Search results for: fruits processing
3044 Brand Identity Creation for Thai Halal Brands
Authors: Pibool Waijittragum
Abstract:
The purpose of this paper is to synthesize the research result of brand Identities of Thai Halal brands which related to the way of life for Thai Muslims. The results will be transforming to Thai Halal Brands packaging and label design. The expected benefit is an alternative of marketing strategy for brand building process for Halal products in Thailand. Four elements of marketing strategies which necessary for the brand identity creation is the research framework: consists of Attributes, Benefits, Values and Personality. The research methodology was applied using qualitative and quantitative; 19 marketing experts with dynamic roles in Thai consumer products were interviewed. In addition, a field survey of 122 Thai Muslims selected from 175 Muslim communities in Bangkok was studied. Data analysis will be according to 5 categories of Thai Halal product: 1) Meat 2) Vegetable and Fruits 3) Instant foods and Garnishing ingredient 4) Beverages, Desserts and Snacks 5) Hygienic daily products. The results will explain some suitable approach for brand Identities of Thai Halal brands as are: 1) Benefit approach as the characteristics of the product with its benefit. The brand identity created transform to the packaging design should be clear and display a fresh product 2) Value approach as the value of products that affect to consumers’ perception. The brand identity created transform to the packaging design should be simply look and using a trustful image 3) Personality approach as the reflection of consumers thought. The brand identity created transform to the packaging design should be sincere, enjoyable, merry, flamboyant look and using a humoristic image.Keywords: marketing strategies, brand identity, packaging and label design, Thai Halal products
Procedia PDF Downloads 4373043 Clinical Validation of an Automated Natural Language Processing Algorithm for Finding COVID-19 Symptoms and Complications in Patient Notes
Authors: Karolina Wieczorek, Sophie Wiliams
Abstract:
Introduction: Patient data is often collected in Electronic Health Record Systems (EHR) for purposes such as providing care as well as reporting data. This information can be re-used to validate data models in clinical trials or in epidemiological studies. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. Mentioning a disease in a discharge letter does not necessarily mean that a patient suffers from this disease. Many of them discuss a diagnostic process, different tests, or discuss whether a patient has a certain disease. The COVID-19 dataset in this study used natural language processing (NLP), an automated algorithm which extracts information related to COVID-19 symptoms, complications, and medications prescribed within the hospital. Free-text patient clinical patient notes are rich sources of information which contain patient data not captured in a structured form, hence the use of named entity recognition (NER) to capture additional information. Methods: Patient data (discharge summary letters) were exported and screened by an algorithm to pick up relevant terms related to COVID-19. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. A list of 124 Systematized Nomenclature of Medicine (SNOMED) Clinical Terms has been provided in Excel with corresponding IDs. Two independent medical student researchers were provided with a dictionary of SNOMED list of terms to refer to when screening the notes. They worked on two separate datasets called "A” and "B”, respectively. Notes were screened to check if the correct term had been picked-up by the algorithm to ensure that negated terms were not picked up. Results: Its implementation in the hospital began on March 31, 2020, and the first EHR-derived extract was generated for use in an audit study on June 04, 2020. The dataset has contributed to large, priority clinical trials (including International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) by bulk upload to REDcap research databases) and local research and audit studies. Successful sharing of EHR-extracted datasets requires communicating the provenance and quality, including completeness and accuracy of this data. The results of the validation of the algorithm were the following: precision (0.907), recall (0.416), and F-score test (0.570). Percentage enhancement with NLP extracted terms compared to regular data extraction alone was low (0.3%) for relatively well-documented data such as previous medical history but higher (16.6%, 29.53%, 30.3%, 45.1%) for complications, presenting illness, chronic procedures, acute procedures respectively. Conclusions: This automated NLP algorithm is shown to be useful in facilitating patient data analysis and has the potential to be used in more large-scale clinical trials to assess potential study exclusion criteria for participants in the development of vaccines.Keywords: automated, algorithm, NLP, COVID-19
Procedia PDF Downloads 1023042 Combined Synchrotron Radiography and Diffraction for in Situ Study of Reactive Infiltration of Aluminum into Iron Porous Preform
Authors: S. Djaziri, F. Sket, A. Hynowska, S. Milenkovic
Abstract:
The use of Fe-Al based intermetallics as an alternative to Cr/Ni based stainless steels is very promising for industrial applications that use critical raw materials parts under extreme conditions. However, the development of advanced Fe-Al based intermetallics with appropriate mechanical properties presents several challenges that involve appropriate processing and microstructure control. A processing strategy is being developed which aims at producing a net-shape porous Fe-based preform that is infiltrated with molten Al or Al-alloy. In the present work, porous Fe-based preforms produced by two different methods (selective laser melting (SLM) and Kochanek-process (KE)) are studied during infiltration with molten aluminum. In the objective to elucidate the mechanisms underlying the formation of Fe-Al intermetallic phases during infiltration, an in-house furnace has been designed for in situ observation of infiltration at synchrotron facilities combining x-ray radiography (XR) and x-ray diffraction (XRD) techniques. The feasibility of this approach has been demonstrated, and information about the melt flow front propagation has been obtained. In addition, reactive infiltration has been achieved where a bi-phased intermetallic layer has been identified to be formed between the solid Fe and liquid Al. In particular, a tongue-like Fe₂Al₅ phase adhering to the Fe and a needle-like Fe₄Al₁₃ phase adhering to the Al were observed. The growth of the intermetallic compound was found to be dependent on the temperature gradient present along the preform as well as on the reaction time which will be discussed in view of the different obtained results.Keywords: combined synchrotron radiography and diffraction, Fe-Al intermetallic compounds, in-situ molten Al infiltration, porous solid Fe preforms
Procedia PDF Downloads 2263041 Reverse Logistics Network Optimization for E-Commerce
Authors: Albert W. K. Tan
Abstract:
This research consolidates a comprehensive array of publications from peer-reviewed journals, case studies, and seminar reports focused on reverse logistics and network design. By synthesizing this secondary knowledge, our objective is to identify and articulate key decision factors crucial to reverse logistics network design for e-commerce. Through this exploration, we aim to present a refined mathematical model that offers valuable insights for companies seeking to optimize their reverse logistics operations. The primary goal of this research endeavor is to develop a comprehensive framework tailored to advising organizations and companies on crafting effective networks for their reverse logistics operations, thereby facilitating the achievement of their organizational goals. This involves a thorough examination of various network configurations, weighing their advantages and disadvantages to ensure alignment with specific business objectives. The key objectives of this research include: (i) Identifying pivotal factors pertinent to network design decisions within the realm of reverse logistics across diverse supply chains. (ii) Formulating a structured framework designed to offer informed recommendations for sound network design decisions applicable to relevant industries and scenarios. (iii) Propose a mathematical model to optimize its reverse logistics network. A conceptual framework for designing a reverse logistics network has been developed through a combination of insights from the literature review and information gathered from company websites. This framework encompasses four key stages in the selection of reverse logistics operations modes: (1) Collection, (2) Sorting and testing, (3) Processing, and (4) Storage. Key factors to consider in reverse logistics network design: I) Centralized vs. decentralized processing: Centralized processing, a long-standing practice in reverse logistics, has recently gained greater attention from manufacturing companies. In this system, all products within the reverse logistics pipeline are brought to a central facility for sorting, processing, and subsequent shipment to their next destinations. Centralization offers the advantage of efficiently managing the reverse logistics flow, potentially leading to increased revenues from returned items. Moreover, it aids in determining the most appropriate reverse channel for handling returns. On the contrary, a decentralized system is more suitable when products are returned directly from consumers to retailers. In this scenario, individual sales outlets serve as gatekeepers for processing returns. Considerations encompass the product lifecycle, product value and cost, return volume, and the geographic distribution of returns. II) In-house vs. third-party logistics providers: The decision between insourcing and outsourcing in reverse logistics network design is pivotal. In insourcing, a company handles the entire reverse logistics process, including material reuse. In contrast, outsourcing involves third-party providers taking on various aspects of reverse logistics. Companies may choose outsourcing due to resource constraints or lack of expertise, with the extent of outsourcing varying based on factors such as personnel skills and cost considerations. Based on the conceptual framework, the authors have constructed a mathematical model that optimizes reverse logistics network design decisions. The model will consider key factors identified in the framework, such as transportation costs, facility capacities, and lead times. The authors have employed mixed LP to find the optimal solutions that minimize costs while meeting organizational objectives.Keywords: reverse logistics, supply chain management, optimization, e-commerce
Procedia PDF Downloads 383040 Context Detection in Spreadsheets Based on Automatically Inferred Table Schema
Authors: Alexander Wachtel, Michael T. Franzen, Walter F. Tichy
Abstract:
Programming requires years of training. With natural language and end user development methods, programming could become available to everyone. It enables end users to program their own devices and extend the functionality of the existing system without any knowledge of programming languages. In this paper, we describe an Interactive Spreadsheet Processing Module (ISPM), a natural language interface to spreadsheets that allows users to address ranges within the spreadsheet based on inferred table schema. Using the ISPM, end users are able to search for values in the schema of the table and to address the data in spreadsheets implicitly. Furthermore, it enables them to select and sort the spreadsheet data by using natural language. ISPM uses a machine learning technique to automatically infer areas within a spreadsheet, including different kinds of headers and data ranges. Since ranges can be identified from natural language queries, the end users can query the data using natural language. During the evaluation 12 undergraduate students were asked to perform operations (sum, sort, group and select) using the system and also Excel without ISPM interface, and the time taken for task completion was compared across the two systems. Only for the selection task did users take less time in Excel (since they directly selected the cells using the mouse) than in ISPM, by using natural language for end user software engineering, to overcome the present bottleneck of professional developers.Keywords: natural language processing, natural language interfaces, human computer interaction, end user development, dialog systems, data recognition, spreadsheet
Procedia PDF Downloads 3113039 Studying the Effect of Reducing Thermal Processing over the Bioactive Composition of Non-Centrifugal Cane Sugar: Towards Natural Products with High Therapeutic Value
Authors: Laura Rueda-Gensini, Jader Rodríguez, Juan C. Cruz, Carolina Munoz-Camargo
Abstract:
There is an emerging interest in botanicals and plant extracts for medicinal practices due to their widely reported health benefits. A large variety of phytochemicals found in plants have been correlated with antioxidant, immunomodulatory, and analgesic properties, which makes plant-derived products promising candidates for modulating the progression and treatment of numerous diseases. Non-centrifugal cane sugar (NCS), in particular, has been known for its high antioxidant and nutritional value, but composition-wise variability due to changing environmental and processing conditions have considerably limited its use in the nutraceutical and biomedical fields. This work is therefore aimed at assessing the effect of thermal exposure during NCS production over its bioactive composition and, in turn, its therapeutic value. Accordingly, two modified dehydration methods are proposed that employ: (i) vacuum-aided evaporation, which reduces the necessary temperatures to dehydrate the sample, and (ii) window refractance evaporation, which reduces thermal exposure time. The biochemical composition of NCS produced under these two methods was compared to traditionally-produced NCS by estimating their total polyphenolic and protein content with Folin-Ciocalteu and Bradford assays, as well as identifying the major phenolic compounds in each sample via HPLC-coupled mass spectrometry. Their antioxidant activities were also compared as measured by their scavenging potential of ABTS and DPPH radicals. Results show that the two modified production methods enhance polyphenolic and protein yield in resulting NCS samples when compared to traditional production methods. In particular, reducing employed temperatures with vacuum-aided evaporation demonstrated to be superior at preserving polyphenolic compounds, as evidenced both in the total and individual polyphenol concentrations. However, antioxidant activities were not significantly different between these. Although additional studies should be performed to determine if the observed compositional differences affect other therapeutic activities (e.g., anti-inflammatory, analgesic, and immunoprotective), these results suggest that reducing thermal exposure holds great promise for the production of natural products with enhanced nutritional value.Keywords: non-centrifugal cane sugar, polyphenolic compounds, thermal processing, antioxidant activity
Procedia PDF Downloads 913038 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark
Authors: B. Elshafei, X. Mao
Abstract:
The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation
Procedia PDF Downloads 1353037 Non-Communicable Diseases: Knowledge, Attitudes and Practices of Risk Factors among Secondary School Students in Sharjah, UAE
Authors: A. Al-Wandi, A. Al-Ali, R. Dali, Y. Al-Karaghouli
Abstract:
Background: Non-communicable diseases (NCDs) have become an alarming health problem across the globe. The risk of developing those diseases begins in childhood and develops gradually under the influence of risk factors including obesity, hypertension, dyslipidemia, cigarette smoking and decreased physical activity. Therefore, this study aims to determine the level of knowledge, attitudes, and practices of the risk factors of lifestyle induced chronic diseases (non-communicable diseases) among secondary school students in Sharjah city. Methods: Five hundred and ninety-one school children, from grades 10 to 12, formed the study sample, using the multistage stratified cluster sampling method. Four governmental schools were chosen, for each gender. Data was collected through a pretested, close-ended questionnaire consisting of five sections; demographics, physical activity, diet, smoking and sleeping patterns. Frequencies and descriptive statistics were used to analyze data through SPSS 23. Results: The data showed 64.6% of students had low knowledge of risk factors of non-communicable diseases. Concerning physical activity, 58.2 % were physically inactive and females being less active than males. More than 2/3 of students didn’t fulfill the recommended daily intake of fruits and vegetables (75.9%). 8% reported to be smokers with cigarettes being the most encountered tobacco product. Conclusion: Our study has demonstrated a low level of knowledge and practices yet, positive attitudes towards risk factors of chronic diseases. We recommend implementation of thorough awareness campaigns through public health education about the risk factors of non-communicable diseases.Keywords: non-communicable diseases, physical activity, diet, knowledge, attitudes, practices, smoking
Procedia PDF Downloads 2283036 Creating Risk Maps on the Spatiotemporal Occurrence of Agricultural Insecticides in Sub-Saharan Africa
Authors: Chantal Hendriks, Harry Gibson, Anna Trett, Penny Hancock, Catherine Moyes
Abstract:
The use of modern inputs for crop protection, such as insecticides, is strongly underestimated in Sub-Saharan Africa. Several studies measured toxic concentrations of insecticides in fruits, vegetables and fish that were cultivated in Sub-Saharan Africa. The use of agricultural insecticides has impact on human and environmental health, but it also has the potential to impact on insecticide resistance in malaria transmitting mosquitos. To analyse associations between historic use of agricultural insecticides and the distribution of insecticide resistance through space and time, the use and environmental fate of agricultural insecticides needs to be mapped through the same time period. However, data on the use and environmental fate of agricultural insecticides in Africa are limited and therefore risk maps on the spatiotemporal occurrence of agricultural insecticides are created using environmental data. Environmental data on crop density and crop type were used to select the areas that most likely receive insecticides. These areas were verified by a literature review and expert knowledge. Pesticide fate models were compared to select most dominant processes that are involved in the environmental fate of insecticides and that can be mapped at a continental scale. The selected processes include: surface runoff, erosion, infiltration, volatilization and the storing and filtering capacity of soils. The processes indicate the risk for insecticide accumulation in soil, water, sediment and air. A compilation of all available data for traces of insecticides in the environment was used to validate the maps. The risk maps can result in space and time specific measures that reduce the risk of insecticide exposure to non-target organisms.Keywords: crop protection, pesticide fate, tropics, insecticide resistance
Procedia PDF Downloads 1413035 Chemical Composition and Antioxidant Activity of Fresh Chokeberries
Authors: Vesna Tumbas Šaponjac, Sonja Djilas, Jasna Čanadanović-Brunet, Gordana Ćetković, Jelena Vulić, Slađana Stajčić, Milica Vinčić
Abstract:
Substantial interest has been expressed in fruits and berries due to their potential favourable health effects and high content of polyphenols, especially flavonoids and anthocyanins. Chokeberries (Aronia melanocarpa) are dark berries, similar to blackcurrants, that have been used by native Americans both as a food resource and in traditional medicine for treatment of cold. Epidemiological studies revealed positive effects of chokeberries on colorectal cancer, cardiovascular diseases, and various inflammatory conditions. Chokeberries are well known as good natural antioxidants, which contain phenolic compounds, flavonoids, anthocyanidins and antioxidant vitamins. The aim of this study was to provide information on polyphenolic compounds present in fresh chokeberries as well as to determine its antioxidant activity. Individual polyphenolic compounds have been identified and quantified using HPLC/UV-Vis. Results showed that the most dominant phenolic acid was protocatechuic acid (274.23 mg/100 g FW), flavonoid rutin (319.66 mg/100 g FW) and anthocyanin cyanidin-3-galactoside (1532.68 mg/100 g FW). Generally, anthocyanins were predominant compounds in fresh chokeberry (2342.82 mg/100 g FW). Four anthocyanins have been identified in fresh chokeberry and all of them were cyanidin glicosides. Antioxidant activity was determined using spectrophotometric DPPH assay and compared to standard antioxidant compound vitamin C. The resulting EC50 value (amount of fresh chokeberries that scavenge 50% of DPPH radicals) is 0.33 mg vitamin C equivalent/100 g FW. The results of this investigation provide evidence on high contents of phenolic compounds, especially anthocyanins, in chokeberries as well as high antioxidant activity of this fruit.Keywords: chokeberry, polyphenols, antioxidant, DPPH radicals
Procedia PDF Downloads 5723034 The Relation between Cognitive Fluency and Utterance Fluency in Second Language Spoken Fluency: Studying Fluency through a Psycholinguistic Lens
Authors: Tannistha Dasgupta
Abstract:
This study explores the aspects of second language (L2) spoken fluency that are related to L2 linguistic knowledge and processing skill. It draws on Levelt’s ‘blueprint’ of the L2 speaker which discusses the cognitive issues underlying the act of speaking. However, L2 speaking assessments have largely neglected the underlying mechanism involved in language production; emphasis is given on the relationship between subjective ratings of L2 speech sample and objectively measured aspects of fluency. Hence, in this study, the relation between L2 linguistic knowledge and processing skill i.e. Cognitive Fluency (CF), and objectively measurable aspects of L2 spoken fluency i.e. Utterance Fluency (UF) is examined. The participants of the study are L2 learners of English, studying at high school level in Hyderabad, India. 50 participants with intermediate level of proficiency in English performed several lexical retrieval tasks and attention-shifting tasks to measure CF, and 8 oral tasks to measure UF. Each aspect of UF (speed, pause, and repair) were measured against the scores of CF to find out those aspects of UF which are reliable indicators of CF. Quantitative analysis of the data shows that among the three aspects of UF; speed is the best predictor of CF, and pause is weakly related to CF. The study suggests that including the speed aspect of UF could make L2 fluency assessment more reliable, valid, and objective. Thus, incorporating the assessment of psycholinguistic mechanisms into L2 spoken fluency testing, could result in fairer evaluation.Keywords: attention-shifting, cognitive fluency, lexical retrieval, utterance fluency
Procedia PDF Downloads 7113033 Digitalisation of the Railway Industry: Recent Advances in the Field of Dialogue Systems: Systematic Review
Authors: Andrei Nosov
Abstract:
This paper discusses the development directions of dialogue systems within the digitalisation of the railway industry, where technologies based on conversational AI are already potentially applied or will be applied. Conversational AI is one of the popular natural language processing (NLP) tasks, as it has great prospects for real-world applications today. At the same time, it is a challenging task as it involves many areas of NLP based on complex computations and deep insights from linguistics and psychology. In this review, we focus on dialogue systems and their implementation in the railway domain. We comprehensively review the state-of-the-art research results on dialogue systems and analyse them from three perspectives: type of problem to be solved, type of model, and type of system. In particular, from the perspective of the type of tasks to be solved, we discuss characteristics and applications. This will help to understand how to prioritise tasks. In terms of the type of models, we give an overview that will allow researchers to become familiar with how to apply them in dialogue systems. By analysing the types of dialogue systems, we propose an unconventional approach in contrast to colleagues who traditionally contrast goal-oriented dialogue systems with open-domain systems. Our view focuses on considering retrieval and generative approaches. Furthermore, the work comprehensively presents evaluation methods and datasets for dialogue systems in the railway domain to pave the way for future research. Finally, some possible directions for future research are identified based on recent research results.Keywords: digitalisation, railway, dialogue systems, conversational AI, natural language processing, natural language understanding, natural language generation
Procedia PDF Downloads 633032 Assessment of Bio-Control Quality of Ethanolic Extracts of Some Tropical Plants on Fruit Rot Pathogens of Pineapple Fruits in Ado Ekiti
Authors: J. Y. Ijato, A. Adewumi, H. O Yakubu, O. O. Olajide, B. O. Ojo, B. A. Adanikin
Abstract:
Post-harvest fruit rot pathogens are one of the major factors that are responsible for food security challenges in developing countries like Nigeria. These pathogens also cause fruit food poisoning. Biocidal effects of ethanolic extracts of Khaya grandifoliola, Hyptis suaveolens, Zingiber officinale, Calophyllum inophyllum, Datura stramonium on the mycelia growth of fungal rot pathogens of pineapple fruit was investigated, the ethanolic extracts of these test plants exhibited high significant inhibitory effects on the rot pathogens, the highest ethanolic extract inhibition of Zingiber officinale was on Aspergillus flavus (38.40%) at 1.0g/ml while the least inhibitory effect was on Aspergillus fumigatus (23.10%) at 1.0g/ml, the highest ethanol extract inhibition of Datura stramonium was on Aspergillus tubingensis (24.00%) at 1.0g/ml while the least inhibitory effect was 10.00% on Colletotrichum fruticola at 1.0g/ml, the highest ethanol extract inhibition of Calophyllum inophyllum was on Trichoderma harzianum (18.50%) at 1.0g/ml while the least inhibitory effect was on Aspergillus flavus (15.00%) at 1.0g/ml, the highest ethanol extract inhibition of Hyptis suaveolens was on Aspergillus fumigatus (35.00%) at 1.0g/ml while the least inhibitory effect was on Aspergillus niger (20.00%) at 1.0g/ml, the highest ethanol extract inhibition of Khaya grandifoliola was on Aspergillus flavus (35.00%) at 1.00g/ml while the least inhibitory effect was on Aspergillus fumigates (22.00%) at 1.0g/ml, the antifungal capacity of these test plant extracts on rot causing fungi on pineapple fruit reveals the possibility of their use by farmers and fruit traders as alternative to chemical fungicide that portends great threat to human and environmental health.Keywords: fruit rot, pathogens, plant extracts, pineapple, food poisoning
Procedia PDF Downloads 1103031 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier
Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh
Abstract:
This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems
Procedia PDF Downloads 433030 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory
Authors: Xu Jiaqiao
Abstract:
Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments
Procedia PDF Downloads 943029 Effects of Nut Quality and Yield by Raising Poultry in Chestnut Tree Plantation
Authors: Yunmi Park, Mahn-Jo Kim
Abstract:
The purpose of this research is to find out the effect of raising poultry in environment-friendly producing area to fruit quality and crop within chestnut tree yield. This study was conducted on chestnut tree cultivation sites raising poultry at intervals of five to ten days for three years in the mountainous area which was located in the middle corner of Chungcheongbuk-do province, Korea. The quality of chestnut fruit and the control effects of harmful insects have been investigated between the sites raising poultry and control sites for three years. As a result, the harvest yielded were two to five kilograms higher in the chestnut tree cultivation sites raising poultry compared with the control site without poultry. Also, for the purposes of determining the price when selling, the ratio of the biggest fruit is higher by 3% to 14% in the chestnut tree cultivation sites raising poultry. In order to investigate the effects of pest control through raising poultry, the ratio of harmful insect species to treatment sites was relatively low compared to control site. The appreciable result is that the control effect of larvae of the chestnut leaf-cut weevil was higher in the position where raising the poultry of 4 to 5 weeks compared to the position where raising the poultry of 12 weeks. This study found that the spread of poultry in the cultivation of chestnut trees increased the fruit quality by improving the size of fruits and lowering the dosage of harmful insect, chestnut leaf-cut weevil. Also, the eco-friendly chicken produced by these mountainous regions is expected to contribute to enhancing the incomes of the farmers by differentiating themselves from existing products.Keywords: chestnut tree, environment-friendly, fruit quality, raising poultry
Procedia PDF Downloads 2863028 Physicochemical Properties of Low Viscosity Banana Juice
Authors: Victor Vicent, Oscar Kibazohi
Abstract:
Banana (Musa acuminata) is one of the most largely consumed fruits in the world. It is an excellent source of potassium, antioxidants, and fiber. In East and Central African countries, banana is used to produce low viscosity clear juice using traditional kneading of ripe banana and grasses until juice oozes out. Recently, an improved method involving blending of the banana followed by pressing to separate the juice from pulp has been achieved. This study assessed the physicochemical properties of banana juice prior to product formulation. Two different banana juices from two cultivars: Pisang awak and Mbile an East African Highland Banana (EAHB) were evaluated for viscosity, sugars (sucrose, fructose, and glucose), organic acids (malic, citric and succinic acids) and minerals using the HPLC and AAS. Juice extracted from Pisang awak had a viscosity of 3.43 × 10⁻⁵ N.m⁻² s while EAHB juice had a viscosity of 6.02 × 10⁻⁵ N.m⁻² s. Sugar concentrations varied with banana place of origin. Pisang awak juice had a higher dissolved solids value of 24-28ᵒ Brix then EAHB, whose value was 18-24ᵒ Brix. Juice viscosity was 3.5–5.3 mPa.s, specific gravity was 1.0-1.1, and pH was 4.3-4.8. The average concentration of sucrose, fructose, and glucose was 1.10 g/L, 70 g/L 70 g/l, respectively for Pisang awak from lower altitude compared to 45-200 g/L 45-120 g/l and 45-120 g/L, respectively for Pisang awak from higher altitude. On the other hand, EAHB from North East Tanzania produced juice corresponding concentrations of 45 g/L, 56 g/L, and 55 g/L, respectively while another EAHB from North West of Tanzania had sucrose and fructose and glucose concentration of 155 g/L and 145 g/L. respectively. Dominant acids were malic and citric acids for pisang awak but succinic for EAHB. Dominant minerals in all cultivars were potassium 2.7-3.1 g/L followed by magnesium 0.6-2 g/L.Keywords: banana juice, sugar content, acids, minerals, quality analysis
Procedia PDF Downloads 1513027 Profiling Risky Code Using Machine Learning
Authors: Zunaira Zaman, David Bohannon
Abstract:
This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties
Procedia PDF Downloads 1063026 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases
Authors: Mohammad A. Bani-Khaled
Abstract:
In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.Keywords: coupled dynamics, geometric complexity, proper orthogonal decomposition (POD), thin walled beams
Procedia PDF Downloads 4183025 Opportunity Cost of Producing Sugarcane, Sweet Orange and Soybean in Sri Lankan Context: An Economic Analysis
Authors: Tharsinithevy Kirupananthan
Abstract:
This study analyzed the decision on growing three different crops which suit dry zone of Sri Lanka using the opportunity cost concept in economics. The variable cost of production of sugar cane, sweet orange, and soybean was 112,418.76, 13,463 and 10,928.08 Sri Lankan Rs. (LKR) per acre in the dry zone of Sri Lanka. The yield of the sugar cane, sweet orange, and soybean were 49.33 tons, 25,595 fruits, and 1032 kg per acre. The market price of the sugar cane, sweet orange, and soybean were 4200 LKR/ton, LKR 14.66 per fruit and LKR 89.69 per kg. The market value or the total income of the sugar cane, sweet orange, and soybean were LKR 207194.4, 283090.74, and 92560.08. The accounting profit of the sugar cane, sweet orange, and soybean was 94,775.64, 269,627.74, and 81,632 LKR per acre. Therefore, the opportunity cost of sugarcane per acre in terms of accounting profit was LKR. 269,627.74 from sweet orange and LKR 81,632 from soybean. The highest opportunity cost per acre in terms of accounting profit was found when soybean is produced instead of sweet orange. The opportunity cost which compared among the crops in terms of market value for sugar cane per acre was LKR 283090.74 of sweet orange and LKR 92560.08 of soybean. The highest opportunity cost both in terms of accounting profit and market value was found when growing soybean instead of sweet orange by using the resource per acre of land. The economic profit of sugar cane production in place of sweet orange was LKR -188315.1 per acre. The highest economic profit LKR 177067.66 was found when sweet orange is produced in place of soybean. A positive value of economic profit was found in all combination of sweet orange production without considering the first harvest duration of the crop.Keywords: agricultural economics, crop, opportunity cost, Sri Lanka
Procedia PDF Downloads 3443024 Rapid Classification of Soft Rot Enterobacteriaceae Phyto-Pathogens Pectobacterium and Dickeya Spp. Using Infrared Spectroscopy and Machine Learning
Authors: George Abu-Aqil, Leah Tsror, Elad Shufan, Shaul Mordechai, Mahmoud Huleihel, Ahmad Salman
Abstract:
Pectobacterium and Dickeya spp which negatively affect a wide range of crops are the main causes of the aggressive diseases of agricultural crops. These aggressive diseases are responsible for a huge economic loss in agriculture including a severe decrease in the quality of the stored vegetables and fruits. Therefore, it is important to detect these pathogenic bacteria at their early stages of infection to control their spread and consequently reduce the economic losses. In addition, early detection is vital for producing non-infected propagative material for future generations. The currently used molecular techniques for the identification of these bacteria at the strain level are expensive and laborious. Other techniques require a long time of ~48 h for detection. Thus, there is a clear need for rapid, non-expensive, accurate and reliable techniques for early detection of these bacteria. In this study, infrared spectroscopy, which is a well-known technique with all its features, was used for rapid detection of Pectobacterium and Dickeya spp. at the strain level. The bacteria were isolated from potato plants and tubers with soft rot symptoms and measured by infrared spectroscopy. The obtained spectra were analyzed using different machine learning algorithms. The performances of our approach for taxonomic classification among the bacterial samples were evaluated in terms of success rates. The success rates for the correct classification of the genus, species and strain levels were ~100%, 95.2% and 92.6% respectively.Keywords: soft rot enterobacteriaceae (SRE), pectobacterium, dickeya, plant infections, potato, solanum tuberosum, infrared spectroscopy, machine learning
Procedia PDF Downloads 1003023 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification
Procedia PDF Downloads 1543022 MXene-Based Self-Sensing of Damage in Fiber Composites
Authors: Latha Nataraj, Todd Henry, Micheal Wallock, Asha Hall, Christine Hatter, Babak Anasori, Yury Gogotsi
Abstract:
Multifunctional composites with enhanced strength and toughness for superior damage tolerance are essential for advanced aerospace and military applications. Detection of structural changes prior to visible damage may be achieved by incorporating fillers with tunable properties such as two-dimensional (2D) nanomaterials with high aspect ratios and more surface-active sites. While 2D graphene with large surface areas, good mechanical properties, and high electrical conductivity seems ideal as a filler, the single-atomic thickness can lead to bending and rolling during processing, requiring post-processing to bond to polymer matrices. Lately, an emerging family of 2D transition metal carbides and nitrides, MXenes, has attracted much attention since their discovery in 2011. Metallic electronic conductivity and good mechanical properties, even with increased polymer content, coupled with hydrophilicity make MXenes a good candidate as a filler material in polymer composites and exceptional as multifunctional damage indicators in composites. Here, we systematically study MXene-based (Ti₃C₂) coated on glass fibers for fiber reinforced polymer composite for self-sensing using microscopy and micromechanical testing. Further testing is in progress through the investigation of local variations in optical, acoustic, and thermal properties within the damage sites in response to strain caused by mechanical loading.Keywords: damage sensing, fiber composites, MXene, self-sensing
Procedia PDF Downloads 1203021 Comparative Study of Stability of Crude and Purified Red Pigments of Pokeberry (Phytolacca Americana L.) Fruits
Authors: Nani Mchedlishvili, Nino Omiadze, Marine Abutidze, Jose Neptuno Rodriguez-Lopez, Tinatin Sadunishvili, Nikoloz Pruidze, Giorgi Kvesitadze
Abstract:
Recently, there is an increased interest in the development of food natural colorants as alternatives to synthetic dyes because of both legislative action and consumer concern. Betalains are widely used in the food industry as an alternative of synthetic colorants. The interest of betalains are caused not only by their coloring effect but also by their beneficial properties. The aim of the work was to study of stability of crude and purified red pigments of pokeberry (Phytolacca america L.). The pokeberry fruit juice was filtrated and concentrated by rotary vacuum evaporator up to 25% and the concentrated juice was passed through the Sepadex-25(fine) column (20×1.1 cm). From the column the pigment elution rate was 18 ml/hr. 1.5ml fractions of pigment were collected. In the fractions the coloring substances were determined using CuS04 x 7 H2O as a standard. From the Sephadex G-25 column only one fraction of the betalain red pigment was eluted with the absorption maximum at 538 nm. The degree of pigment purification was 1.6 and pigment yield from the column was 15 %. It was shown that thermostability of pokeberry fruit red pigment was significantly decreased after the purification. For example, during incubation at 100C for 10 min crude pigment retained 98 % of its color while under the same conditions only 72% of the color of purified pigment was retained. The purified pigment was found to be characterized by less storage stability too. The storage of the initial crude juice and the pigment fraction obtained after the gelfiltration for 10 days at 4°C showed the lost of color by 29 and 74 % respectively. From the results obtained, it can be concluded that during the gelfiltration the pokeberry fruit red pigment gets separated from such substances that cause its stabilization in the crude juice.Keywords: betalains, gelfiltration, pokeberry fruit, stability
Procedia PDF Downloads 2883020 Mobile Augmented Reality for Collaboration in Operation
Authors: Chong-Yang Qiao
Abstract:
Mobile augmented reality (MAR) tracking targets from the surroundings and aids operators for interactive data and procedures visualization, potential equipment and system understandably. Operators remotely communicate and coordinate with each other for the continuous tasks, information and data exchange between control room and work-site. In the routine work, distributed control system (DCS) monitoring and work-site manipulation require operators interact in real-time manners. The critical question is the improvement of user experience in cooperative works through applying Augmented Reality in the traditional industrial field. The purpose of this exploratory study is to find the cognitive model for the multiple task performance by MAR. In particular, the focus will be on the comparison between different tasks and environment factors which influence information processing. Three experiments use interface and interaction design, the content of start-up, maintenance and stop embedded in the mobile application. With the evaluation criteria of time demands and human errors, and analysis of the mental process and the behavior action during the multiple tasks, heuristic evaluation was used to find the operators performance with different situation factors, and record the information processing in recognition, interpretation, judgment and reasoning. The research will find the functional properties of MAR and constrain the development of the cognitive model. Conclusions can be drawn that suggest MAR is easy to use and useful for operators in the remote collaborative works.Keywords: mobile augmented reality, remote collaboration, user experience, cognition model
Procedia PDF Downloads 1973019 Management of Nutritional Strategies in Controlling of Autism in Children
Authors: Maryam Ghavam Sadri, Kimia Moiniafshari
Abstract:
Objectives: The prevalence of Autism in the world has taken on a growing trend. Autism is a neuro-developmental disorder that is identified at the age of three. Studies have been shown that nutritional management can control nutritional deficiencies in Autism. This review study aimed to assess the role of nutritional management strategies for Autism in children has been made. Methods: This review study was accomplished by using the keywords related to the topic, 68 articles were found (2000-2015) and finally 15 articles with criteria such as including dietary pattern, nutritional deficiencies and Autism controlling were selected. Results: The studies showed that intake of vitamins D, E, and calcium because of restricted diet (casein and gluten free) in autistic children is less than typically developing children (TYP) (p value ≤ 0.001) and as a result of restrictions on the consumption of fresh fruits and vegetables, vitamin C and magnesium intake is less than TYP children (p value ≤ 0.001). Autistic children also get omega-3 less than TYP children. Studies have shown that food sources rich in omega-3 can improve behavioral indicators, especially in reducing hyperactivity (95% CI = -2.2 - 5.2). Zinc deficiency in these children leads to a high serum level of mercury, lead and cadmium. As a result of the repetitive dietary pattern, Sodium intake in autistic children is more than TYP children (p value < 0.001).Because of low food variety in autistic children, healthy eating index (HEI) is less than TYP children (p value = 0.008).Food selectivity in Autism due to repetitive and restricted dietary pattern and nutritional deficiencies. Conclusion: Because of restricted (casein and gluten free) and repetitive dietary pattern, the intake of some micronutrients are denied in autistic children. The nutritional strategy programs appear to help controlling of Autism.Keywords: autism, food selectivity, nutrient intake, nutritional strategies
Procedia PDF Downloads 4283018 Automatic Segmentation of 3D Tomographic Images Contours at Radiotherapy Planning in Low Cost Solution
Authors: D. F. Carvalho, A. O. Uscamayta, J. C. Guerrero, H. F. Oliveira, P. M. Azevedo-Marques
Abstract:
The creation of vector contours slices (ROIs) on body silhouettes in oncologic patients is an important step during the radiotherapy planning in clinic and hospitals to ensure the accuracy of oncologic treatment. The radiotherapy planning of patients is performed by complex softwares focused on analysis of tumor regions, protection of organs at risk (OARs) and calculation of radiation doses for anomalies (tumors). These softwares are supplied for a few manufacturers and run over sophisticated workstations with vector processing presenting a cost of approximately twenty thousand dollars. The Brazilian project SIPRAD (Radiotherapy Planning System) presents a proposal adapted to the emerging countries reality that generally does not have the monetary conditions to acquire some radiotherapy planning workstations, resulting in waiting queues for new patients treatment. The SIPRAD project is composed by a set of integrated and interoperabilities softwares that are able to execute all stages of radiotherapy planning on simple personal computers (PCs) in replace to the workstations. The goal of this work is to present an image processing technique, computationally feasible, that is able to perform an automatic contour delineation in patient body silhouettes (SIPRAD-Body). The SIPRAD-Body technique is performed in tomography slices under grayscale images, extending their use with a greedy algorithm in three dimensions. SIPRAD-Body creates an irregular polyhedron with the Canny Edge adapted algorithm without the use of preprocessing filters, as contrast and brightness. In addition, comparing the technique SIPRAD-Body with existing current solutions is reached a contours similarity at least 78%. For this comparison is used four criteria: contour area, contour length, difference between the mass centers and Jaccard index technique. SIPRAD-Body was tested in a set of oncologic exams provided by the Clinical Hospital of the University of Sao Paulo (HCRP-USP). The exams were applied in patients with different conditions of ethnology, ages, tumor severities and body regions. Even in case of services that have already workstations, it is possible to have SIPRAD working together PCs because of the interoperability of communication between both systems through the DICOM protocol that provides an increase of workflow. Therefore, the conclusion is that SIPRAD-Body technique is feasible because of its degree of similarity in both new radiotherapy planning services and existing services.Keywords: radiotherapy, image processing, DICOM RT, Treatment Planning System (TPS)
Procedia PDF Downloads 2963017 A 3D Bioprinting System for Engineering Cell-Embedded Hydrogels by Digital Light Processing
Authors: Jimmy Jiun-Ming Su, Yuan-Min Lin
Abstract:
Bioprinting has been applied to produce 3D cellular constructs for tissue engineering. Microextrusion printing is the most common used method. However, printing low viscosity bioink is a challenge for this method. Herein, we developed a new 3D printing system to fabricate cell-laden hydrogels via a DLP-based projector. The bioprinter is assembled from affordable equipment including a stepper motor, screw, LED-based DLP projector, open source computer hardware and software. The system can use low viscosity and photo-polymerized bioink to fabricate 3D tissue mimics in a layer-by-layer manner. In this study, we used gelatin methylacrylate (GelMA) as bioink for stem cell encapsulation. In order to reinforce the printed construct, surface modified hydroxyapatite has been added in the bioink. We demonstrated the silanization of hydroxyapatite could improve the crosslinking between the interface of hydroxyapatite and GelMA. The results showed that the incorporation of silanized hydroxyapatite into the bioink had an enhancing effect on the mechanical properties of printed hydrogel, in addition, the hydrogel had low cytotoxicity and promoted the differentiation of embedded human bone marrow stem cells (hBMSCs) and retinal pigment epithelium (RPE) cells. Moreover, this bioprinting system has the ability to generate microchannels inside the engineered tissues to facilitate diffusion of nutrients. We believe this 3D bioprinting system has potential to fabricate various tissues for clinical applications and regenerative medicine in the future.Keywords: bioprinting, cell encapsulation, digital light processing, GelMA hydrogel
Procedia PDF Downloads 1813016 Evaluation of Goji By-Product as a Value-Added Ingredient for the Functional Food Industry
Authors: Sanaa Ragaee, Paragyani Bora, Wee Teng Tan, Xin Hu
Abstract:
Goji berry (Lycium barbarum) is a member of the family Solanaceae which is grown widely in China, Tibet, and other parts of Asia. Its fruits are 1–2 cm-long, bright orange-red ellipsoid berries and it has a long tradition as a food and medicinal plant. Goji berries are believed to boost immune system properties. The berries are considered an excellent source of macronutrients, micronutrients, vitamins, minerals and several bioactive components. Studies have shown effects of goji fruit on aging, neuroprotection, general well-being, fatigue/endurance, metabolism/energy expenditure, glucose control in diabetics and glaucoma, antioxidant properties, immunomodulation and anti-tumor activity. Goji berries are being used to prepare Goji beverage, and the remaining solid material is considered as by-product. The by-product is currently unused and disposed as waste despite its potential as a value-added food ingredient. Therefore, this study is intended to evaluate nutritional properties of Goji by-product and its potential applications in the baking industry. The Goji by-product was freeze dried and ground to pass through 1 mm screen prior to evaluation and food use. The Goji by-product was found to be a rich source of fiber (54%) and free phenolic components (1,307 µg/g), protein (13.6%), ash (3.3%) and fat (10%). Incorporation of the Goji by-product in muffins and cookies at various levels (10-40%) significantly improved the nutritional quality of the baked products. The baked products were generally accepted and highly rated by panelists at 20% replacement level. The results indicate the potential of Goji by-product as a value-added ingredient in particular as a source of dietary fiber and protein.Keywords: Goji, by-product, phenolics, fibers, baked products
Procedia PDF Downloads 3023015 Dairy Products on the Algerian Market: Proportion of Imitation and Degree of Processing
Authors: Bentayeb-Ait Lounis Saïda, Cheref Zahia, Cherifi Thizi, Ri Kahina Bahmed, Kahina Hallali Yasmine Abdellaoui, Kenza Adli
Abstract:
Algeria is the leading consumer of dairy products in North Africa. This is a fact. However, the nutritional quality of the latter remains unknown. The aim of this study is to characterise the dairy products available on the Algerian market in order to assess whether they constitute a healthy and safe choice. To do this, it collected data on the labelling of 390 dairy products, including cheese, yoghurt, UHT milk and milk drinks, infant formula and dairy creams. We assessed their degree of processing according to the NOVA classification, as well as the proportion of imitation products. The study was carried out between March 2020 and August 2023. The results show that 88% are ultra-processed; 84% for 'cheese', 92% for dairy creams, 92% for 'yoghurt', 100% for infant formula, 92% for margarines and 36% for UHT milk/dairy drinks. As for imitation/analogue dairy products, the study revealed the following proportions: 100% for infant formula, 78% for butter/margarine, 18% for UHT milk/milk-based drinks, 54% for cheese, 2% for camembert and 75% for dairy cream. The harmful effects of consuming ultra-processed products on long-term health are increasingly documented in dozens of publications. The findings of this study sound the alarm about the health risks to which Algerian consumers are exposed. Various scientific, economic and industrial bodies need to be involved in order to safeguard consumer health in both the short and long term. Food awareness and education campaigns should be organised.Keywords: dairy, UPF, NOVA, yoghurt, cheese
Procedia PDF Downloads 35