Search results for: feature extraction method for tremor classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22384

Search results for: feature extraction method for tremor classification

21304 Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids

Authors: Xun Li, Haojie Wang

Abstract:

Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper.

Keywords: federated learning, backdoor attack, PCA, k-medoids, backdoor defense

Procedia PDF Downloads 114
21303 Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier

Authors: Dasom Kim, William Xiu Shun Wong, Yoonjin Hyun, Donghoon Lee, Minji Paek, Sungho Byun, Namgyu Kim

Abstract:

There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers.

Keywords: data mining, document classifier, text mining, topic modeling

Procedia PDF Downloads 403
21302 Availability Analysis of Process Management in the Equipment Maintenance and Repair Implementation

Authors: Onur Ozveri, Korkut Karabag, Cagri Keles

Abstract:

It is an important issue that the occurring of production downtime and repair costs when machines fail in the machine intensive production industries. In the case of failure of more than one machine at the same time, which machines will have the priority to repair, how to determine the optimal repair time should be allotted for this machines and how to plan the resources needed to repair are the key issues. In recent years, Business Process Management (BPM) technique, bring effective solutions to different problems in business. The main feature of this technique is that it can improve the way the job done by examining in detail the works of interest. In the industries, maintenance and repair works are operating as a process and when a breakdown occurs, it is known that the repair work is carried out in a series of process. Maintenance main-process and repair sub-process are evaluated with process management technique, so it is thought that structure could bring a solution. For this reason, in an international manufacturing company, this issue discussed and has tried to develop a proposal for a solution. The purpose of this study is the implementation of maintenance and repair works which is integrated with process management technique and at the end of implementation, analyzing the maintenance related parameters like quality, cost, time, safety and spare part. The international firm that carried out the application operates in a free region in Turkey and its core business area is producing original equipment technologies, vehicle electrical construction, electronics, safety and thermal systems for the world's leading light and heavy vehicle manufacturers. In the firm primarily, a project team has been established. The team dealt with the current maintenance process again, and it has been revised again by the process management techniques. Repair process which is sub-process of maintenance process has been discussed again. In the improved processes, the ABC equipment classification technique was used to decide which machine or machines will be given priority in case of failure. This technique is a prioritization method of malfunctioned machine based on the effect of the production, product quality, maintenance costs and job security. Improved maintenance and repair processes have been implemented in the company for three months, and the obtained data were compared with the previous year data. In conclusion, breakdown maintenance was found to occur in a shorter time, with lower cost and lower spare parts inventory.

Keywords: ABC equipment classification, business process management (BPM), maintenance, repair performance

Procedia PDF Downloads 194
21301 Recovery of Rare Earths and Scandium from in situ Leaching Solutions

Authors: Maxim S. Botalov, Svetlana М. Titova, Denis V. Smyshlyaev, Grigory M. Bunkov, Evgeny V. Kirillov, Sergey V. Kirillov, Maxim A. Mashkovtsev, Vladimir N. Rychkov

Abstract:

In uranium production, in-situ leaching (ISL) with its relatively low cost has become an important technology. As the orebody containing uranium most often contains a considerable value of other metals, particularly rare earth metals it has rendered feasible to recover the REM from the barren ISL solutions, from which the major uranium content has been removed. Ural Federal University (UrFU, Ekaterinburg, Russia) have performed joint research on the development of industrial technologies for the extraction of REM and Scandium compounds from Uranium ISL solutions. Leaching experiments at UrFU have been supported with multicomponent solution model. The experimental work combines solvent extraction with advanced ion exchange methodology in a pilot facility capable of treating 500 kg/hr of solids. The pilot allows for the recovery of a 99% concentrate of scandium oxide and collective concentrate with over 50 % REM content, with further recovery of heavy and light REM concentrates (99%).

Keywords: extraction, ion exchange, rare earth elements, scandium

Procedia PDF Downloads 232
21300 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments

Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda

Abstract:

In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.

Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction

Procedia PDF Downloads 513
21299 Cellulose Extraction from Pomelo Peel: Synthesis of Carboxymethyl Cellulose

Authors: Jitlada Chumee, Drenpen Seeburin

Abstract:

The cellulose was extracted from pomelo peel and an etherification reaction used for converting cellulose to carboxymethyl cellulose (CMC). The pomelo peel was refluxed with 0.5 M HCl and 1 M NaOH solution at 90°C for 1 h and 2 h, respectively. The cellulose was bleached with calcium hypochlorite and used as precursor. The precursor was soaked in mixed solution between isopropyl alcohol and 40%w/v NaOH for 12 h. After that, chloroacetic acid was added and reacted at 55°C for 6 h. The optimum condition was 5 g of cellulose: 0.25 mole of NaOH : 0.07 mole of ClCH2COOH with 78.00% of yield. Moreover, the product had 0.54 of degree of substitution (DS).

Keywords: pomelo peel, carboxymethyl cellulose, bioplastic, extraction

Procedia PDF Downloads 317
21298 An Object-Based Image Resizing Approach

Authors: Chin-Chen Chang, I-Ta Lee, Tsung-Ta Ke, Wen-Kai Tai

Abstract:

Common methods for resizing image size include scaling and cropping. However, these two approaches have some quality problems for reduced images. In this paper, we propose an image resizing algorithm by separating the main objects and the background. First, we extract two feature maps, namely, an enhanced visual saliency map and an improved gradient map from an input image. After that, we integrate these two feature maps to an importance map. Finally, we generate the target image using the importance map. The proposed approach can obtain desired results for a wide range of images.

Keywords: energy map, visual saliency, gradient map, seam carving

Procedia PDF Downloads 476
21297 Partial Least Square Regression for High-Dimentional and High-Correlated Data

Authors: Mohammed Abdullah Alshahrani

Abstract:

The research focuses on investigating the use of partial least squares (PLS) methodology for addressing challenges associated with high-dimensional correlated data. Recent technological advancements have led to experiments producing data characterized by a large number of variables compared to observations, with substantial inter-variable correlations. Such data patterns are common in chemometrics, where near-infrared (NIR) spectrometer calibrations record chemical absorbance levels across hundreds of wavelengths, and in genomics, where thousands of genomic regions' copy number alterations (CNA) are recorded from cancer patients. PLS serves as a widely used method for analyzing high-dimensional data, functioning as a regression tool in chemometrics and a classification method in genomics. It handles data complexity by creating latent variables (components) from original variables. However, applying PLS can present challenges. The study investigates key areas to address these challenges, including unifying interpretations across three main PLS algorithms and exploring unusual negative shrinkage factors encountered during model fitting. The research presents an alternative approach to addressing the interpretation challenge of predictor weights associated with PLS. Sparse estimation of predictor weights is employed using a penalty function combining a lasso penalty for sparsity and a Cauchy distribution-based penalty to account for variable dependencies. The results demonstrate sparse and grouped weight estimates, aiding interpretation and prediction tasks in genomic data analysis. High-dimensional data scenarios, where predictors outnumber observations, are common in regression analysis applications. Ordinary least squares regression (OLS), the standard method, performs inadequately with high-dimensional and highly correlated data. Copy number alterations (CNA) in key genes have been linked to disease phenotypes, highlighting the importance of accurate classification of gene expression data in bioinformatics and biology using regularized methods like PLS for regression and classification.

Keywords: partial least square regression, genetics data, negative filter factors, high dimensional data, high correlated data

Procedia PDF Downloads 49
21296 Phenolic Compounds and Antimicrobial Properties of Pomegranate (Punica granatum) Peel Extracts

Authors: P. Rahnemoon, M. Sarabi Jamab, M. Javanmard Dakheli, A. Bostan

Abstract:

In recent years, tendency to use of natural antimicrobial agents in food industry has increased. Pomegranate peels containing phenolic compounds and anti-microbial agents, are counted as valuable source for extraction of these compounds. In this study, the extraction of pomegranate peel extract was carried out at different ethanol/water ratios (40:60, 60:40, and 80:20), temperatures (25, 40, and 55 ˚C), and time durations (20, 24, and 28 h). The extraction yield, phenolic compounds, flavonoids, and anthocyanins were measured. ‎Antimicrobial activity of pomegranate peel extracts were determined against some food-borne ‎microorganisms such as Salmonella enteritidis, Escherichia coli, Listeria monocytogenes, ‎‎Staphylococcus aureus, Aspergillus niger, and Saccharomyces cerevisiae by agar diffusion and MIC methods. Results showed that at ethanol/water ratio 60:40, 25 ˚C and 24 h maximum amount of phenolic compounds ‎(‎‎349.518‎‏ ‏mg gallic acid‏/‏g dried extract), ‎flavonoids (250.124 mg rutin‏/‏g dried extract), anthocyanins (252.047 ‎‏‏mg ‎cyanidin‎3‎glucoside‏/‏‎100 g dried extract), and the strongest antimicrobial activity were obtained. ‎All extracts’ antimicrobial activities were demonstrated against every tested ‎‎microorganisms.‎Staphylococcus aureus showed the highest sensitivity among the tested ‎‎‎microorganisms.

Keywords: antimicrobial agents, phenolic compounds, pomegranate peel, solvent extraction‎

Procedia PDF Downloads 258
21295 Interaction with Earth’s Surface in Remote Sensing

Authors: Spoorthi Sripad

Abstract:

Remote sensing is a powerful tool for acquiring information about the Earth's surface without direct contact, relying on the interaction of electromagnetic radiation with various materials and features. This paper explores the fundamental principle of "Interaction with Earth's Surface" in remote sensing, shedding light on the intricate processes that occur when electromagnetic waves encounter different surfaces. The absorption, reflection, and transmission of radiation generate distinct spectral signatures, allowing for the identification and classification of surface materials. The paper delves into the significance of the visible, infrared, and thermal infrared regions of the electromagnetic spectrum, highlighting how their unique interactions contribute to a wealth of applications, from land cover classification to environmental monitoring. The discussion encompasses the types of sensors and platforms used to capture these interactions, including multispectral and hyperspectral imaging systems. By examining real-world applications, such as land cover classification and environmental monitoring, the paper underscores the critical role of understanding the interaction with the Earth's surface for accurate and meaningful interpretation of remote sensing data.

Keywords: remote sensing, earth's surface interaction, electromagnetic radiation, spectral signatures, land cover classification, archeology and cultural heritage preservation

Procedia PDF Downloads 60
21294 Small Target Recognition Based on Trajectory Information

Authors: Saad Alkentar, Abdulkareem Assalem

Abstract:

Recognizing small targets has always posed a significant challenge in image analysis. Over long distances, the image signal-to-noise ratio tends to be low, limiting the amount of useful information available to detection systems. Consequently, visual target recognition becomes an intricate task to tackle. In this study, we introduce a Track Before Detect (TBD) approach that leverages target trajectory information (coordinates) to effectively distinguish between noise and potential targets. By reframing the problem as a multivariate time series classification, we have achieved remarkable results. Specifically, our TBD method achieves an impressive 97% accuracy in separating target signals from noise within a mere half-second time span (consisting of 10 data points). Furthermore, when classifying the identified targets into our predefined categories—airplane, drone, and bird—we achieve an outstanding classification accuracy of 96% over a more extended period of 1.5 seconds (comprising 30 data points).

Keywords: small targets, drones, trajectory information, TBD, multivariate time series

Procedia PDF Downloads 48
21293 Examining How Youth Use Mobile Devices for Health Information: Preliminary Findings of a Survey Study with High School Students in Croatia

Authors: Sung Un Kim, Ivana Martinović, Snježana Stanarević Katavić

Abstract:

As more and more youth use mobile devices, such as tablets and smartphones, for information seeking in their everyday lives, the purpose of this study is to understand the behaviors of youth seeking health information on mobile devices. The specific objective of this study is to examine 1) for what health issues youth use mobile devices, 2) for what reasons youth use mobile devices to obtain health information, 3) in what ways youth use mobile devices for health information, and 4) the features of health applications that youth find useful. The researchers devised a questionnaire for this study. Four hundred eight students from two high schools, located in Osijek, Croatia, participated by answering the questionnaire (281 girls and 127 boys). The collected data were analyzed using descriptive statistics and content analysis. The results show that among all participants, about 85 percent (n = 344) reported having used mobile devices for health information. The most frequent health topic for which they had been using mobile devices is physical activity (n = 273), followed by eating issues and nutrition (n = 224), mental health (n = 160), sexual health (n = 157), alcohol, drugs, and tobacco (n = 125), safety (n = 96) and particular diseases (n = 62). They use mobile devices to obtain health information due to the ease of use (n = 342), the ease of sharing health information (n = 281), portability (n = 215), timeliness (n = 162), and the ease of tracking/recording/monitoring health status (n = 147). Of those who have used mobile devices for health information, three-quarters (n = 261) use mobile devices to search health information, while 32.8% (n =113) use applications and 31.7% (n =109) browse information. Those who have used applications for health information (n = 113) consider the alert feature (n=107) as the most useful, followed by the tracking/recording/monitoring feature (n =92), the customized information feature (n = 86), the video feature (n = 58), and the sharing feature (n =39). It is notable that although health applications have been actively developed and studied, a majority of the participants search for or browse information on mobile devices, instead of using applications. The researchers will discuss reasons that some of them did not use mobile devices to obtain health information, students’ concerns about using health applications, and features that they wish to have in health applications.

Keywords: Croatia, health information, information seeking behaviors, mobile devices, youth

Procedia PDF Downloads 403
21292 GC and GCxGC-MS Composition of Volatile Compounds from Cuminum cyminum and Carum carvi by Using Techniques Assisted by Microwaves

Authors: F. Benkaci-Ali, R. Mékaoui, G. Scholl, G. Eppe

Abstract:

The new methods as accelerated steam distillation assisted by microwave (ASDAM) is a combination of microwave heating and steam distillation, performed at atmospheric pressure at very short extraction time. Isolation and concentration of volatile compounds are performed by a single stage. (ASDAM) has been compared with (ASDAM) with cryogrinding of seeds (CG) and a conventional technique, hydrodistillation assisted by microwave (HDAM), hydro-distillation (HD) for the extraction of essential oil from aromatic herb as caraway and cumin seeds. The essential oils extracted by (ASDAM) for 1 min were quantitatively (yield) and qualitatively (aromatic profile) no similar to those obtained by ASDAM-CG (1 min) and HD (for 3 h). The accelerated microwave extraction with cryogrinding inhibits numerous enzymatic reactions as hydrolysis of oils. Microwave radiations constitute the adequate mean for the extraction operations from the yields and high content in major component majority point view, and allow to minimise considerably the energy consumption, but especially heating time too, which is one of essential parameters of artifacts formation. The ASDAM and ASDAM-CG are green techniques and yields an essential oil with higher amounts of more valuable oxygenated compounds comparable to the biosynthesis compounds, and allows substantial savings of costs, in terms of time, energy and plant material.

Keywords: microwave, steam distillation, caraway, cumin, cryogrinding, GC-MS, GCxGC-MS

Procedia PDF Downloads 258
21291 Finding Related Scientific Documents Using Formal Concept Analysis

Authors: Nadeem Akhtar, Hira Javed

Abstract:

An important aspect of research is literature survey. Availability of a large amount of literature across different domains triggers the need for optimized systems which provide relevant literature to researchers. We propose a search system based on keywords for text documents. This experimental approach provides a hierarchical structure to the document corpus. The documents are labelled with keywords using KEA (Keyword Extraction Algorithm) and are automatically organized in a lattice structure using Formal Concept Analysis (FCA). This groups the semantically related documents together. The hierarchical structure, based on keywords gives out only those documents which precisely contain them. This approach open doors for multi-domain research. The documents across multiple domains which are indexed by similar keywords are grouped together. A hierarchical relationship between keywords is obtained. To signify the effectiveness of the approach, we have carried out the experiment and evaluation on Semeval-2010 Dataset. Results depict that the presented method is considerably successful in indexing of scientific papers.

Keywords: formal concept analysis, keyword extraction algorithm, scientific documents, lattice

Procedia PDF Downloads 333
21290 Microwave Assisted Extractive Desulfurization of Gas Oil Feedstock

Authors: Hamida Y. Mostafa, Ghada E. Khedr, Dina M. Abd El-Aty

Abstract:

Sulfur compound removal from petroleum fractions is a critical component of environmental protection demands. Solvent extraction, oxidative desulfurization, or hydro-treatment techniques have traditionally been used as the removal processes. While all methods were capable of eliminating sulfur compounds at moderate rates, they had some limitations. A major problem with these routes is their high running expenses, which are caused by their prolonged operation times and high energy consumption. Therefore, new methods for removing sulfur are still necessary. In the current study, a simple assisted desulfurization system for gas oil fraction has been successfully developed using acetonitrile and methanol as a solvent under microwave irradiation. The key variables affecting sulfur removal have been studied, including microwave power, irradiation time, and solvent to gas oil volume ratio. At the conclusion of the research that is being presented, promising results have been found. The results show that a microwave-assisted extractive desulfurization method had remove sulfur with a high degree of efficiency under the suitable conditions.

Keywords: extractive desulfurization, microwave assisted extraction, petroleum fractions, acetonitrile and methanol

Procedia PDF Downloads 103
21289 Multiclass Analysis of Pharmaceuticals in Fish and Shrimp Tissues by High-Performance Liquid Chromatography-Tandem Mass Spectrometry

Authors: Reza Pashaei, Reda Dzingelevičienė

Abstract:

An efficient, reliable, and sensitive multiclass analytical method has been expanded to simultaneously determine 15 human pharmaceutical residues in fish and shrimp tissue samples by ultra-high-performance liquid chromatography-tandem mass spectrometry. The investigated compounds comprise ten classes, namely analgesic, antibacterial, anticonvulsant, cardiovascular, fluoroquinolones, macrolides, nonsteroidal anti-inflammatory, penicillins, stimulant, and sulfonamide. A simple liquid extraction procedure based on 0.1% formic acid in methanol was developed. Chromatographic conditions were optimized, and mobile phase namely 0.1 % ammonium acetate (A), and acetonitrile (B): 0 – 2 min, 15% B; 2 – 5 min, linear to 95% B; 5 – 10 min, 95% B; and 10 – 12 min was obtained. Limits of detection and quantification ranged from 0.017 to 1.371 μg/kg and 0.051 to 4.113 μg/kg, respectively. Finally, amoxicillin, azithromycin, caffeine, carbamazepine, ciprofloxacin, clarithromycin, diclofenac, erythromycin, furosemide, ibuprofen, ketoprofen, naproxen, sulfamethoxazole, tetracycline, and triclosan were quantifiable in fish and shrimp samples.

Keywords: fish, liquid chromatography, mass spectrometry, pharmaceuticals, shrimp, solid-phase extraction

Procedia PDF Downloads 262
21288 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 147
21287 Heart Failure Identification and Progression by Classifying Cardiac Patients

Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan

Abstract:

Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.

Keywords: decision tree, heart failure, data mining, classification model

Procedia PDF Downloads 402
21286 Research and Application of Multi-Scale Three Dimensional Plant Modeling

Authors: Weiliang Wen, Xinyu Guo, Ying Zhang, Jianjun Du, Boxiang Xiao

Abstract:

Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science.

Keywords: plant, three dimensional modeling, multi-scale, plant phenotyping, three dimensional data acquisition

Procedia PDF Downloads 277
21285 The Convolution Recurrent Network of Using Residual LSTM to Process the Output of the Downsampling for Monaural Speech Enhancement

Authors: Shibo Wei, Ting Jiang

Abstract:

Convolutional-recurrent neural networks (CRN) have achieved much success recently in the speech enhancement field. The common processing method is to use the convolution layer to compress the feature space by multiple upsampling and then model the compressed features with the LSTM layer. At last, the enhanced speech is obtained by deconvolution operation to integrate the global information of the speech sequence. However, the feature space compression process may cause the loss of information, so we propose to model the upsampling result of each step with the residual LSTM layer, then join it with the output of the deconvolution layer and input them to the next deconvolution layer, by this way, we want to integrate the global information of speech sequence better. The experimental results show the network model (RES-CRN) we introduce can achieve better performance than LSTM without residual and overlaying LSTM simply in the original CRN in terms of scale-invariant signal-to-distortion ratio (SI-SNR), speech quality (PESQ), and intelligibility (STOI).

Keywords: convolutional-recurrent neural networks, speech enhancement, residual LSTM, SI-SNR

Procedia PDF Downloads 201
21284 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs

Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye

Abstract:

This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.

Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label

Procedia PDF Downloads 129
21283 Comparison of Polyphonic Profile of a Berry from Two Different Sources, Using an Optimized Extraction Method

Authors: G. Torabian, A. Fathi, P. Valtchev, F. Dehghani

Abstract:

The superior polyphenol content of Sambucus nigra berries has high health potentials for the production of nutraceutical products. Numerous factors influence the polyphenol content of the final products including the berries’ source and the subsequent processing production steps. The aim of this study is to compare the polyphenol content of berries from two different sources and also to optimise the polyphenol extraction process from elderberries. Berries from source B obtained more acceptable physical properties than source A; a single berry from source B was double in size and weight (both wet and dry weight) compared with a source A berry. Despite the appropriate physical characteristics of source B berries, their polyphenolic profile was inferior; as source A berries had 2.3 fold higher total anthocyanin content, and nearly two times greater total phenolic content and total flavonoid content compared to source B. Moreover, the result of this study showed that almost 50 percent of the phenolic content of berries are entrapped within their skin and pulp that potentially cannot be extracted by press juicing. To address this challenge and to increase the total polyphenol yield of the extract, we used cold-shock blade grinding method to break the cell walls. The result of this study showed that using cultivars with higher phenolic content as well as using the whole fruit including juice, skin and pulp can increase polyphenol yield significantly; and thus, may boost the potential of using elderberries as therapeutic products.

Keywords: different sources, elderberry, grinding, juicing, polyphenols

Procedia PDF Downloads 294
21282 Identification of Coauthors in Scientific Database

Authors: Thiago M. R Dias, Gray F. Moita

Abstract:

The analysis of scientific collaboration networks has contributed significantly to improving the understanding of how does the process of collaboration between researchers and also to understand how the evolution of scientific production of researchers or research groups occurs. However, the identification of collaborations in large scientific databases is not a trivial task given the high computational cost of the methods commonly used. This paper proposes a method for identifying collaboration in large data base of curriculum researchers. The proposed method has low computational cost with satisfactory results, proving to be an interesting alternative for the modeling and characterization of large scientific collaboration networks.

Keywords: extraction, data integration, information retrieval, scientific collaboration

Procedia PDF Downloads 396
21281 Off-Line Text-Independent Arabic Writer Identification Using Optimum Codebooks

Authors: Ahmed Abdullah Ahmed

Abstract:

The task of recognizing the writer of a handwritten text has been an attractive research problem in the document analysis and recognition community with applications in handwriting forensics, paleography, document examination and handwriting recognition. This research presents an automatic method for writer recognition from digitized images of unconstrained writings. Although a great effort has been made by previous studies to come out with various methods, their performances, especially in terms of accuracy, are fallen short, and room for improvements is still wide open. The proposed technique employs optimal codebook based writer characterization where each writing sample is represented by a set of features computed from two codebooks, beginning and ending. Unlike most of the classical codebook based approaches which segment the writing into graphemes, this study is based on fragmenting a particular area of writing which are beginning and ending strokes. The proposed method starting with contour detection to extract significant information from the handwriting and the curve fragmentation is then employed to categorize the handwriting into Beginning and Ending zones into small fragments. The similar fragments of beginning strokes are grouped together to create Beginning cluster, and similarly, the ending strokes are grouped to create the ending cluster. These two clusters lead to the development of two codebooks (beginning and ending) by choosing the center of every similar fragments group. Writings under study are then represented by computing the probability of occurrence of codebook patterns. The probability distribution is used to characterize each writer. Two writings are then compared by computing distances between their respective probability distribution. The evaluations carried out on ICFHR standard dataset of 206 writers using Beginning and Ending codebooks separately. Finally, the Ending codebook achieved the highest identification rate of 98.23%, which is the best result so far on ICFHR dataset.

Keywords: off-line text-independent writer identification, feature extraction, codebook, fragments

Procedia PDF Downloads 512
21280 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station

Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner

Abstract:

A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.

Keywords: radio base station, maintenance, classification, detection, deep learning, automation

Procedia PDF Downloads 201
21279 Simultaneous Determination of Proposed Anti-HIV Combination Comprising of Elvitegravir and Quercetin in Rat Plasma Using the HPLC–ESI-MS/MS Method: Drug Interaction Study

Authors: Lubna Azmi, Ila Shukla, Shyam Sundar Gupta, Padam Kant, C. V. Rao

Abstract:

Elvitegravir is the mainstay of anti-HIV combination therapy in most endemic countries presently. However, it cannot be used alone owing to its long onset time of action. 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one (Quercetin: QU) is a polyphenolic compound obtained from Argeria speciosa Linn (Family: Convolvulaceae), an anti-HIV candidate. In the present study, a sensitive, simple and rapid high-performance liquid chromatography coupled with positive ion electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method was developed for the simultaneous determination elvitegravir and Quercetin, in rat plasma. The method was linear over a range of 0.2–500 ng/ml. All validation parameters met the acceptance criteria according to regulatory guidelines. LC–MS/MS method for determination of Elvitegravir and Quercetin was developed and validated. Results show the potential of drug–drug interaction upon co-administration this marketed drugs and plant derived secondary metabolite.

Keywords: anti-HIV resistance, extraction, HPLC-ESI-MS-MS, validation

Procedia PDF Downloads 345
21278 Instability Index Method and Logistic Regression to Assess Landslide Susceptibility in County Route 89, Taiwan

Authors: Y. H. Wu, Ji-Yuan Lin, Yu-Ming Liou

Abstract:

This study aims to set up the landslide susceptibility map of County Route 89 at Ren-Ai Township in Nantou County using the Instability Index Method and Logistic regression. Seven susceptibility factors including Slope Angle, Aspect, Elevation, Distance to fold, Distance to River, Distance to Road and Accumulated Rainfall were obtained by GIS based on the Typhoon Toraji landslide area identified by Industrial Technology Research Institute in 2001. To calculate the landslide percentage of each factor and acquire the weight and grade the grid by means of Instability Index Method. In this study, landslide susceptibility can be classified into four grades: high, medium high, medium low and low, in order to determine the advantages and disadvantages of the two models. The precision of this model is verified by classification error matrix and SRC curve. These results suggest that the logistic regression model is a preferred method than instability index in the assessment of landslide susceptibility. It is suitable for the landslide prediction and precaution in this area in the future.

Keywords: instability index method, logistic regression, landslide susceptibility, SRC curve

Procedia PDF Downloads 292
21277 An Improved Parallel Algorithm of Decision Tree

Authors: Jiameng Wang, Yunfei Yin, Xiyu Deng

Abstract:

Parallel optimization is one of the important research topics of data mining at this stage. Taking Classification and Regression Tree (CART) parallelization as an example, this paper proposes a parallel data mining algorithm based on SSP-OGini-PCCP. Aiming at the problem of choosing the best CART segmentation point, this paper designs an S-SP model without data association; and in order to calculate the Gini index efficiently, a parallel OGini calculation method is designed. In addition, in order to improve the efficiency of the pruning algorithm, a synchronous PCCP pruning strategy is proposed in this paper. In this paper, the optimal segmentation calculation, Gini index calculation, and pruning algorithm are studied in depth. These are important components of parallel data mining. By constructing a distributed cluster simulation system based on SPARK, data mining methods based on SSP-OGini-PCCP are tested. Experimental results show that this method can increase the search efficiency of the best segmentation point by an average of 89%, increase the search efficiency of the Gini segmentation index by 3853%, and increase the pruning efficiency by 146% on average; and as the size of the data set increases, the performance of the algorithm remains stable, which meets the requirements of contemporary massive data processing.

Keywords: classification, Gini index, parallel data mining, pruning ahead

Procedia PDF Downloads 124
21276 Clean Coal Using Coal Bed Methane: A Pollution Control Mechanism

Authors: Arish Iqbal, Santosh Kumar Singh

Abstract:

Energy from coal is one of the major source of energy throughout the world but taking into consideration its effect on environment 'Clean Coal Technologies' (CCT) came into existence. In this paper we have we studied why CCT’s are essential and what are the different types of CCT’s. Also, the coal and CCT scenario in India is introduced. Coal Bed Methane one of major CCT area is studied in detail. Different types of coal bed methane and its methods of extraction are discussed. The different problem areas during the extraction of CBM are identified and discussed. How CBM can be used as a fuel for future is also discussed.

Keywords: CBM (coal bed methane), CCS (carbon capture and storage), CCT (clean coal technology), CMM (coal mining methane)

Procedia PDF Downloads 242
21275 A Hydrometallurgical Route for the Recovery of Molybdenum from Spent Mo-Co Catalyst

Authors: Bina Gupta, Rashmi Singh, Harshit Mahandra

Abstract:

Molybdenum is a strategic metal and finds applications in petroleum refining, thermocouples, X-ray tubes and in making of steel alloy owing to its high melting temperature and tensile strength. The growing significance and economic value of molybdenum has increased interest in the development of efficient processes aiming its recovery from secondary sources. Main secondary sources of Mo are molybdenum catalysts which are used for hydrodesulphurisation process in petrochemical refineries. The activity of these catalysts gradually decreases with time during the desulphurisation process as the catalysts get contaminated with toxic material and are dumped as waste which leads to environmental issues. In this scenario, recovery of molybdenum from spent catalyst is significant from both economic and environmental point of view. Recently ionic liquids have gained prominence due to their low vapour pressure, high thermal stability, good extraction efficiency and recycling capacity. The present study reports recovery of molybdenum from Mo-Co spent leach liquor using Cyphos IL 102[trihexyl(tetradecyl)phosphonium bromide] as an extractant. Spent catalyst was leached with 3.0 mol/L HCl, and the leach liquor containing Mo-870 ppm, Co-341 ppm, Al-508 ppm and Fe-42 ppm was subjected to extraction step. The effect of extractant concentration on the leach liquor was investigated and almost 85% extraction of Mo was achieved with 0.05 mol/L Cyphos IL 102. Results of stripping studies revealed that 2.0 mol/L HNO3 can effectively strip 94% of the extracted Mo from the loaded organic phase. McCabe- Thiele diagrams were constructed to determine the number of stages required for quantitative extraction and stripping of molybdenum and were confirmed by countercurrent simulation studies. According to McCabe- Thiele extraction and stripping isotherms, two stages are required for quantitative extraction and stripping of molybdenum at A/O= 1:1. Around 95.4% extraction of molybdenum was achieved in two-stage counter current at A/O= 1:1 with the negligible extraction of Co and Al. However, iron was coextracted and removed from the loaded organic phase by scrubbing with 0.01 mol/L HCl. Quantitative stripping (~99.5 %) of molybdenum was achieved with 2.0 mol/L HNO₃ in two stages at O/A=1:1. Overall ~95.0% molybdenum with 99 % purity was recovered from Mo-Co spent catalyst. From the strip solution, MoO₃ was obtained by crystallization followed by thermal decomposition. The product obtained after thermal decomposition was characterized by XRD, FE-SEM and EDX techniques. XRD peaks of MoO₃ correspond to molybdite Syn-MoO₃ structure. FE-SEM depicts the rod-like morphology of synthesized MoO₃. EDX analysis of MoO₃ shows 1:3 atomic percentage of molybdenum and oxygen. The synthesised MoO₃ can find application in gas sensors, electrodes of batteries, display devices, smart windows, lubricants and as a catalyst.

Keywords: cyphos Il 102, extraction, spent mo-co catalyst, recovery

Procedia PDF Downloads 172