationships between the image analysis results and the chemical data, thus allowing for the prediction of the total, intermuscular and intramuscular fat content by the dry-cured ham images. The goodness of fit of the obtained models was confirmed in terms of coefficient of determination (R²), hypothesis testing and pattern of residuals. Good regression models have been found being 0.73, 0.82, and 0.73 the R2 values for the total fat, the sum of intermuscular and intramuscular fat and the intermuscular fraction, respectively. In conclusion, the edge enhancement visual procedure brought to a good fat segmentation making the simple visual approach for the quantification of the different fat fractions in dry-cured ham slices sufficiently simple, accurate and precise. The presented image analysis approach steers towards the development of instruments that can overcome destructive, tedious and time-consuming chemical determinations. As future perspectives, the results of the proposed image analysis methodology will be compared with those of sensory tests in order to develop a fast grading method of dry-cured hams based on fat distribution. Therefore, the system will be able not only to predict the actual fat content but it will also reflect the visual appearance of samples as perceived by consumers.

Keywords: dry-cured ham, edge detection algorithm, fat content, image analysis

Procedia PDF Downloads 176
5434 Automated Feature Detection and Matching Algorithms for Breast IR Sequence Images

Authors: Chia-Yen Lee, Hao-Jen Wang, Jhih-Hao Lai

Abstract:

In recent years, infrared (IR) imaging has been considered as a potential tool to assess the efficacy of chemotherapy and early detection of breast cancer. Regions of tumor growth with high metabolic rate and angiogenesis phenomenon lead to the high temperatures. Observation of differences between the heat maps in long term is useful to help assess the growth of breast cancer cells and detect breast cancer earlier, wherein the multi-time infrared image alignment technology is a necessary step. Representative feature points detection and matching are essential steps toward the good performance of image registration and quantitative analysis. However, there is no clear boundary on the infrared images and the subject's posture are different for each shot. It cannot adhesive markers on a body surface for a very long period, and it is hard to find anatomic fiducial markers on a body surface. In other words, it’s difficult to detect and match features in an IR sequence images. In this study, automated feature detection and matching algorithms with two type of automatic feature points (i.e., vascular branch points and modified Harris corner) are developed respectively. The preliminary results show that the proposed method could identify the representative feature points on the IR breast images successfully of 98% accuracy and the matching results of 93% accuracy.

Keywords: Harris corner, infrared image, feature detection, registration, matching

Procedia PDF Downloads 304
5433 High Altitude Glacier Surface Mapping in Dhauliganga Basin of Himalayan Environment Using Remote Sensing Technique

Authors: Aayushi Pandey, Manoj Kumar Pandey, Ashutosh Tiwari, Kireet Kumar

Abstract:

Glaciers play an important role in climate change and are sensitive phenomena of global climate change scenario. Glaciers in Himalayas are unique as they are predominantly valley type and are located in tropical, high altitude regions. These glaciers are often covered with debris which greatly affects ablation rate of glaciers and work as a sensitive indicator of glacier health. The aim of this study is to map high altitude Glacier surface with a focus on glacial lake and debris estimation using different techniques in Nagling glacier of dhauliganga basin in Himalayan region. Different Image Classification techniques i.e. thresholding on different band ratios and supervised classification using maximum likelihood classifier (MLC) have been used on high resolution sentinel 2A level 1c satellite imagery of 14 October 2017.Here Near Infrared (NIR)/Shortwave Infrared (SWIR) ratio image was used to extract the glaciated classes (Snow, Ice, Ice Mixed Debris) from other non-glaciated terrain classes. SWIR/BLUE Ratio Image was used to map valley rock and Debris while Green/NIR ratio image was found most suitable for mapping Glacial Lake. Accuracy assessment was performed using high resolution (3 meters) Planetscope Imagery using 60 stratified random points. The overall accuracy of MLC was 85 % while the accuracy of Band Ratios was 96.66 %. According to Band Ratio technique total areal extent of glaciated classes (Snow, Ice ,IMD) in Nagling glacier was 10.70 km2 nearly 38.07% of study area comprising of 30.87 % Snow covered area, 3.93% Ice and 3.27 % IMD covered area. Non-glaciated classes (vegetation, glacial lake, debris and valley rock) covered 61.93 % of the total area out of which valley rock is dominant with 33.83% coverage followed by debris covering 27.7 % of the area in nagling glacier. Glacial lake and Debris were accurately mapped using Band ratio technique Hence, Band Ratio approach appears to be useful for the mapping of debris covered glacier in Himalayan Region.

Keywords: band ratio, Dhauliganga basin, glacier mapping, Himalayan region, maximum likelihood classifier (MLC), Sentinel-2 satellite image

Procedia PDF Downloads 228
5432 Correlation to Predict Thermal Performance According to Working Fluids of Vertical Closed-Loop Pulsating Heat Pipe

Authors: Niti Kammuang-lue, Kritsada On-ai, Phrut Sakulchangsatjatai, Pradit Terdtoon

Abstract:

The objectives of this paper are to investigate effects of dimensionless numbers on thermal performance of the vertical closed-loop pulsating heat pipe (VCLPHP) and to establish a correlation to predict the thermal performance of the VCLPHP. The CLPHPs were made of long copper capillary tubes with inner diameters of 1.50, 1.78, and 2.16mm and bent into 26 turns. Then, both ends were connected together to form a loop. The evaporator, adiabatic, and condenser sections length were equal to 50 and 150 mm. R123, R141b, acetone, ethanol, and water were chosen as variable working fluids with constant filling ratio of 50% by total volume. Inlet temperature of heating medium and adiabatic section temperature was constantly controlled at 80 and 50oC, respectively. Thermal performance was represented in a term of Kutateladze number (Ku). It can be concluded that when Prandtl number of liquid working fluid (Prl), and Karman number (Ka) increases, thermal performance increases. On contrary, when Bond number (Bo), Jacob number (Ja), and Aspect ratio (Le/Di) increases, thermal performance decreases. Moreover, the correlation to predict more precise thermal performance has been successfully established by analyzing on all dimensionless numbers that have effect on the thermal performance of the VCLPHP.

Keywords: vertical closed-loop pulsating heat pipe, working fluid, thermal performance, dimensionless parameter

Procedia PDF Downloads 414
5431 The Intersection/Union Region Computation for Drosophila Brain Images Using Encoding Schemes Based on Multi-Core CPUs

Authors: Ming-Yang Guo, Cheng-Xian Wu, Wei-Xiang Chen, Chun-Yuan Lin, Yen-Jen Lin, Ann-Shyn Chiang

Abstract:

With more and more Drosophila Driver and Neuron images, it is an important work to find the similarity relationships among them as the functional inference. There is a general problem that how to find a Drosophila Driver image, which can cover a set of Drosophila Driver/Neuron images. In order to solve this problem, the intersection/union region for a set of images should be computed at first, then a comparison work is used to calculate the similarities between the region and other images. In this paper, three encoding schemes, namely Integer, Boolean, Decimal, are proposed to encode each image as a one-dimensional structure. Then, the intersection/union region from these images can be computed by using the compare operations, Boolean operators and lookup table method. Finally, the comparison work is done as the union region computation, and the similarity score can be calculated by the definition of Tanimoto coefficient. The above methods for the region computation are also implemented in the multi-core CPUs environment with the OpenMP. From the experimental results, in the encoding phase, the performance by the Boolean scheme is the best than that by others; in the region computation phase, the performance by Decimal is the best when the number of images is large. The speedup ratio can achieve 12 based on 16 CPUs. This work was supported by the Ministry of Science and Technology under the grant MOST 106-2221-E-182-070.

Keywords: Drosophila driver image, Drosophila neuron images, intersection/union computation, parallel processing, OpenMP

Procedia PDF Downloads 239
5430 Inspection of Railway Track Fastening Elements Using Artificial Vision

Authors: Abdelkrim Belhaoua, Jean-Pierre Radoux

Abstract:

In France, the railway network is one of the main transport infrastructures and is the second largest European network. Therefore, railway inspection is an important task in railway maintenance to ensure safety for passengers using significant means in personal and technical facilities. Artificial vision has recently been applied to several railway applications due to its potential to improve the efficiency and accuracy when analyzing large databases of acquired images. In this paper, we present a vision system able to detect fastening elements based on artificial vision approach. This system acquires railway images using a CCD camera installed under a control carriage. These images are stitched together before having processed. Experimental results are presented to show that the proposed method is robust for detection fasteners in a complex environment.

Keywords: computer vision, image processing, railway inspection, image stitching, fastener recognition, neural network

Procedia PDF Downloads 453
5429 A Visualization Classification Method for Identifying the Decayed Citrus Fruit Infected by Fungi Based on Hyperspectral Imaging

Authors: Jiangbo Li, Wenqian Huang

Abstract:

Early detection of fungal infection in citrus fruit is one of the major problems in the postharvest commercialization process. The automatic and nondestructive detection of infected fruits is still a challenge for the citrus industry. At present, the visual inspection of rotten citrus fruits is commonly performed by workers through the ultraviolet induction fluorescence technology or manual sorting in citrus packinghouses to remove fruit subject with fungal infection. However, the former entails a number of problems because exposing people to this kind of lighting is potentially hazardous to human health, and the latter is very inefficient. Orange is used as a research object. This study would focus on this problem and proposed an effective method based on Vis-NIR hyperspectral imaging in the wavelength range of 400-1000 nm with a spectroscopic resolution of 2.8 nm. In this work, three normalization approaches are applied prior to analysis to reduce the effect of sample curvature on spectral profiles, and it is found that mean normalization was the most effective pretreatment for decreasing spectral variability due to curvature. Then, principal component analysis (PCA) was applied to a dataset composing of average spectra from decayed and normal tissue to reduce the dimensionality of data and observe the ability of Vis-NIR hyper-spectra to discriminate data from two classes. In this case, it was observed that normal and decayed spectra were separable along the resultant first principal component (PC1) axis. Subsequently, five wavelengths (band) centered at 577, 702, 751, 808, and 923 nm were selected as the characteristic wavelengths by analyzing the loadings of PC1. A multispectral combination image was generated based on five selected characteristic wavelength images. Based on the obtained multispectral combination image, the intensity slicing pseudocolor image processing method is used to generate a 2-D visual classification image that would enhance the contrast between normal and decayed tissue. Finally, an image segmentation algorithm for detection of decayed fruit was developed based on the pseudocolor image coupled with a simple thresholding method. For the investigated 238 independent set samples including infected fruits infected by Penicillium digitatum and normal fruits, the total success rate is 100% and 97.5%, respectively, and, the proposed algorithm also used to identify the orange infected by penicillium italicum with a 100% identification accuracy, indicating that the proposed multispectral algorithm here is an effective method and it is potential to be applied in citrus industry.

Keywords: citrus fruit, early rotten, fungal infection, hyperspectral imaging

Procedia PDF Downloads 299
5428 Variability of Surface Air Temperature in Sri Lanka and Its Relation to El Nino Southern Oscillation and Indian Ocean Dipole

Authors: Athdath Waduge Susantha Janaka Kumara, Xiefei Zhi, Zin Mie Mie Sein

Abstract:

Understanding the air temperature variability is crucially important for disaster risk reduction and management. In this study, we used 15 synoptic meteorological stations to assess the spatiotemporal variability of air temperature over Sri Lanka during 1972–2021. The empirical orthogonal function (EOF), Principal component analysis (PCA), Mann-Kendall test, power spectrum analysis and correlation coefficient analysis were used to investigate the long-term trends of air temperature and their possible relation to sea surface temperature (SST) over the region. The results indicate that an increasing trend in air temperature was observed with the abrupt climate change noted in the year 1994. The spatial distribution of EOF1 (63.5%) shows the positive and negative loading dipole patterns from south to northeast, while EOF2 (23.4%) explains warmer (colder) in some parts of central (south and east) areas. The power spectrum of PC1 (PC2) indicates that there is a significant period of 3-4 years (quasi-2 years). Moreover, Indian Ocean Dipole (IOD) provides a strong positive correlation with the air temperature of Sri Lanka, while the EL Nino Southern Oscillation (ENSO) presents a weak negative correlation. Therefore, IOD events led to higher temperatures in the region. This study’s findings can help disaster risk reduction and management in the country.

Keywords: air temperature, interannaul variability, ENSO, IOD

Procedia PDF Downloads 100
5427 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 130
5426 The Correlation between Education, Food Intake, Exercise, and Medication Obedience with the Average of Blood Sugar in Indonesia

Authors: Aisyah Rahmatul Laily

Abstract:

Indonesia Ministry of Health is increasing their awareness on non communicable diseases. From the top ten causes of death, two of them are non communicable diseases. Diabetes Mellitus is one of the two non communicable diseases above that have the increasing number of patient from year to year. From that problem, this research is made to determine the correlation between education, food intake, exercise, and the medication obedience with the average of blood sugar. In this research, the researchers used observational and cross-sectional studies. The sample that used in this research were 50 patients in Puskesmas Gamping I Yogyakarta who have suffered from Diabetes Mellitus in long period. The researcher doing anamnesis by using questionnaire to collect the data, then analyzed it with Chi Square to determine the correlation between each variable. The dependent variable in this research is the average of blood sugar, whereas the independent variables are education, food intake, do exercise, and the obedience of medication. The result shows a relation between education and average blood sugar level (p=0.029), a relation between food intake and average blood sugar level (p=0.009), and a relation between exercise and average blood sugar level (p=0.023). There is also a relation between the medication obedience with the average of blood sugar (p=0,002). The conclusion is that the positive correlations exist between education and average blood sugar level, between food intake and average blood sugar level, and between medication obedience and average blood sugar level.

Keywords: average of blood sugar, education, exercise, food intake, medication obedience

Procedia PDF Downloads 275
5425 Slugging Frequency Correlation for High Viscosity Oil-Gas Flow in Horizontal Pipeline

Authors: B. Y. Danjuma, A. Archibong-Eso, Aliyu M. Aliyu, H. Yeung

Abstract:

In this experimental investigation, a new data for slugging frequency for high viscosity oil-gas flow are reported. Scale experiments were carried out using a mixture of air and mineral oil as the liquid phase in a 17 m long horizontal pipe with 0.0762 ID. The data set was acquired using two high-speed Gamma Densitometers at a data acquisition frequency of 250 Hz over a time interval of 30 seconds. For the range of flow conditions investigated, increase in liquid oil viscosity was observed to strongly influence the slug frequency. A comparison of the present data with prediction models available in the literature revealed huge discrepancies. A new correlation incorporating the effect of viscosity on slug frequency has been proposed for the horizontal flow, which represents the main contribution of this work.

Keywords: gamma densitometer, flow pattern, pressure gradient, slug frequency

Procedia PDF Downloads 412
5424 Employee Branding: An Exploratory Study Applied to Nurses in an Organization

Authors: Pawan Hinge, Priya Gupta

Abstract:

Due to cutting edge competitions between organizations and war for talent, the workforce as an asset is gaining significance. The employees are considered as the brand ambassadors of an organization, and their interactions with the clients and customers might impact directly or indirectly on the overall value of the organization. Especially, organizations in the healthcare industry the value of an organization in the perception of their employees can be one of the revenue generating and talent retention strategy. In such context, it is essential to understand that the brand awareness among employees can effect on employer brand image and brand value since the brand ambassadors are the interface between organization and customers and clients. In this exploratory study, we have adopted both quantitative and qualitative approaches for data analysis. Our study shows existing variation among nurses working in different business units of the same organization in terms of their customer interface or interactions and brand awareness.

Keywords: brand awareness, brand image, brand value, customer interface

Procedia PDF Downloads 285
5423 Video Club as a Pedagogical Tool to Shift Teachers’ Image of the Child

Authors: Allison Tucker, Carolyn Clarke, Erin Keith

Abstract:

Introduction: In education, the determination to uncover privileged practices requires critical reflection to be placed at the center of both pre-service and in-service teacher education. Confronting deficit thinking about children’s abilities and shifting to holding an image of the child as capable and competent is necessary for teachers to engage in responsive pedagogy that meets children where they are in their learning and builds on strengths. This paper explores the ways in which early elementary teachers' perceptions of the assets of children might shift through the pedagogical use of video clubs. Video club is a pedagogical practice whereby teachers record and view short videos with the intended purpose of deepening their practices. The use of video club as a learning tool has been an extensively documented practice. In this study, a video club is used to watch short recordings of playing children to identify the assets of their students. Methodology: The study on which this paper is based asks the question: What are the ways in which teachers’ image of the child and teaching practices evolve through the use of video club focused on the strengths of children demonstrated during play? Using critical reflection, it aims to identify and describe participants’ experiences of examining their personally held image of the child through the pedagogical tool video club, and how that image influences their practices, specifically in implementing play pedagogy. Teachers enrolled in a graduate-level play pedagogy course record and watch videos of their own students as a means to notice and reflect on the learning that happens during play. Using a co-constructed viewing protocol, teachers identify student strengths and consider their pedagogical responses. Video club provides a framework for teachers to critically reflect in action, return to the video to rewatch the children or themselves and discuss their noticings with colleagues. Critical reflection occurs when there is focused attention on identifying the ways in which actions perpetuate or challenge issues of inherent power in education. When the image of the child held by the teacher is from a deficit position and is influenced by hegemonic dimensions of practice, critical reflection is essential in naming and addressing power imbalances, biases, and practices that are harmful to children and become barriers to their thriving. The data is comprised of teacher reflections, analyzed using phenomenology. Phenomenology seeks to understand and appreciate how individuals make sense of their experiences. Teacher reflections are individually read, and researchers determine pools of meaning. Categories are identified by each researcher, after which commonalities are named through a recursive process of returning to the data until no more themes emerge or saturation is reached. Findings: The final analysis and interpretation of the data are forthcoming. However, emergent analysis of the data collected using teacher reflections reveals the ways in which the use of video club grew teachers’ awareness of their image of the child. It shows video club as a promising pedagogical tool when used with in-service teachers to prompt opportunities for play and to challenge deficit thinking about children and their abilities to thrive in learning.

Keywords: asset-based teaching, critical reflection, image of the child, video club

Procedia PDF Downloads 105
5422 Music Note Detection and Dictionary Generation from Music Sheet Using Image Processing Techniques

Authors: Muhammad Ammar, Talha Ali, Abdul Basit, Bakhtawar Rajput, Zobia Sohail

Abstract:

Music note detection is an area of study for the past few years and has its own influence in music file generation from sheet music. We proposed a method to detect music notes on sheet music using basic thresholding and blob detection. Subsequently, we created a notes dictionary using a semi-supervised learning approach. After notes detection, for each test image, the new symbols are added to the dictionary. This makes the notes detection semi-automatic. The experiments are done on images from a dataset and also on the captured images. The developed approach showed almost 100% accuracy on the dataset images, whereas varying results have been seen on captured images.

Keywords: music note, sheet music, optical music recognition, blob detection, thresholding, dictionary generation

Procedia PDF Downloads 181
5421 The Study of Rapeseed Characteristics by Factor Analysis under Normal and Drought Stress Conditions

Authors: Ali Bakhtiari Gharibdosti, Mohammad Hosein Bijeh Keshavarzi, Samira Alijani

Abstract:

To understand internal characteristics relationships and determine factors which explain under consideration characteristics in rapeseed varieties, 10 rapeseed genotypes were implemented in complete accidental plot with three-time repetitions under drought stress in 2009-2010 in research field of agriculture college, Islamic Azad University, Karaj branch. In this research, 11 characteristics include of characteristics related to growth, production and functions stages was considered. Variance analysis results showed that there is a significant difference among rapeseed varieties characteristics. By calculating simple correlation coefficient under both conditions, normal and drought stress indicate that seed function characteristics in plant and pod number have positive and significant correlation in 1% probable level with seed function and selection on the base of these characteristics was effective for improving this function. Under normal and drought stress, analyzing the main factors showed that numbers of factors which have more than one amount, had five factors under normal conditions which were 82.72% of total variance totally, but under drought stress four factors diagnosed which were 76.78% of total variance. By considering total results of this research and by assessing effective characteristics for factor analysis and selecting different components of these characteristics, they can be used for modifying works to select applicable and tolerant genotypes in drought stress conditions.

Keywords: correlation, drought stress, factor analysis, rapeseed

Procedia PDF Downloads 190
5420 Experimental Evaluation of Most Sustainable Companies: Impact on Economic Growth, Return on Equity (ROE) and Methodological Comparison

Authors: Milena Serzante, Viktoriia Stankevich, Yousre Badir

Abstract:

Companies have a significant impact on the environment and society, and sustainability is important not only for ethical concerns but also for financial and economic reasons. The aim of the study is to analyze how the sustainable performance of the company impacts the economy and the business's economic performance. To achieve this goal, such methods as the Pearson correlation, Multiple Linear Regression, Cook's distance method, K-nearest neighbor and COPRAS technique were implemented. The results revealed that there is no significant correlation between different indicators of sustainable development of the company and both GDP and Return on Equity. It indicates that the methodology of evaluating sustainability causes the difference in ranking companies based on sustainable performance.

Keywords: economic impact, sustainability evaluation, sustainable companies, economic indicators, sustainability, GDP, return on equity

Procedia PDF Downloads 90
5419 Predictors of Behavior Modification Prior to Bariatric Surgery

Authors: Rosemarie Basile, Maria Loizos, John Pallarino, Karen Gibbs

Abstract:

Given that complications can be significant following bariatric surgery and with rates of long-term success measured in excess weight loss varying as low as 33% after five years, an understanding of the psychological factors that may mitigate findings and increase success and result in better screening and supports prior to surgery are critical. An internally oriented locus of control (LOC) has been identified as a predictor for success in obesity therapy, but has not been investigated within the context of bariatric surgery. It is hypothesized that making behavioral changes prior to surgery which mirror those that are required post-surgery may ultimately predict long-term success. 122 subjects participated in a clinical interview and completed self-report measures including the Multidimensional Health Locus of Control Scale, Overeating Questionnaire (OQ), and Lifestyle Questionnaire (LQ). Pearson correlations were computed between locus of control orientation and likelihood to make behavior changes prior to surgery. Pearson correlations revealed a positive correlation between locus of control and likelihood to make behavior changes r = 0.23, p < .05. As hypothesized, there was a significant correlation between internal locus of control and likelihood to make behavior changes. Participants with a higher LOC believe that they are able to make decisions about their own health. Future research will focus on whether this positive correlation is a predictor for future bariatric surgery success.

Keywords: bariatric surgery, behavior modification, health locus of control, overeating questionnaire

Procedia PDF Downloads 313
5418 Kernel-Based Double Nearest Proportion Feature Extraction for Hyperspectral Image Classification

Authors: Hung-Sheng Lin, Cheng-Hsuan Li

Abstract:

Over the past few years, kernel-based algorithms have been widely used to extend some linear feature extraction methods such as principal component analysis (PCA), linear discriminate analysis (LDA), and nonparametric weighted feature extraction (NWFE) to their nonlinear versions, kernel principal component analysis (KPCA), generalized discriminate analysis (GDA), and kernel nonparametric weighted feature extraction (KNWFE), respectively. These nonlinear feature extraction methods can detect nonlinear directions with the largest nonlinear variance or the largest class separability based on the given kernel function. Moreover, they have been applied to improve the target detection or the image classification of hyperspectral images. The double nearest proportion feature extraction (DNP) can effectively reduce the overlap effect and have good performance in hyperspectral image classification. The DNP structure is an extension of the k-nearest neighbor technique. For each sample, there are two corresponding nearest proportions of samples, the self-class nearest proportion and the other-class nearest proportion. The term “nearest proportion” used here consider both the local information and other more global information. With these settings, the effect of the overlap between the sample distributions can be reduced. Usually, the maximum likelihood estimator and the related unbiased estimator are not ideal estimators in high dimensional inference problems, particularly in small data-size situation. Hence, an improved estimator by shrinkage estimation (regularization) is proposed. Based on the DNP structure, LDA is included as a special case. In this paper, the kernel method is applied to extend DNP to kernel-based DNP (KDNP). In addition to the advantages of DNP, KDNP surpasses DNP in the experimental results. According to the experiments on the real hyperspectral image data sets, the classification performance of KDNP is better than that of PCA, LDA, NWFE, and their kernel versions, KPCA, GDA, and KNWFE.

Keywords: feature extraction, kernel method, double nearest proportion feature extraction, kernel double nearest feature extraction

Procedia PDF Downloads 344
5417 An Optimal Steganalysis Based Approach for Embedding Information in Image Cover Media with Security

Authors: Ahlem Fatnassi, Hamza Gharsellaoui, Sadok Bouamama

Abstract:

This paper deals with the study of interest in the fields of Steganography and Steganalysis. Steganography involves hiding information in a cover media to obtain the stego media in such a way that the cover media is perceived not to have any embedded message for its unintended recipients. Steganalysis is the mechanism of detecting the presence of hidden information in the stego media and it can lead to the prevention of disastrous security incidents. In this paper, we provide a critical review of the steganalysis algorithms available to analyze the characteristics of an image stego media against the corresponding cover media and understand the process of embedding the information and its detection. We anticipate that this paper can also give a clear picture of the current trends in steganography so that we can develop and improvise appropriate steganalysis algorithms.

Keywords: optimization, heuristics and metaheuristics algorithms, embedded systems, low-power consumption, steganalysis heuristic approach

Procedia PDF Downloads 292
5416 Quantitative Analysis of the Functional Characteristics of Urban Complexes Based on Station-City Integration: Fifteen Case Studies of European, North American, and East Asian Railway Stations

Authors: Dai Yizheng, Chen-Yang Zhang

Abstract:

As station-city integration has been widely accepted as a strategy for mixed-use development, a quantitative analysis of the functional characteristics of urban complexes based on station-city integration is urgently needed. Taking 15 railway stations in European, North American, and East Asian cities as the research objects, this study analyzes their functional proportion, functional positioning, and functional correlation with respect to four categories of functional facilities for both railway passenger flow and subway passenger flow. We found that (1) the functional proportion of urban complexes was mainly concentrated in three models: complementary, dominant, and equilibrium. (2) The mathematical model affected by the functional proportion was created to evaluate the functional positioning of an urban complex at three scales: station area, city, and region. (3) The strength of the correlation between the functional area and passenger flow was revealed via data analysis using Pearson’s correlation coefficient. Finally, the findings of this study provide a valuable reference for research on similar topics in other countries that are developing station-city integration.

Keywords: urban complex, station-city integration, mixed-use, function, quantitative analysis

Procedia PDF Downloads 115
5415 Variable vs. Fixed Window Width Code Correlation Reference Waveform Receivers for Multipath Mitigation in Global Navigation Satellite Systems with Binary Offset Carrier and Multiplexed Binary Offset Carrier Signals

Authors: Fahad Alhussein, Huaping Liu

Abstract:

This paper compares the multipath mitigation performance of code correlation reference waveform receivers with variable and fixed window width, for binary offset carrier and multiplexed binary offset carrier signals typically used in global navigation satellite systems. In the variable window width method, such width is iteratively reduced until the distortion on the discriminator with multipath is eliminated. This distortion is measured as the Euclidean distance between the actual discriminator (obtained with the incoming signal), and the local discriminator (generated with a local copy of the signal). The variable window width have shown better performance compared to the fixed window width. In particular, the former yields zero error for all delays for the BOC and MBOC signals considered, while the latter gives rather large nonzero errors for small delays in all cases. Due to its computational simplicity, the variable window width method is perfectly suitable for implementation in low-cost receivers.

Keywords: correlation reference waveform receivers, binary offset carrier, multiplexed binary offset carrier, global navigation satellite systems

Procedia PDF Downloads 131
5414 Automated 3D Segmentation System for Detecting Tumor and Its Heterogeneity in Patients with High Grade Ovarian Epithelial Cancer

Authors: Dimitrios Binas, Marianna Konidari, Charis Bourgioti, Lia Angela Moulopoulou, Theodore Economopoulos, George Matsopoulos

Abstract:

High grade ovarian epithelial cancer (OEC) is fatal gynecological cancer and the poor prognosis of this entity is closely related to considerable intratumoral genetic heterogeneity. By examining imaging data, it is possible to assess the heterogeneity of tumorous tissue. This study proposes a methodology for aligning, segmenting and finally visualizing information from various magnetic resonance imaging series in order to construct 3D models of heterogeneity maps from the same tumor in OEC patients. The proposed system may be used as an adjunct digital tool by health professionals for personalized medicine, as it allows for an easy visual assessment of the heterogeneity of the examined tumor.

Keywords: image segmentation, ovarian epithelial cancer, quantitative characteristics, image registration, tumor visualization

Procedia PDF Downloads 211
5413 A Correlational Study between Parentification and Memory Retention among Parentified Female Adolescents: A Neurocognitive Perspective on Parentification

Authors: Mary Dorothy Roxas, Jeian Mae Dungca, Reginald Agor, Beatriz Figueroa, Lennon Andre Patricio, Honey Joy Cabahug

Abstract:

Parentification occurs when children are expected to provide instrumental or emotional caregiving within the family. It was found that parentification has the latter effect on adolescents’ cognitive and emotional vulnerability. Attachment theory helps clarify the process of parentification as it involves the relationship between the child and the parent. Carandang theory of “taga-salo” helps explain parentification in the Philippines setting. The present study examined the potential risk of parentification on adolescent’s memory retention by hypothesizing that there is a correlation between the two. The research was conducted with 249 female adolescents ages 12-24, residing in Valenzuela City. Results indicated that there is a significant inverse correlation between parentification and memory retention.

Keywords: memory retention, neurocognitive, parentification, stress

Procedia PDF Downloads 675
5412 Correlation of Stress and Blood Glucose Level in Working Women from Tribal Region of Navapur, Dist-Nandurbar

Authors: Surekha B. Bansode, Shakeela K. Shareef

Abstract:

Working women have to face complex issues of family life and professional life. Stress is the condition that results from person’s response to physical, emotional or environmental factors. The stress response can cause problems when it overreacts or fails to turn off and reset itself properly. In the present investigation correlation between stress and blood glucose level in working women group and non working women group was studied. Working women when compared with non working women, experienced more physical and psychological stress. An additional increase in fasting blood glucose levels could be attributed to stress and anxiety they undergo at the workplace. This may lead to increase their susceptibility to develop type II Diabetes Mellitus in coming future.

Keywords: blood sugar, nutrition, stress, working women

Procedia PDF Downloads 529
5411 Dental Pathologies and Agriculture: Literature Review

Authors: Ricardo Andrés Márquez Ortiz

Abstract:

Objective: The objective of this literature review is to compile updated information from studies that have addressed the association between dental pathologies and agriculture. Materials and method: The research carried out corresponds to a documentary study of ex post facto retrospective, historiographic, and bibliometric design. An exhaustive bibliographic review search was carried out in databases and the Internet, books and articles on dental anthropology, archeology, and dentistry, on the relationship between dental pathologies and agriculture in prehistoric and current populations from different parts of the world. Subsequently, data collection was carried out through the ATLAS.ti computer program. Conclusions: In an influential article by Turner, which addresses the correlation between caries and the way of subsistence of both prehistoric and modern populations (hunting and gathering, mixed and agricultural economies), an average of 1.3% was found in hunter-gatherer societies, and 10.4% in agricultural societies. Sreebny compared global grain supply data (rice, wheat and corn) with DMF (spoiled, lost and blocked) rates. He concluded that rice has no association with dental caries, corn has a negative correlation, and wheat has a positive correlation. Additionally, intensive monoculture agricultural production systems cause an increase in dental pathologies. Meanwhile, polyculture agriculture, which leads to a more varied diet, generates a better state of dental health.

Keywords: dental pathologies, agricultural production systems, extensive agriculture, dental anthropology

Procedia PDF Downloads 44