Search results for: heavy-duty vehicles
106 Emissions and Total Cost of Ownership Assessment of Hybrid Propulsion Concepts for Bus Transport with Compressed Natural Gases or Diesel Engine
Authors: Volker Landersheim, Daria Manushyna, Thinh Pham, Dai-Duong Tran, Thomas Geury, Omar Hegazy, Steven Wilkins
Abstract:
Air pollution is one of the emerging problems in our society. Targets of reduction of CO₂ emissions address low-carbon and resource-efficient transport. (Plug-in) hybrid electric propulsion concepts offer the possibility to reduce total cost of ownership (TCO) and emissions for public transport vehicles (e.g., bus application). In this context, typically, diesel engines are used to form the hybrid propulsion system of the vehicle. Though the technological development of diesel engines experience major advantages, some challenges such as the high amount of particle emissions remain relevant. Gaseous fuels (i.e., compressed natural gases (CNGs) or liquefied petroleum gases (LPGs) represent an attractive alternative to diesel because of their composition. In the framework of the research project 'Optimised Real-world Cost-Competitive Modular Hybrid Architecture' (ORCA), which was funded by the EU, two different hybrid-electric propulsion concepts have been investigated: one using a diesel engine as internal combustion engine and one using CNG as fuel. The aim of the current study is to analyze specific benefits for the aforementioned hybrid propulsion systems for predefined driving scenarios with regard to emissions and total cost of ownership in bus application. Engine models based on experimental data for diesel and CNG were developed. For the purpose of designing optimal energy management strategies for each propulsion system, maps-driven or quasi-static models for specific engine types are used in the simulation framework. An analogous modelling approach has been chosen to represent emissions. This paper compares the two concepts regarding their CO₂ and NOx emissions. This comparison is performed for relevant bus missions (urban, suburban, with and without zero-emission zone) and with different energy management strategies. In addition to the emissions, also the downsizing potential of the combustion engine has been analysed to minimize the powertrain TCO (pTCO) for plug-in hybrid electric buses. The results of the performed analyses show that the hybrid vehicle concept using the CNG engine shows advantages both with respect to emissions as well as to pTCO. The pTCO is 10% lower, CO₂ emissions are 13% lower, and the NOx emissions are more than 50% lower than with the diesel combustion engine. These results are consistent across all usage profiles under investigation.Keywords: bus transport, emissions, hybrid propulsion, pTCO, CNG
Procedia PDF Downloads 148105 Connectivity: Connecting ActivityRethinking Streets as Public Space under the Six Dimensions of Urban Space Design in the Context of Bangladesh
Authors: Manal Anis, Bin Bakhti Sayeed
Abstract:
With the encroachment of automobile upon our communities for decades and the concomitant urban sprawl resulting in a loss of public place, it was only a matter of time before people, realizing the role of streets in stimulating urban prosperity, would start reclaiming them to rebuild their communities. In order for this restoration of communities to take effect it is imperative that streets be freed from the dominance of motor vehicles. A holistic approach to pedestrian-friendly street environment can help build communities that embody the cities in which they are found. While the developed countries are finding more and more innovative ways to integrate walkable streets to foster communal living, the developing countries still have a long way to go. Since Dhaka is still struggling to balance the growing needs of accommodating automobiles for increased population with the loss of urban community life that comes with it, it is high time that alternate approaches are looked into. This study aims to understand streets as a living corridor through which one discovers and identifies with the city. The research area is chosen to be Manik Mia Avenue, overlooking the South Plaza of the National Parliament Building in Dhaka city. Being the site of supreme power, it is precisely this symbolic importance that the National Parliament Building has in the psyche of Bangladeshis, which has given Manik Mia Avenue a significant place in the country’s history. Above all, being an avenue it is essentially a neutral territory, universally accessible, inclusive and pluralist. The needs of the Avenue’s frequent users are analyzed with the help of a multi-method approach to survey consisting of an empirical study, a questionnaire survey and interview with relevant users. The research then tries to understand the concept of walkability by exploring the different ways in which the built environment influences walking. For this analysis, the six dimensions of Matthew Carmona are taken as a guideline for a holistic approach toward the different interacting facets of an urban public space. Based on the studies, a set of criteria is proposed to evaluate, plan and design streets that are more contextual in nature. The study concludes with how the existing street patterns of Dhaka city can be rethought and redesigned to cater to peoples’ need for a public place. The proposal is meant to be an inspiration for further studies in this respect in the context of Bangladesh.Keywords: public space, six dimensions, street, urban, walkability
Procedia PDF Downloads 223104 Integration, a Tool to Develop Critical Thinking Skills of Undergraduate Veterinary Students
Authors: M. L. W. P. De Silva, R. A. C. Rabel, N. Smith, L. McIntyre, T. J Parkinson, K. A. N. Wijayawardhane
Abstract:
Curricular integration is an important concept in medical education for developing students’ ability to create connections between different medical disciplines. Problem-Based Learning (PBL) is one of the vehicles through which such integration can be achieved. During the recent review of the veterinary curriculum at the University of Peradeniya, a series of courses in Integrative Veterinary Science (IVS) were introduced, in which PBL was the primary teaching methodology. The objectives of this study were to evaluate students’ opinions on PBL as a teaching method: it should be noted that, within the context of secondary and tertiary education in Sri Lanka, this would be an entirely novel learning experience for the students. Opinions were sought at the conclusion of IVS sessions where students of semesters 2, 4, 6, and 7 (of an 8-semester program) were exposed to a two, 2-hour PBL-based case scenario. The PBL-based case scenario in semesters 2, 4, and 7 were delivered using material previously developed by an experienced PBL practitioner, whilst material for semester 6 was prepared de novo by a less experienced practitioner. Each student (semesters 2: n=38, 4: n=37, 6: n=55, and 7: n=40) completed a questionnaire which asked whether: (i) the course had improved their critical thinking skills; (ii) the learning environment was sufficiently comfortable to express/share student’s opinion; (iii) there was sufficient facilitator guidance; (iv) the online study environment enhanced learning; and (v) the students were overall satisfied with the PBL approach and IVS concept. Responses were given on a 5-point Likert-scale (strongly agree (SA), agree (A), neutral (N), disagree (D), and strongly disagree (SD)). SA and A responses were summed to provide an overall ‘satisfactory’ response. Results were subjected to frequency-distribution statistical analysis. A total of 88.5% of students gave SA+A scores to their overall satisfaction. The proportion of SA+A scores differed between different semesters, such that 95% of semester 2, 4, and 7 students gave SA+A scores, whereas only 69% of semester 6 students did so for their respective sessions. Overall, 96% of the students gave SA+A scores to the question relating to the improvement of critical thinking skills: semester 6 students’ scores were marginally, but not significantly, lower (91% SA+A) than those in other semesters. The difference of scores between semester 6 and the other semesters may be attributed to the different PBL-material used and/or the different experience levels of the practitioners that developed the study material. The use of PBL as a means of teaching IVS curriculum-integration courses was well-received by the students in terms of their overall satisfaction and their perceptions of improved critical thinking skills. Importantly, this was achieved in the face of a methodology that was entirely novel to the students. Finally, the delivery of the PBL medium was readily mastered by the practitioner to whom it was also a novel methodology.Keywords: critical thinking skills, integration, problem based learning, veterinary education
Procedia PDF Downloads 133103 Increment of Panel Flutter Margin Using Adaptive Stiffeners
Authors: S. Raja, K. M. Parammasivam, V. Aghilesh
Abstract:
Fluid-structure interaction is a crucial consideration in the design of many engineering systems such as flight vehicles and bridges. Aircraft lifting surfaces and turbine blades can fail due to oscillations caused by fluid-structure interaction. Hence, it is focussed to study the fluid-structure interaction in the present research. First, the effect of free vibration over the panel is studied. It is well known that the deformation of a panel and flow induced forces affects one another. The selected panel has a span 300mm, chord 300mm and thickness 2 mm. The project is to study, the effect of cross-sectional area and the stiffener location is carried out for the same panel. The stiffener spacing is varied along both the chordwise and span-wise direction. Then for that optimal location the ideal stiffener length is identified. The effect of stiffener cross-section shapes (T, I, Hat, Z) over flutter velocity has been conducted. The flutter velocities of the selected panel with two rectangular stiffeners of cantilever configuration are estimated using MSC NASTRAN software package. As the flow passes over the panel, deformation takes place which further changes the flow structure over it. With increasing velocity, the deformation goes on increasing, but the stiffness of the system tries to dampen the excitation and maintain equilibrium. But beyond a critical velocity, the system damping suddenly becomes ineffective, so it loses its equilibrium. This estimated in NASTRAN using PK method. The first 10 modal frequencies of a simple panel and stiffened panel are estimated numerically and are validated with open literature. A grid independence study is also carried out and the modal frequency values remain the same for element lengths less than 20 mm. The current investigation concludes that the span-wise stiffener placement is more effective than the chord-wise placement. The maximum flutter velocity achieved for chord-wise placement is 204 m/s while for a span-wise arrangement it is augmented to 963 m/s for the stiffeners location of ¼ and ¾ of the chord from the panel edge (50% of chord from either side of the mid-chord line). The flutter velocity is directly proportional to the stiffener cross-sectional area. A significant increment in flutter velocity from 218m/s to 1024m/s is observed for the stiffener lengths varying from 50% to 60% of the span. The maximum flutter velocity above Mach 3 is achieved. It is also observed that for a stiffened panel, the full effect of stiffener can be achieved only when the stiffener end is clamped. Stiffeners with Z cross section incremented the flutter velocity from 142m/s (Panel with no stiffener) to 328 m/s, which is 2.3 times that of simple panel.Keywords: stiffener placement, stiffener cross-sectional area, stiffener length, stiffener cross sectional area shape
Procedia PDF Downloads 294102 Discrete PID and Discrete State Feedback Control of a Brushed DC Motor
Authors: I. Valdez, J. Perdomo, M. Colindres, N. Castro
Abstract:
Today, digital servo systems are extensively used in industrial manufacturing processes, robotic applications, vehicles and other areas. In such control systems, control action is provided by digital controllers with different compensation algorithms, which are designed to meet specific requirements for a given application. Due to the constant search for optimization in industrial processes, it is of interest to design digital controllers that offer ease of realization, improved computational efficiency, affordable return rates, and ease of tuning that ultimately improve the performance of the controlled actuators. There is a vast range of options of compensation algorithms that could be used, although in the industry, most controllers used are based on a PID structure. This research article compares different types of digital compensators implemented in a servo system for DC motor position control. PID compensation is evaluated on its two most common architectures: PID position form (1 DOF), and PID speed form (2 DOF). State feedback algorithms are also evaluated, testing two modern control theory techniques: discrete state observer for non-measurable variables tracking, and a linear quadratic method which allows a compromise between the theoretical optimal control and the realization that most closely matches it. The compared control systems’ performance is evaluated through simulations in the Simulink platform, in which it is attempted to model accurately each of the system’s hardware components. The criteria by which the control systems are compared are reference tracking and disturbance rejection. In this investigation, it is considered that the accurate tracking of the reference signal for a position control system is particularly important because of the frequency and the suddenness in which the control signal could change in position control applications, while disturbance rejection is considered essential because the torque applied to the motor shaft due to sudden load changes can be modeled as a disturbance that must be rejected, ensuring reference tracking. Results show that 2 DOF PID controllers exhibit high performance in terms of the benchmarks mentioned, as long as they are properly tuned. As for controllers based on state feedback, due to the nature and the advantage which state space provides for modelling MIMO, it is expected that such controllers evince ease of tuning for disturbance rejection, assuming that the designer of such controllers is experienced. An in-depth multi-dimensional analysis of preliminary research results indicate that state feedback control method is more satisfactory, but PID control method exhibits easier implementation in most control applications.Keywords: control, DC motor, discrete PID, discrete state feedback
Procedia PDF Downloads 268101 Magnetic Navigation in Underwater Networks
Authors: Kumar Divyendra
Abstract:
Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.Keywords: clustering, deep learning, network backbone, parallel computing
Procedia PDF Downloads 99100 Mechanical Behavior of Sandwiches with Various Glass Fiber/Epoxy Skins under Bending Load
Authors: Emre Kara, Metehan Demir, Şura Karakuzu, Kadir Koç, Ahmet F. Geylan, Halil Aykul
Abstract:
While the polymeric foam cored sandwiches have been realized for many years, recently there is a growing and outstanding interest on the use of sandwiches consisting of aluminum foam core because of their some of the distinct mechanical properties such as high bending stiffness, high load carrying and energy absorption capacities. These properties make them very useful in the transportation industry (automotive, aerospace, shipbuilding industry), where the "lightweight design" philosophy and the safety of vehicles are very important aspects. Therefore, in this study, the sandwich panels with aluminum alloy foam core and various types and thicknesses of glass fiber reinforced polymer (GFRP) skins produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique were obtained by using a commercial toughened epoxy based adhesive with two components. The aim of this contribution was the analysis of the bending response of sandwiches with various glass fiber reinforced polymer skins. The three point bending tests were performed on sandwich panels at different values of support span distance using a universal static testing machine in order to clarify the effects of the type and thickness of the GFRP skins in terms of peak load, energy efficiency and absorbed energy values. The GFRP skins were easily bonded to the aluminum alloy foam core under press machine with a very low pressure. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, collapse mechanisms and the influence of the support span length and GFRP skins. The obtained results of the experimental investigation presented that the sandwich with the skin made of thicker S-Glass fabric failed at the highest load and absorbed the highest amount of energy compared to the other sandwich specimens. The increment of the support span distance made the decrease of the peak force and absorbed energy values for each type of panels. The common collapse mechanism of the panels was obtained as core shear failure which was not affected by the skin materials and the support span distance.Keywords: aluminum foam, collapse mechanisms, light-weight structures, transport application
Procedia PDF Downloads 39899 Antimicrobial Properties of SEBS Compounds with Copper Microparticles
Authors: Vanda Ferreira Ribeiro, Daiane Tomacheski, Douglas Naue Simões, Michele Pitto, Ruth Marlene Campomanes Santana
Abstract:
Indoor environments, such as car cabins and public transportation vehicles are places where users are subject to air quality. Microorganisms (bacteria, fungi, yeasts) enter these environments through windows, ventilation systems and may use the organic particles present as a growth substrate. In addition, atmospheric pollutants can act as potential carbon and nitrogen sources for some microorganisms. Compounds base SEBS copolymers, poly(styrene-b-(ethylene-co-butylene)-b-styrene, are a class of thermoplastic elastomers (TPEs), fully recyclable and largely used in automotive parts. Metals, such as cooper and silver, have biocidal activities and the production of the SEBS compounds by melting blending with these agents can be a good option for producing compounds for use in plastic parts of ventilation systems and automotive air-conditioning, in order to minimize the problems caused by growth of pathogenic microorganisms. In this sense, the aim of this work was to evaluate the effect of copper microparticles as antimicrobial agent in compositions based on SEBS/PP/oil/calcite. Copper microparticles were used in weight proportion of 0%, 1%, 2% and 4%. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The processing parameters were 300 rpm of screw rotation rate, with a temperature profile between 150 to 190°C. SEBS based TPE compounds were injection molded. The compounds emission were characterized by gravimetric fogging test. Compounds were characterized by physical (density and staining by contact), mechanical (hardness and tension properties) and rheological properties (melt volume rate – MVR). Antibacterial properties were evaluated against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) strains. To avaluate the abilities toward the fungi have been chosen Aspergillus niger (A. niger), Candida albicans (C. albicans), Cladosporium cladosporioides (C. cladosporioides) and Penicillium chrysogenum (P. chrysogenum). The results of biological tests showed a reduction on bacteria in up to 88% in E.coli and up to 93% in S. aureus. The tests with fungi showed no conclusive results because the sample without copper also demonstrated inhibition of the development of these microorganisms. The copper addition did not cause significant variations in mechanical properties, in the MVR and the emission behavior of the compounds. The density increases with the increment of copper in compounds.Keywords: air conditioner, antimicrobial, cooper, SEBS
Procedia PDF Downloads 28398 Creating Renewable Energy Investment Portfolio in Turkey between 2018-2023: An Approach on Multi-Objective Linear Programming Method
Authors: Berker Bayazit, Gulgun Kayakutlu
Abstract:
The World Energy Outlook shows that energy markets will substantially change within a few forthcoming decades. First, determined action plans according to COP21 and aim of CO₂ emission reduction have already impact on policies of countries. Secondly, swiftly changed technological developments in the field of renewable energy will be influential upon medium and long-term energy generation and consumption behaviors of countries. Furthermore, share of electricity on global energy consumption is to be expected as high as 40 percent in 2040. Electrical vehicles, heat pumps, new electronical devices and digital improvements will be outstanding technologies and innovations will be the testimony of the market modifications. In order to meet highly increasing electricity demand caused by technologies, countries have to make new investments in the field of electricity production, transmission and distribution. Specifically, electricity generation mix becomes vital for both prevention of CO₂ emission and reduction of power prices. Majority of the research and development investments are made in the field of electricity generation. Hence, the prime source diversity and source planning of electricity generation are crucial for improving the wealth of citizen life. Approaches considering the CO₂ emission and total cost of generation, are necessary but not sufficient to evaluate and construct the product mix. On the other hand, employment and positive contribution to macroeconomic values are important factors that have to be taken into consideration. This study aims to constitute new investments in renewable energies (solar, wind, geothermal, biogas and hydropower) between 2018-2023 under 4 different goals. Therefore, a multi-objective programming model is proposed to optimize the goals of minimizing the CO₂ emission, investment amount and electricity sales price while maximizing the total employment and positive contribution to current deficit. In order to avoid the user preference among the goals, Dinkelbach’s algorithm and Guzel’s approach have been combined. The achievements are discussed with comparison to the current policies. Our study shows that new policies like huge capacity allotment might be discussible although obligation for local production is positive. The improvements in grid infrastructure and re-design support for the biogas and geothermal can be recommended.Keywords: energy generation policies, multi-objective linear programming, portfolio planning, renewable energy
Procedia PDF Downloads 24497 Topographic Coast Monitoring Using UAV Photogrammetry: A Case Study in Port of Veracruz Expansion Project
Authors: Francisco Liaño-Carrera, Jorge Enrique Baños-Illana, Arturo Gómez-Barrero, José Isaac Ramírez-Macías, Erik Omar Paredes-JuáRez, David Salas-Monreal, Mayra Lorena Riveron-Enzastiga
Abstract:
Topographical changes in coastal areas are usually assessed with airborne LIDAR and conventional photogrammetry. In recent times Unmanned Aerial Vehicles (UAV) have been used several in photogrammetric applications including coastline evolution. However, its use goes further by using the points cloud associated to generate beach Digital Elevation Models (DEM). We present a methodology for monitoring coastal topographic changes along a 50 km coastline in Veracruz, Mexico using high-resolution images (less than 10 cm ground resolution) and dense points cloud captured with an UAV. This monitoring develops in the context of the port of Veracruz expansion project which construction began in 2015 and intends to characterize coast evolution and prevent and mitigate project impacts on coastal environments. The monitoring began with a historical coastline reconstruction since 1979 to 2015 using aerial photography and Landsat imagery. We could define some patterns: the northern part of the study area showed accretion while the southern part of the study area showed erosion. Since the study area is located off the port of Veracruz, a touristic and economical Mexican urban city, where coastal development structures have been built since 1979 in a continuous way, the local beaches of the touristic area are been refilled constantly. Those areas were not described as accretion since every month sand-filled trucks refill the sand beaches located in front of the hotel area. The construction of marinas and the comitial port of Veracruz, the old and the new expansion were made in the erosion part of the area. Northward from the City of Veracruz the beaches were described as accretion areas while southward from the city, the beaches were described as erosion areas. One of the problems is the expansion of the new development in the southern area of the city using the beach view as an incentive to buy front beach houses. We assessed coastal changes between seasons using high-resolution images and also points clouds during 2016 and preliminary results confirm that UAVs can be used in permanent coast monitoring programs with excellent performance and detail.Keywords: digital elevation model, high-resolution images, topographic coast monitoring, unmanned aerial vehicle
Procedia PDF Downloads 27096 Suspected Odyssean Malaria Outbreak in Gauteng Province, September 2014
Authors: Patience Manjengwa-Hungwe, Carmen White
Abstract:
Background: Odyssean malaria refers to malaria acquired by infected mosquito bites from malaria endemic to non-endemic regions by mechanical modes of transport, such as airplanes, water vessels, trains and vehicles. Odyssean Malaria is rare and is characterised by absence of travel history to malaria endemic areas. As not anticipated in non-endemic areas, late diagnosis and treatment lead to a high case fatality rate. On 26 September 2014, the Outbreak Response Unit at the National Institute of Communicable Diseases was notified of a suspected death from Odyssean Malaria in Johannesburg, Gauteng Province, a non-endemic area. The main objective of this investigation was to identify the etiological agent's mode and source of transmission. Methods: Epidemiological surveys were conducted with the deceased’s family and clinical details were obtained from doctors who treated the victim in Southrand, Johannesburg. Blood samples were collected prior to death and sent to the National Health Laboratory Services, Johannesburg laboratory for a full blood count, urea electrolytes, creatinine, and C-reactive protein. Environmental assessments and entomological investigations, including collection of mosquito and larvae, were conducted at the deceased’s home and surrounding areas and sent to the laboratory for analysis. Results: Epidemiological surveys revealed no travel history, no mechanical transmission through blood transfusion and no previous possible exposure of the victim to malaria mosquitoes. Laboratory findings indicated that the platelet count was low. A further smear revealed that the malaria parasite was present and malaria antigen for P. falciparum was positive. Entomological findings revealed that none of the six adult or larval mosquitoes collected on site were malaria vectors. Dumping sites found at the back of the house were identified as possible sites where mosquitoes from endemic places could possibly breed. Conclusion: Given that there was no travel history or the possibility of mechanical transmission (blood transfusion or needle), the research team concluded that it is highly probable that the infection was acquired through an infective Anopheles mosquito inadvertently translocated from a Malaria endemic area by mechanical modes of transport. We recommend that clinicians in non-endemic malaria areas be aware of this type of malaria and test for malaria in patients showing malaria-like symptoms.Keywords: Odyssean Malaria, vector Bourne, malaria, epidemiological surveys
Procedia PDF Downloads 34095 Improving the Crashworthiness Characteristics of Long Steel Circular Tubes Subjected to Axial Compression by Inserting a Helical Spring
Authors: Mehdi Tajdari, Farzad Mokhtarnejad, Fatemeh Moradi, Mehdi Najafizadeh
Abstract:
Nowadays, energy absorbing devices have been widely used in all vehicles and moving parts such as railway couches, aircraft, ships and lifts. The aim is to protect these structures from serious damages while subjected to impact loads, or to minimize human injuries while collision is occurred in transportation systems. These energy-absorbing devices can dissipate kinetic energy in a wide variety of ways like friction, facture, plastic bending, crushing, cyclic plastic deformation and metal cutting. On the other hand, various structures may be used as collapsible energy absorbers. Metallic cylindrical tubes have attracted much more attention due to their high stiffness and strength combined with the low weight and ease of manufacturing process. As a matter of fact, favorable crash worthiness characteristics for energy dissipation purposes can be achieved from axial collapse of tubes while they crush progressively in symmetric modes. However, experimental and theoretical results have shown that depending on various parameters such as tube geometry, material properties of tube, boundary and loading conditions, circular tubes buckle in different modes of deformation, namely, diamond and Euler collapsing modes. It is shown that when the tube length is greater than the critical length, the tube deforms in overall Euler buckling mode, which is an inefficient mode of energy absorption and needs to be avoided in crash worthiness applications. This study develops a new method with the aim of improving energy absorption characteristics of long steel circular tubes. Inserting a helical spring into the tubes is proved experimentally to be an efficient solution. In fact when a long tube is subjected to axial compression load, the spring prevents of undesirable Euler or diamond collapsing modes. This is because the spring reinforces the internal wall of tubes and it causes symmetric deformation in tubes. In this research three specimens were prepared and three tests were performed. The dimensions of tubes were selected so that in axial compression load buckling is occurred. In the second and third tests a spring was inserted into tubes and they were subjected to axial compression load in quasi-static and impact loading, respectively. The results showed that in the second and third tests buckling were not happened and the tubes deformed in symmetric modes which are desirable in energy absorption.Keywords: energy absorption, circular tubes, collapsing deformation, crashworthiness
Procedia PDF Downloads 34094 Mitigation of Indoor Human Exposure to Traffic-Related Fine Particulate Matter (PM₂.₅)
Authors: Ruchi Sharma, Rajasekhar Balasubramanian
Abstract:
Motor vehicles emit a number of air pollutants, among which fine particulate matter (PM₂.₅) is of major concern in cities with high population density due to its negative impacts on air quality and human health. Typically, people spend more than 80% of their time indoors. Consequently, human exposure to traffic-related PM₂.₅ in indoor environments has received considerable attention. Most of the public residential buildings in tropical countries are designed for natural ventilation where indoor air quality tends to be strongly affected by the migration of air pollutants of outdoor origin. However, most of the previously reported traffic-related PM₂.₅ exposure assessment studies relied on ambient PM₂.₅ concentrations and thus, the health impact of traffic-related PM₂.₅ on occupants in naturally ventilated buildings remains largely unknown. Therefore, a systematic field study was conducted to assess indoor human exposure to traffic-related PM₂.₅ with and without mitigation measures in a typical naturally ventilated residential apartment situated near a road carrying a large volume of traffic. Three PM₂.₅ exposure scenarios were simulated in this study, i.e., Case 1: keeping all windows open with a ceiling fan on as per the usual practice, Case 2: keeping all windows fully closed as a mitigation measure, and Case 3: keeping all windows fully closed with the operation of a portable indoor air cleaner as an additional mitigation measure. The indoor to outdoor (I/O) ratios for PM₂.₅ mass concentrations were assessed and the effectiveness of using the indoor air cleaner was quantified. Additionally, potential human health risk based on the bioavailable fraction of toxic trace elements was also estimated for the three cases in order to identify a suitable mitigation measure for reducing PM₂.₅ exposure indoors. Traffic-related PM₂.₅ levels indoors exceeded the air quality guidelines (12 µg/m³) in Case 1, i.e., under natural ventilation conditions due to advective flow of outdoor air into the indoor environment. However, while using the indoor air cleaner, a significant reduction (p < 0.05) in the PM₂.₅ exposure levels was noticed indoors. Specifically, the effectiveness of the air cleaner in terms of reducing indoor PM₂.₅ exposure was estimated to be about 74%. Moreover, potential human health risk assessment also indicated a substantial reduction in potential health risk while using the air cleaner. This is the first study of its kind that evaluated the indoor human exposure to traffic-related PM₂.₅ and identified a suitable exposure mitigation measure that can be implemented in densely populated cities to realize health benefits.Keywords: fine particulate matter, indoor air cleaner, potential human health risk, vehicular emissions
Procedia PDF Downloads 12793 The Rehabilitation of The Covered Bridge Leclerc (P-00249) Passing Over the Bouchard Stream in LaSarre, Quebec
Authors: Nairy Kechichian
Abstract:
The original Leclerc Bridge is a covered wooden bridge that is considered a Quebec heritage structure with an index of 60, making it a very important provincial bridge from a historical point of view. It was constructed in 1927 and is in the rural area of Abitibi-Temiscamingue. It is a “town Québécois” type of structure, which is generally rare but common for covered bridges in Abitibi-Temiscamingue. This type of structure is composed of two trusses on both sides formed with diagonals, internal bracings, uprights and top and bottom chords to allow the transmission of loads. This structure is mostly known for its solidity, lightweightness, and ease of construction. It is a single-span bridge with a length of 25.3 meters and allows the passage of one vehicle at a time with a 4.22-meter driving lane. The structure is composed of 2 trusses located at each end of the deck, two gabion foundations at both ends, uprights and top and bottom chords. WSP (Williams Sale Partnership) Canada inc. was mandated by the Transport Minister of Quebec in 2019 to increase the capacity of the bridge from 5 tons to 30.6 tons and rehabilitate it, as it has deteriorated quite significantly over the years. The bridge was damaged due to material deterioration over time, exposure to humidity, high load effects and insect infestation. To allow the passage of 3 axle trucks, as well as to keep the integrity of this heritage structure, the final design chosen to rehabilitate the bridge involved adding a new deck independent from the roof structure of the bridge. Essentially, new steel beams support the deck loads and the desired vehicle loads. The roof of the bridge is linked to the steel deck for lateral support, but it is isolated from the wooden deck. The roof is preserved for aesthetic reasons and remains intact as it is a heritage piece. Due to strict traffic management obstacles, an efficient construction method was put into place, which consisted of building a temporary bridge and moving the existing roof onto it to allow the circulation of vehicles on one side of the temporary bridge while providing a working space for the repairs of the roof on the other side to take place simultaneously. In parallel, this method allowed the demolition and reconstruction of the existing foundation, building a new steel deck, and transporting back the roof on the new bridge. One of the main criteria for the rehabilitation of the wooden bridge was to preserve, as much as possible, the existing patrimonial architectural design of the bridge. The project was completed successfully by the end of 2021.Keywords: covered bridge, wood-steel, short span, town Québécois structure
Procedia PDF Downloads 6792 Analysis of Fuel Adulteration Consequences in Bangladesh
Authors: Mahadehe Hassan
Abstract:
In most countries manufacturing, trading and distribution of gasoline and diesel fuels belongs to the most important sectors of national economy. For Bangladesh, a robust, well-functioning, secure and smartly managed national fuel distribution chain is an essential precondition for achieving Government top priorities in development and modernization of transportation infrastructure, protection of national environment and population health as well as, very importantly, securing due tax revenue for the State Budget. Bangladesh is a developing country with complex fuel supply network, high fuel taxes incidence and – till now - limited possibilities in application of modern, automated technologies for Government national fuel market control. Such environment allows dishonest physical and legal persons and organized criminals to build and profit from illegal fuel distribution schemes and fuel illicit trade. As a result, the market transparency and the country attractiveness for foreign investments, law-abiding economic operators, national consumers, State Budget and the Government ability to finance development projects, and the country at large suffer significantly. Research shows that over 50% of retail petrol stations in major agglomerations of Bangladesh sell adulterated fuels and/or cheat customers on the real volume of the fuel pumped into their vehicles. Other forms of detected fuel illicit trade practices include misdeclaration of fuel quantitative and qualitative parameters during internal transit and selling of non-declared and smuggled fuels. The aim of the study is to recommend the implementation of a National Fuel Distribution Integrity Program (FDIP) in Bangladesh to address and resolve fuel adulteration and illicit trade problems. The program should be customized according to the specific needs of the country and implemented in partnership with providers of advanced technologies. FDIP should enable and further enhance capacity of respective Bangladesh Government authorities in identification and elimination of all forms of fuel illicit trade swiftly and resolutely. FDIP high-technology, IT and automation systems and secure infrastructures should be aimed at the following areas (1) fuel adulteration, misdeclaration and non-declaration; (2) fuel quality and; (3) fuel volume manipulation at retail level. Furthermore, overall concept of FDIP delivery and its interaction with the reporting and management systems used by the Government shall be aligned with and support objectives of the Vision 2041 and Smart Bangladesh Government programs.Keywords: fuel adulteration, octane, kerosene, diesel, petrol, pollution, carbon emissions
Procedia PDF Downloads 7891 Effect of Pre-bonding Storage Period on Laser-treated Al Surfaces
Authors: Rio Hirakawa, Christian Gundlach, Sven Hartwig
Abstract:
In recent years, the use of aluminium has further expanded and is expected to replace steel in the future as vehicles become lighter and more recyclable in order to reduce greenhouse gas (GHG) emissions and improve fuel economy. In line with this, structures and components are becoming increasingly multi-material, with different materials, including aluminium, being used in combination to improve mechanical utility and performance. A common method of assembling dissimilar materials is mechanical fastening, but it has several drawbacks, such as increased manufacturing processes and the influence of substrate-specific mechanical properties. Adhesive bonding and fusion bonding are methods that overcome the above disadvantages. In these two joining methods, surface pre-treatment of the substrate is always necessary to ensure the strength and durability of the joint. Previous studies have shown that laser surface treatment improves the strength and durability of the joint. Yan et al. showed that laser surface treatment of aluminium alloys changes α-Al2O3 in the oxide layer to γ-Al2O3. As γ-Al2O3 has a large specific surface area, is very porous and chemically active, laser-treated aluminium surfaces are expected to undergo physico-chemical changes over time and adsorb moisture and organic substances from the air or storage atmosphere. The impurities accumulated on the laser-treated surface may be released at the adhesive and bonding interface by the heat input to the bonding system during the joining phase, affecting the strength and durability of the joint. However, only a few studies have discussed the effect of such storage periods on laser-treated surfaces. This paper, therefore, investigates the ageing of laser-treated aluminium alloy surfaces through thermal analysis, electrochemical analysis and microstructural observations.AlMg3 of 0.5 mm and 1.5 mm thickness was cut using a water-jet cutting machine, cleaned and degreased with isopropanol and surface pre-treated with a pulsed fibre laser at 1060 nm wavelength, 70 W maximum power and 55 kHz repetition frequency. The aluminium surface was then analysed using SEM, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry (CV) after storage in air for various periods ranging from one day to several months TGA and FTIR analysed impurities adsorbed on the aluminium surface, while CV revealed changes in the true electrochemically active surface area. SEM also revealed visual changes on the treated surface. In summary, the changes in the laser-treated aluminium surface with storage time were investigated, and the final results were used to determine the appropriate storage period.Keywords: laser surface treatment, pre-treatment, adhesion, bonding, corrosion, durability, dissimilar material interface, automotive, aluminium alloys
Procedia PDF Downloads 8090 Dual-use UAVs in Armed Conflicts: Opportunities and Risks for Cyber and Electronic Warfare
Authors: Piret Pernik
Abstract:
Based on strategic, operational, and technical analysis of the ongoing armed conflict in Ukraine, this paper will examine the opportunities and risks of using small commercial drones (dual-use unmanned aerial vehicles, UAV) for military purposes. The paper discusses the opportunities and risks in the information domain, encompassing both cyber and electromagnetic interference and attacks. The paper will draw conclusions on a possible strategic impact to the battlefield outcomes in the modern armed conflicts by the widespread use of dual-use UAVs. This article will contribute to filling the gap in the literature by examining based on empirical data cyberattacks and electromagnetic interference. Today, more than one hundred states and non-state actors possess UAVs ranging from low cost commodity models, widely are dual-use, available and affordable to anyone, to high-cost combat UAVs (UCAV) with lethal kinetic strike capabilities, which can be enhanced with Artificial Intelligence (AI) and Machine Learning (ML). Dual-use UAVs have been used by various actors for intelligence, reconnaissance, surveillance, situational awareness, geolocation, and kinetic targeting. Thus they function as force multipliers enabling kinetic and electronic warfare attacks and provide comparative and asymmetric operational and tactical advances. Some go as far as argue that automated (or semi-automated) systems can change the character of warfare, while others observe that the use of small drones has not changed the balance of power or battlefield outcomes. UAVs give considerable opportunities for commanders, for example, because they can be operated without GPS navigation, makes them less vulnerable and dependent on satellite communications. They can and have been used to conduct cyberattacks, electromagnetic interference, and kinetic attacks. However, they are highly vulnerable to those attacks themselves. So far, strategic studies, literature, and expert commentary have overlooked cybersecurity and electronic interference dimension of the use of dual use UAVs. The studies that link technical analysis of opportunities and risks with strategic battlefield outcomes is missing. It is expected that dual use commercial UAV proliferation in armed and hybrid conflicts will continue and accelerate in the future. Therefore, it is important to understand specific opportunities and risks related to the crowdsourced use of dual-use UAVs, which can have kinetic effects. Technical countermeasures to protect UAVs differ depending on a type of UAV (small, midsize, large, stealth combat), and this paper will offer a unique analysis of small UAVs both from the view of opportunities and risks for commanders and other actors in armed conflict.Keywords: dual-use technology, cyber attacks, electromagnetic warfare, case studies of cyberattacks in armed conflicts
Procedia PDF Downloads 10289 Spatial Direct Numerical Simulation of Instability Waves in Hypersonic Boundary Layers
Authors: Jayahar Sivasubramanian
Abstract:
Understanding laminar-turbulent transition process in hyper-sonic boundary layers is crucial for designing viable high speed flight vehicles. The study of transition becomes particularly important in the high speed regime due to the effect of transition on aerodynamic performance and heat transfer. However, even after many years of research, the transition process in hyper-sonic boundary layers is still not understood. This lack of understanding of the physics of the transition process is a major impediment to the development of reliable transition prediction methods. Towards this end, spatial Direct Numerical Simulations are conducted to investigate the instability waves generated by a localized disturbance in a hyper-sonic flat plate boundary layer. In order to model a natural transition scenario, the boundary layer was forced by a short duration (localized) pulse through a hole on the surface of the flat plate. The pulse disturbance developed into a three-dimensional instability wave packet which consisted of a wide range of disturbance frequencies and wave numbers. First, the linear development of the wave packet was studied by forcing the flow with low amplitude (0.001% of the free-stream velocity). The dominant waves within the resulting wave packet were identified as two-dimensional second mode disturbance waves. Hence the wall-pressure disturbance spectrum exhibited a maximum at the span wise mode number k = 0. The spectrum broadened in downstream direction and the lower frequency first mode oblique waves were also identified in the spectrum. However, the peak amplitude remained at k = 0 which shifted to lower frequencies in the downstream direction. In order to investigate the nonlinear transition regime, the flow was forced with a higher amplitude disturbance (5% of the free-stream velocity). The developing wave packet grows linearly at first before reaching the nonlinear regime. The wall pressure disturbance spectrum confirmed that the wave packet developed linearly at first. The response of the flow to the high amplitude pulse disturbance indicated the presence of a fundamental resonance mechanism. Lower amplitude secondary peaks were also identified in the disturbance wave spectrum at approximately half the frequency of the high amplitude frequency band, which would be an indication of a sub-harmonic resonance mechanism. The disturbance spectrum indicates, however, that fundamental resonance is much stronger than sub-harmonic resonance.Keywords: boundary layer, DNS, hyper sonic flow, instability waves, wave packet
Procedia PDF Downloads 18388 Compressed Natural Gas (CNG) Injector Research for Dual Fuel Engine
Authors: Adam Majczak, Grzegorz Barański, Marcin Szlachetka
Abstract:
Environmental considerations necessitate the search for new energy sources. One of the available solutions is a partial replacement of diesel fuel by compressed natural gas (CNG) in the compression ignition engines. This type of the engines is used mainly in vans and trucks. These units are also gaining more and more popularity in the passenger car market. In Europe, this part of the market share reaches 50%. Diesel engines are also used in industry in such vehicles as ship or locomotives. Diesel engines have higher emissions of nitrogen oxides in comparison to spark ignition engines. This can be currently limited by optimizing the combustion process and the use of additional systems such as exhaust gas recirculation or AdBlue technology. As a result of the combustion process of diesel fuel also particulate matter (PM) that are harmful to the human health are emitted. Their emission is limited by the use of a particulate filter. One of the method for toxic components emission reduction may be the use of liquid gas fuel such as propane and butane (LPG) or compressed natural gas (CNG). In addition to the environmental aspects, there are also economic reasons for the use of gaseous fuels to power diesel engines. A total or partial replacement of diesel gas is possible. Depending on the used technology and the percentage of diesel fuel replacement, it is possible to reduce the content of nitrogen oxides in the exhaust gas even by 30%, particulate matter (PM) by 95 % carbon monoxide and by 20%, in relation to original diesel fuel. The research object is prototype gas injector designed for direct injection of compressed natural gas (CNG) in compression ignition engines. The construction of the injector allows for it positioning in the glow plug socket, so that the gas is injected directly into the combustion chamber. The cycle analysis of the four-cylinder Andoria ADCR engine with a capacity of 2.6 dm3 for different crankshaft rotational speeds allowed to determine the necessary time for fuel injection. Because of that, it was possible to determine the required mass flow rate of the injector, for replacing as much of the original fuel by gaseous fuel. To ensure a high value of flow inside the injector, supply pressure equal to 1 MPa was applied. High gas supply pressure requires high value of valve opening forces. For this purpose, an injector with hydraulic control system, using a liquid under pressure for the opening process was designed. On the basis of air pressure measurements in the flow line after the injector, the analysis of opening and closing of the valve was made. Measurements of outflow mass of the injector were also carried out. The results showed that the designed injector meets the requirements necessary to supply ADCR engine by the CNG fuel.Keywords: CNG, diesel engine, gas flow, gas injector
Procedia PDF Downloads 49387 Combined Effect of Vesicular System and Iontophoresis on Skin Permeation Enhancement of an Analgesic Drug
Authors: Jigar N. Shah, Hiral J. Shah, Praful D. Bharadia
Abstract:
The major challenge faced by formulation scientists in transdermal drug delivery system is to overcome the inherent barriers related to skin permeation. The stratum corneum layer of the skin is working as the rate limiting step in transdermal transport and reduce drug permeation through skin. Many approaches have been used to enhance the penetration of drugs through this layer of the skin. The purpose of this study is to investigate the development and evaluation of a combined approach of drug carriers and iontophoresis as a vehicle to improve skin permeation of an analgesic drug. Iontophoresis is a non-invasive technique for transporting charged molecules into and through tissues by a mild electric field. It has been shown to effectively deliver a variety of drugs across the skin to the underlying tissue. In addition to the enhanced continuous transport, iontophoresis allows dose titration by adjusting the electric field, which makes personalized dosing feasible. Drug carrier could modify the physicochemical properties of the encapsulated molecule and offer a means to facilitate the percutaneous delivery of difficult-to-uptake substances. Recently, there are some reports about using liposomes, microemulsions and polymeric nanoparticles as vehicles for iontophoretic drug delivery. Niosomes, the nonionic surfactant-based vesicles that are essentially similar in properties to liposomes have been proposed as an alternative to liposomes. Niosomes are more stable and free from other shortcoming of liposomes. Recently, the transdermal delivery of certain drugs using niosomes has been envisaged and niosomes have proved to be superior transdermal nanocarriers. Proniosomes overcome some of the physical stability related problems of niosomes. The proniosomal structure was liquid crystalline-compact niosomes hybrid which could be converted into niosomes upon hydration. The combined use of drug carriers and iontophoresis could offer many additional benefits. The system was evaluated for Encapsulation Efficiency, vesicle size, zeta potential, Transmission Electron Microscopy (TEM), DSC, in-vitro release, ex-vivo permeation across skin and rate of hydration. The use of proniosomal gel as a vehicle for the transdermal iontophoretic delivery was evaluated in-vitro. The characteristics of the applied electric current, such as density, type, frequency, and on/off interval ratio were observed. The study confirms the synergistic effect of proniosomes and iontophoresis in improving the transdermal permeation profile of selected analgesic drug. It is concluded that proniosomal gel can be used as a vehicle for transdermal iontophoretic drug delivery under suitable electric conditions.Keywords: iontophoresis, niosomes, permeation enhancement, transdermal delivery
Procedia PDF Downloads 38086 Modeling Search-And-Rescue Operations by Autonomous Mobile Robots at Sea
Authors: B. Kriheli, E. Levner, T. C. E. Cheng, C. T. Ng
Abstract:
During the last decades, research interest in planning, scheduling, and control of emergency response operations, especially people rescue and evacuation from the dangerous zone of marine accidents, has increased dramatically. Until the survivors (called ‘targets’) are found and saved, it may cause loss or damage whose extent depends on the location of the targets and the search duration. The problem is to efficiently search for and detect/rescue the targets as soon as possible with the help of intelligent mobile robots so as to maximize the number of saved people and/or minimize the search cost under restrictions on the amount of saved people within the allowable response time. We consider a special situation when the autonomous mobile robots (AMR), e.g., unmanned aerial vehicles and remote-controlled robo-ships have no operator on board as they are guided and completely controlled by on-board sensors and computer programs. We construct a mathematical model for the search process in an uncertain environment and provide a new fast algorithm for scheduling the activities of the autonomous robots during the search-and rescue missions after an accident at sea. We presume that in the unknown environments, the AMR’s search-and-rescue activity is subject to two types of error: (i) a 'false-negative' detection error where a target object is not discovered (‘overlooked') by the AMR’s sensors in spite that the AMR is in a close neighborhood of the latter and (ii) a 'false-positive' detection error, also known as ‘a false alarm’, in which a clean place or area is wrongly classified by the AMR’s sensors as a correct target. As the general resource-constrained discrete search problem is NP-hard, we restrict our study to finding local-optimal strategies. A specificity of the considered operational research problem in comparison with the traditional Kadane-De Groot-Stone search models is that in our model the probability of the successful search outcome depends not only on cost/time/probability parameters assigned to each individual location but, as well, on parameters characterizing the entire history of (unsuccessful) search before selecting any next location. We provide a fast approximation algorithm for finding the AMR route adopting a greedy search strategy in which, in each step, the on-board computer computes a current search effectiveness value for each location in the zone and sequentially searches for a location with the highest search effectiveness value. Extensive experiments with random and real-life data provide strong evidence in favor of the suggested operations research model and corresponding algorithm.Keywords: disaster management, intelligent robots, scheduling algorithm, search-and-rescue at sea
Procedia PDF Downloads 17385 Artificial Intelligence and Robotics in the Eye of Private Law with Special Regards to Intellectual Property and Liability Issues
Authors: Barna Arnold Keserű
Abstract:
In the last few years (what is called by many scholars the big data era) artificial intelligence (hereinafter AI) get more and more attention from the public and from the different branches of sciences as well. What previously was a mere science-fiction, now starts to become reality. AI and robotics often walk hand in hand, what changes not only the business and industrial life, but also has a serious impact on the legal system. The main research of the author focuses on these impacts in the field of private law, with special regards to liability and intellectual property issues. Many questions arise in these areas connecting to AI and robotics, where the boundaries are not sufficiently clear, and different needs are articulated by the different stakeholders. Recognizing the urgent need of thinking the Committee on Legal Affairs of the European Parliament adopted a Motion for a European Parliament Resolution A8-0005/2017 (of January 27th, 2017) in order to take some recommendations to the Commission on civil law rules on robotics and AI. This document defines some crucial usage of AI and/or robotics, e.g. the field of autonomous vehicles, the human job replacement in the industry or smart applications and machines. It aims to give recommendations to the safe and beneficial use of AI and robotics. However – as the document says – there are no legal provisions that specifically apply to robotics or AI in IP law, but that existing legal regimes and doctrines can be readily applied to robotics, although some aspects appear to call for specific consideration, calls on the Commission to support a horizontal and technologically neutral approach to intellectual property applicable to the various sectors in which robotics could be employed. AI can generate some content what worth copyright protection, but the question came up: who is the author, and the owner of copyright? The AI itself can’t be deemed author because it would mean that it is legally equal with the human persons. But there is the programmer who created the basic code of the AI, or the undertaking who sells the AI as a product, or the user who gives the inputs to the AI in order to create something new. Or AI generated contents are so far from humans, that there isn’t any human author, so these contents belong to public domain. The same questions could be asked connecting to patents. The research aims to answer these questions within the current legal framework and tries to enlighten future possibilities to adapt these frames to the socio-economical needs. In this part, the proper license agreements in the multilevel-chain from the programmer to the end-user become very important, because AI is an intellectual property in itself what creates further intellectual property. This could collide with data-protection and property rules as well. The problems are similar in the field of liability. We can use different existing forms of liability in the case when AI or AI led robotics cause damages, but it is unsure that the result complies with economical and developmental interests.Keywords: artificial intelligence, intellectual property, liability, robotics
Procedia PDF Downloads 20584 Event Data Representation Based on Time Stamp for Pedestrian Detection
Authors: Yuta Nakano, Kozo Kajiwara, Atsushi Hori, Takeshi Fujita
Abstract:
In association with the wave of electric vehicles (EV), low energy consumption systems have become more and more important. One of the key technologies to realize low energy consumption is a dynamic vision sensor (DVS), or we can call it an event sensor, neuromorphic vision sensor and so on. This sensor has several features, such as high temporal resolution, which can achieve 1 Mframe/s, and a high dynamic range (120 DB). However, the point that can contribute to low energy consumption the most is its sparsity; to be more specific, this sensor only captures the pixels that have intensity change. In other words, there is no signal in the area that does not have any intensity change. That is to say, this sensor is more energy efficient than conventional sensors such as RGB cameras because we can remove redundant data. On the other side of the advantages, it is difficult to handle the data because the data format is completely different from RGB image; for example, acquired signals are asynchronous and sparse, and each signal is composed of x-y coordinate, polarity (two values: +1 or -1) and time stamp, it does not include intensity such as RGB values. Therefore, as we cannot use existing algorithms straightforwardly, we have to design a new processing algorithm to cope with DVS data. In order to solve difficulties caused by data format differences, most of the prior arts make a frame data and feed it to deep learning such as Convolutional Neural Networks (CNN) for object detection and recognition purposes. However, even though we can feed the data, it is still difficult to achieve good performance due to a lack of intensity information. Although polarity is often used as intensity instead of RGB pixel value, it is apparent that polarity information is not rich enough. Considering this context, we proposed to use the timestamp information as a data representation that is fed to deep learning. Concretely, at first, we also make frame data divided by a certain time period, then give intensity value in response to the timestamp in each frame; for example, a high value is given on a recent signal. We expected that this data representation could capture the features, especially of moving objects, because timestamp represents the movement direction and speed. By using this proposal method, we made our own dataset by DVS fixed on a parked car to develop an application for a surveillance system that can detect persons around the car. We think DVS is one of the ideal sensors for surveillance purposes because this sensor can run for a long time with low energy consumption in a NOT dynamic situation. For comparison purposes, we reproduced state of the art method as a benchmark, which makes frames the same as us and feeds polarity information to CNN. Then, we measured the object detection performances of the benchmark and ours on the same dataset. As a result, our method achieved a maximum of 7 points greater than the benchmark in the F1 score.Keywords: event camera, dynamic vision sensor, deep learning, data representation, object recognition, low energy consumption
Procedia PDF Downloads 10183 An A-Star Approach for the Quickest Path Problem with Time Windows
Authors: Christofas Stergianos, Jason Atkin, Herve Morvan
Abstract:
As air traffic increases, more airports are interested in utilizing optimization methods. Many processes happen in parallel at an airport, and complex models are needed in order to have a reliable solution that can be implemented for ground movement operations. The ground movement for aircraft in an airport, allocating a path to each aircraft to follow in order to reach their destination (e.g. runway or gate), is one process that could be optimized. The Quickest Path Problem with Time Windows (QPPTW) algorithm has been developed to provide a conflict-free routing of vehicles and has been applied to routing aircraft around an airport. It was subsequently modified to increase the accuracy for airport applications. These modifications take into consideration specific characteristics of the problem, such as: the pushback process, which considers the extra time that is needed for pushing back an aircraft and turning its engines on; stand holding where any waiting should be allocated to the stand; and runway sequencing, where the sequence of the aircraft that take off is optimized and has to be respected. QPPTW involves searching for the quickest path by expanding the search in all directions, similarly to Dijkstra’s algorithm. Finding a way to direct the expansion can potentially assist the search and achieve a better performance. We have further modified the QPPTW algorithm to use a heuristic approach in order to guide the search. This new algorithm is based on the A-star search method but estimates the remaining time (instead of distance) in order to assess how far the target is. It is important to consider the remaining time that it is needed to reach the target, so that delays that are caused by other aircraft can be part of the optimization method. All of the other characteristics are still considered and time windows are still used in order to route multiple aircraft rather than a single aircraft. In this way the quickest path is found for each aircraft while taking into account the movements of the previously routed aircraft. After running experiments using a week of real aircraft data from Zurich Airport, the new algorithm (A-star QPPTW) was found to route aircraft much more quickly, being especially fast in routing the departing aircraft where pushback delays are significant. On average A-star QPPTW could route a full day (755 to 837 aircraft movements) 56% faster than the original algorithm. In total the routing of a full week of aircraft took only 12 seconds with the new algorithm, 15 seconds faster than the original algorithm. For real time application, the algorithm needs to be very fast, and this speed increase will allow us to add additional features and complexity, allowing further integration with other processes in airports and leading to more optimized and environmentally friendly airports.Keywords: a-star search, airport operations, ground movement optimization, routing and scheduling
Procedia PDF Downloads 23182 Estimation of Soil Nutrient Content Using Google Earth and Pleiades Satellite Imagery for Small Farms
Authors: Lucas Barbosa Da Silva, Jun Okamoto Jr.
Abstract:
Precision Agriculture has long being benefited from crop fields’ aerial imagery. This important tool has allowed identifying patterns in crop fields, generating useful information to the production management. Reflectance intensity data in different ranges from the electromagnetic spectrum may indicate presence or absence of nutrients in the soil of an area. Different relations between the different light bands may generate even more detailed information. The knowledge of the nutrients content in the soil or in the crop during its growth is a valuable asset to the farmer that seeks to optimize its yield. However, small farmers in Brazil often lack the resources to access this kind information, and, even when they do, it is not presented in a comprehensive and/or objective way. So, the challenges of implementing this technology ranges from the sampling of the imagery, using aerial platforms, building of a mosaic with the images to cover the entire crop field, extracting the reflectance information from it and analyzing its relationship with the parameters of interest, to the display of the results in a manner that the farmer may take the necessary decisions more objectively. In this work, it’s proposed an analysis of soil nutrient contents based on image processing of satellite imagery and comparing its outtakes with commercial laboratory’s chemical analysis. Also, sources of satellite imagery are compared, to assess the feasibility of using Google Earth data in this application, and the impacts of doing so, versus the application of imagery from satellites like Landsat-8 and Pleiades. Furthermore, an algorithm for building mosaics is implemented using Google Earth imagery and finally, the possibility of using unmanned aerial vehicles is analyzed. From the data obtained, some soil parameters are estimated, namely, the content of Potassium, Phosphorus, Boron, Manganese, among others. The suitability of Google Earth Imagery for this application is verified within a reasonable margin, when compared to Pleiades Satellite imagery and to the current commercial model. It is also verified that the mosaic construction method has little or no influence on the estimation results. Variability maps are created over the covered area and the impacts of the image resolution and sample time frame are discussed, allowing easy assessments of the results. The final results show that easy and cheaper remote sensing and analysis methods are possible and feasible alternatives for the small farmer, with little access to technological and/or financial resources, to make more accurate decisions about soil nutrient management.Keywords: remote sensing, precision agriculture, mosaic, soil, nutrient content, satellite imagery, aerial imagery
Procedia PDF Downloads 17681 Definition of Aerodynamic Coefficients for Microgravity Unmanned Aerial System
Authors: Gamaliel Salazar, Adriana Chazaro, Oscar Madrigal
Abstract:
The evolution of Unmanned Aerial Systems (UAS) has made it possible to develop new vehicles capable to perform microgravity experiments which due its cost and complexity were beyond the reach for many institutions. In this study, the aerodynamic behavior of an UAS is studied through its deceleration stage after an initial free fall phase (where the microgravity effect is generated) using Computational Fluid Dynamics (CFD). Due to the fact that the payload would be analyzed under a microgravity environment and the nature of the payload itself, the speed of the UAS must be reduced in a smoothly way. Moreover, the terminal speed of the vehicle should be low enough to preserve the integrity of the payload and vehicle during the landing stage. The UAS model is made by a study pod, control surfaces with fixed and mobile sections, landing gear and two semicircular wing sections. The speed of the vehicle is decreased by increasing the angle of attack (AoA) of each wing section from 2° (where the airfoil S1091 has its greatest aerodynamic efficiency) to 80°, creating a circular wing geometry. Drag coefficients (Cd) and forces (Fd) are obtained employing CFD analysis. A simplified 3D model of the vehicle is analyzed using Ansys Workbench 16. The distance between the object of study and the walls of the control volume is eight times the length of the vehicle. The domain is discretized using an unstructured mesh based on tetrahedral elements. The refinement of the mesh is made by defining an element size of 0.004 m in the wing and control surfaces in order to figure out the fluid behavior in the most important zones, as well as accurate approximations of the Cd. The turbulent model k-epsilon is selected to solve the governing equations of the fluids while a couple of monitors are placed in both wing and all-body vehicle to visualize the variation of the coefficients along the simulation process. Employing a statistical approximation response surface methodology the case of study is parametrized considering the AoA of the wing as the input parameter and Cd and Fd as output parameters. Based on a Central Composite Design (CCD), the Design Points (DP) are generated so the Cd and Fd for each DP could be estimated. Applying a 2nd degree polynomial approximation the drag coefficients for every AoA were determined. Using this values, the terminal speed at each position is calculated considering a specific Cd. Additionally, the distance required to reach the terminal velocity at each AoA is calculated, so the minimum distance for the entire deceleration stage without comprising the payload could be determine. The Cd max of the vehicle is 1.18, so its maximum drag will be almost like the drag generated by a parachute. This guarantees that aerodynamically the vehicle can be braked, so it could be utilized for several missions allowing repeatability of microgravity experiments.Keywords: microgravity effect, response surface, terminal speed, unmanned system
Procedia PDF Downloads 17380 Lipid-Coated Magnetic Nanoparticles for Frequency Triggered Drug Delivery
Authors: Yogita Patil-Sen
Abstract:
Superparamagnetic Iron Oxide Nanoparticles (SPIONs) have become increasingly important materials for separation of specific bio-molecules, drug delivery vehicle, contrast agent for MRI and magnetic hyperthermia for cancer therapy. Hyperthermia is emerging as an alternative cancer treatment to the conventional radio- and chemo-therapy, which have harmful side effects. When subjected to an alternating magnetic field, the magnetic energy of SPIONs is converted into thermal energy due to movement of particles. The ability of SPIONs to generate heat and potentially kill cancerous cells, which are more susceptible than the normal cells to temperatures higher than 41 °C forms the basis of hyerpthermia treatement. The amount of heat generated depends upon the magnetic properties of SPIONs which in turn is affected by their properties such as size and shape. One of the main problems associated with SPIONs is particle aggregation which limits their employability in in vivo drug delivery applications and hyperthermia cancer treatments. Coating the iron oxide core with thermally responsive lipid based nanostructures tend to overcome the issue of aggregation as well as improve biocompatibility and can enhance drug loading efficiency. Herein we report suitability of SPIONs and silica coated core-shell SPIONs, which are further, coated with various lipids for drug delivery and magnetic hyperthermia applications. The synthesis of nanoparticles is carried out using the established methods reported in the literature with some modifications. The nanoparticles are characterised using Infrared spectroscopy (IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM). The heating ability of nanoparticles is tested under alternating magnetic field. The efficacy of the nanoparticles as drug carrier is also investigated. The loading of an anticancer drug, Doxorubicin at 18 °C is measured up to 48 hours using UV-visible spectrophotometer. The drug release profile is obtained under thermal incubation condition at 37 °C and compared with that under the influence of alternating magnetic field. The results suggest that the nanoparticles exhibit superparamagnetic behaviour, although coating reduces the magnetic properties of the particles. Both the uncoated and coated particles show good heating ability, again it is observed that coating decreases the heating behaviour of the particles. However, coated particles show higher drug loading efficiency than the uncoated particles and the drug release is much more controlled under the alternating magnetic field. Thus, the results demonstrate that lipid coated SPIONs exhibit potential as drug delivery vehicles for magnetic hyperthermia based cancer therapy.Keywords: drug delivery, hyperthermia, lipids, superparamagnetic iron oxide nanoparticles (SPIONS)
Procedia PDF Downloads 23379 Electric Vehicle Fleet Operators in the Energy Market - Feasibility and Effects on the Electricity Grid
Authors: Benjamin Blat Belmonte, Stephan Rinderknecht
Abstract:
The transition to electric vehicles (EVs) stands at the forefront of innovative strategies designed to address environmental concerns and reduce fossil fuel dependency. As the number of EVs on the roads increases, so too does the potential for their integration into energy markets. This research dives deep into the transformative possibilities of using electric vehicle fleets, specifically electric bus fleets, not just as consumers but as active participants in the energy market. This paper investigates the feasibility and grid effects of electric vehicle fleet operators in the energy market. Our objective centers around a comprehensive exploration of the sector coupling domain, with an emphasis on the economic potential in both electricity and balancing markets. Methodologically, our approach combines data mining techniques with thorough pre-processing, pulling from a rich repository of electricity and balancing market data. Our findings are grounded in the actual operational realities of the bus fleet operator in Darmstadt, Germany. We employ a Mixed Integer Linear Programming (MILP) approach, with the bulk of the computations being processed on the High-Performance Computing (HPC) platform ‘Lichtenbergcluster’. Our findings underscore the compelling economic potential of EV fleets in the energy market. With electric buses becoming more prevalent, the considerable size of these fleets, paired with their substantial battery capacity, opens up new horizons for energy market participation. Notably, our research reveals that economic viability is not the sole advantage. Participating actively in the energy market also translates into pronounced positive effects on grid stabilization. Essentially, EV fleet operators can serve a dual purpose: facilitating transport while simultaneously playing an instrumental role in enhancing grid reliability and resilience. This research highlights the symbiotic relationship between the growth of EV fleets and the stabilization of the energy grid. Such systems could lead to both commercial and ecological advantages, reinforcing the value of electric bus fleets in the broader landscape of sustainable energy solutions. In conclusion, the electrification of transport offers more than just a means to reduce local greenhouse gas emissions. By positioning electric vehicle fleet operators as active participants in the energy market, there lies a powerful opportunity to drive forward the energy transition. This study serves as a testament to the synergistic potential of EV fleets in bolstering both economic viability and grid stabilization, signaling a promising trajectory for future sector coupling endeavors.Keywords: electric vehicle fleet, sector coupling, optimization, electricity market, balancing market
Procedia PDF Downloads 7478 Case Study of Human Factors and Ergonomics in the Design and Use of Harness-Embedded Costumes in the Entertainment Industry
Authors: Marielle Hanley, Brandon Takahashi, Gerry Hanley, Gabriella Hancock
Abstract:
Safety harnesses and their protocols are very common within the construction industry, and the Occupational Safety and Health Administration has provided extensive guidelines with protocols being constantly updated to ensure the highest level of safety within construction sites. There is also extensive research on harnesses that are meant to keep people in place in moving vehicles, such as seatbelts. Though this research is comprehensive in these areas, the findings and recommendations are not generally applicable to other industry sectors where harnesses are used, such as the entertainment industry. The focus of this case study is on the design and use of harnesses used by theme park employees wearing elaborate costumes in parades and performances. The key factors of posture, kinesthetic factors, and harness engineering interact in significantly different ways when the user is performing repetitive choreography with 20 to 40 lbs. of apparatus connected to harnesses that need to be hidden from the audience’s view. Human factors and ergonomic analysis take into account the required performers’ behaviors, the physical and mental preparation and posture of the performer, the design of the harness-embedded costume, and the environmental conditions during the performance (e.g., wind) that can determine the physical stresses placed on the harness and performer. The uniqueness and expense of elaborate costumes frequently result in one or two costumes created for production, and a variety of different performers need to fit into the same costume. Consequently, the harnesses should be adjustable if they are to minimize the physical and cognitive loads on the performer, but they are frequently more a “one-size fits all”. The complexity of human and technology interactions produces a range of detrimental outcomes, from muscle strains to nerve damage, mental and physical fatigue, and reduced motivation to perform at peak levels. Based on observations conducted over four years for this case study, a number of recommendations to institutionalize the human factors and ergonomic analyses can significantly improve the safety, reliability, and quality of performances with harness-embedded costumes in the entertainment industry. Human factors and ergonomic analyses can be integrated into the engineering design of the performance costumes with embedded harnesses, the conditioning and training of the performers using the costumes, the choreography of the performances within the staged setting and the maintenance of the harness-embedded costumes. By applying human factors and ergonomic methodologies in the entertainment industry, the industry management and support staff can significantly reduce the risks of injury, improve the longevity of unique performers, increase the longevity of the harness-embedded costumes, and produce the desired entertainment value for audiences.Keywords: ergonomics in entertainment industry, harness-embedded costumes, performer safety, injury prevention
Procedia PDF Downloads 9377 Ultrasonic Irradiation Synthesis of High-Performance Pd@Copper Nanowires/MultiWalled Carbon Nanotubes-Chitosan Electrocatalyst by Galvanic Replacement toward Ethanol Oxidation in Alkaline Media
Authors: Majid Farsadrouh Rashti, Amir Shafiee Kisomi, Parisa Jahani
Abstract:
The direct ethanol fuel cells (DEFCs) are contemplated as a promising energy source because, In addition to being used in portable electronic devices, it is also used for electric vehicles. The synthesis of bimetallic nanostructures due to their novel optical, catalytic and electronic characteristic which is precisely in contrast to their monometallic counterparts is attracting extensive attention. Galvanic replacement (sometimes is named to as cementation or immersion plating) is an uncomplicated and effective technique for making nanostructures (such as core-shell) of different metals, semiconductors, and their application in DEFCs. The replacement of galvanic does not need any external power supply compared to electrodeposition. In addition, it is different from electroless deposition because there is no need for a reducing agent to replace galvanizing. In this paper, a fast method for the palladium (Pd) wire nanostructures synthesis with the great surface area through galvanic replacement reaction utilizing copper nanowires (CuNWS) as a template by the assistance of ultrasound under room temperature condition is proposed. To evaluate the morphology and composition of Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan, emission scanning electron microscopy, energy dispersive X-ray spectroscopy were applied. In order to measure the phase structure of the electrocatalysts were performed via room temperature X-ray powder diffraction (XRD) applying an X-ray diffractometer. Various electrochemical techniques including chronoamperometry and cyclic voltammetry were utilized for the electrocatalytic activity of ethanol electrooxidation and durability in basic solution. Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst demonstrated substantially enhanced performance and long-term stability for ethanol electrooxidation in the basic solution in comparison to commercial Pd/C that demonstrated the potential in utilizing Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan as efficient catalysts towards ethanol oxidation. Noticeably, the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan presented excellent catalytic activities with a peak current density of 320.73 mAcm² which was 9.5 times more than in comparison to Pd/C (34.2133 mAcm²). Additionally, activation energy thermodynamic and kinetic evaluations revealed that the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst has lower compared to Pd/C which leads to a lower energy barrier and an excellent charge transfer rate towards ethanol oxidation.Keywords: core-shell structure, electrocatalyst, ethanol oxidation, galvanic replacement reaction
Procedia PDF Downloads 148