Search results for: deep ecology
1370 Intercultural Strategies of Chinese Composers in the Organizational Structure of Their Works
Authors: Bingqing Chen
Abstract:
The Opium War unlocked the gate of China. Since then, modern western culture has been imported strongly and spread throughout this Asian country. The monologue of traditional Chinese culture in the past has been replaced by the hustle and bustle of multiculturalism. In the field of music, starting from school music, China, a country without the concept of composition, was deeply influenced by western culture and professional music composition, and entered the era of professional music composition. Recognizing the importance of national culture, a group of insightful artists began to try to add ‘China’ to musical composition. However, due to the special historical origin of Chinese professional musical composition and the three times of cultural nihilism in China, professional musical composition at this time failed to interpret the deep language structure of local culture within Chinese traditional culture, but only regarded Chinese traditional music as a ‘melody material library.’ At this time, the cross-cultural composition still takes Western music as its ‘norm,’ while our own music culture only exists as the sound of the contrast of Western music. However, after reading scores extensively, watching video performances, and interviewing several active composers, we found that at least in the past 30 years, China has created some works that can be called intercultural music. In these kinds of music, composers put Chinese and Western, traditional and modern in an almost equal position to have a dialogue based on their deep understanding and respect for the two cultures. This kind of music connects two music worlds, and links the two cultural and ideological worlds behind it, and communicates and grows together. This paper chose the works of three composers with different educational backgrounds, and pay attention to how composers can make a dialogue at the organizational structure level of their works. Based on the strategies adopted by composers in structuring their works, this paper expounds on how the composer's music procedure shows intercultural in terms of whole sound effects and cultural symbols. By actively participating in this intercultural practice, composers resorting to various musical and extra-musical procedures to arrive at the so-called ‘innovation within tradition.’ Through the dialogue, we can activate the space of creative thinking and explore the potential contained in culture. This interdisciplinary research promotes the rethinking of the possibility of innovation in contemporary Chinese intercultural music composition, spanning the fields of sound studies, dialogue theory, cultural research, music theory, and so on. Recently, China is calling for actively promoting 'the construction of Chinese music canonization,’ expecting to form a particular music style to show national-cultural identity. In the era of globalization, it is possible to form a brand-new Chinese music style through intercultural composition, but it is a question about talents, and the key lies in how composers do it. There is no recipe for the formation of the Chinese music style, only the composers constantly trying and tries to solve problems in their works.Keywords: dialogism, intercultural music, national-cultural identity, organization/structure, sound
Procedia PDF Downloads 1121369 Reconceptualizing Bioeconomy: From the Hegemonic Vision to Diverse Economies and Economies-others for Life – Advocating for a Resilient and Just Future in Colombia
Authors: Alexander Rincón Ruiz
Abstract:
This article is based on an exhaustive review and interdisciplinary effort spanning three years. It involved interviews, dialogues, discussion panels, and collective work on various visions of bio-economy in Colombia. The dialogue included government institutions, universities, local communities, activist groups, research institutes, the productive sector, and politicians, integrating perspectives such as Latin American environmental thought, complexity theory, modern visions, local worldviews (Afro-Colombian, indigenous, peasant), decoloniality, political ecology, ecological economics, and environmental economies. This work highlighted the need to redefine the traditional bio-economy concept, typically focused on markets and biotechnology, and to revisit the original idea of a bio-economy as an ‘economy for life’. In a country as diverse as Colombia—both biophysically and in its varied relationships with the territory—this redefinition is crucial. It emphasizes alternative logics of well-being related to resilience, care, and cooperation, reflecting Indigenous, Afro-Colombian, and peasant worldviews. This article is significant for proposing, for the first time, a viable approach to diverse and alternative economies for life tailored to the Colombian context. It represents not only academic work but also a political commitment to inclusion and plurality, aligning with the Colombian context and potentially extendable to other regions.Keywords: ecological economics, decoloniality, complexity, Biodiversity
Procedia PDF Downloads 341368 Pitfalls and Drawbacks in Visual Modelling of Learning Knowledge by Students
Authors: Tatyana Gavrilova, Vadim Onufriev
Abstract:
Knowledge-based systems’ design requires the developer’s owning the advanced analytical skills. The efficient development of that skills within university courses needs a deep understanding of main pitfalls and drawbacks, which students usually make during their analytical work in form of visual modeling. Thus, it was necessary to hold an analysis of 5-th year students’ learning exercises within courses of 'Intelligent systems' and 'Knowledge engineering' in Saint-Petersburg Polytechnic University. The analysis shows that both lack of system thinking skills and methodological mistakes in course design cause the errors that are discussed in the paper. The conclusion contains an exploration of the issues and topics necessary and sufficient for the implementation of the improved practices in educational design for future curricula of teaching programs.Keywords: knowledge based systems, knowledge engineering, students’ errors, visual modeling
Procedia PDF Downloads 3111367 Recommendations of Plant and Plant Composition Which Can Be Used in Visual Landscape Improvement in Urban Spaces in Cold Climate Regions
Authors: Feran Asur
Abstract:
In cities, plants; with its visual and functional effects, it helps to provide balance between human and environmental system. It is possible to develop alternative solutions to eliminate visual pollution by evaluating the potential properties of plant materials with other inanimate materials such as color, texture, form, size, etc. characteristics and other inanimate materials such as highlighter, background forming, harmonizing and concealer. In cold climates, the number of ornamental plant species that grow in warmer climates is less. For this reason, especially in the landscaping works of urban spaces, it is difficult to create the desired visuality with aesthetically qualified plants that are suitable for the ecology of the area, without creating monotony, with color variety. In this study, the importance of plant and plant compositions in the solution of visual problems in urban environments in cold climatic conditions is emphasized. The potential of ornamental plants that can be used for this purpose in preventing visual pollution is given. It has been shown how to use prominent features of these ornamental plants such as size, form, texture, vegetation periods to improve visual landscape in urban spaces in a long time. In addition to the design group disciplines that have activity on planning or application basis in the city and its surroundings, landscape architecture discipline can provide visual improvement of the studies to be carried out in detail in terms of planting design.Keywords: residential landscape, planting, urban space, visual improvement
Procedia PDF Downloads 1401366 Automatic Calibration of Agent-Based Models Using Deep Neural Networks
Authors: Sima Najafzadehkhoei, George Vega Yon
Abstract:
This paper presents an approach for calibrating Agent-Based Models (ABMs) efficiently, utilizing Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. These machine learning techniques are applied to Susceptible-Infected-Recovered (SIR) models, which are a core framework in the study of epidemiology. Our method replicates parameter values from observed trajectory curves, enhancing the accuracy of predictions when compared to traditional calibration techniques. Through the use of simulated data, we train the models to predict epidemiological parameters more accurately. Two primary approaches were explored: one where the number of susceptible, infected, and recovered individuals is fully known, and another using only the number of infected individuals. Our method shows promise for application in other ABMs where calibration is computationally intensive and expensive.Keywords: ABM, calibration, CNN, LSTM, epidemiology
Procedia PDF Downloads 241365 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator
Authors: Jaeyoung Lee
Abstract:
Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.Keywords: edge network, embedded network, MMA, matrix multiplication accelerator, semantic segmentation network
Procedia PDF Downloads 1291364 Performance and Emissions Analysis of Diesel Engine with Bio-Diesel of Waste Cooking Oils
Authors: Mukesh Kumar, Onkar Singh, Naveen Kumar, Amar Deep
Abstract:
The waste cooking oil is taken as feedstock for biodiesel production. For this research, waste cooking oil is collected from many hotels and restaurants, and then biodiesel is prepared for experimentation purpose. The prepared biodiesel is mixed with mineral diesel in the proportion of 10%, 20%, and 30% to perform tests on a diesel engine. The experimental analysis is carried out at different load conditions to analyze the impact of the blending ratio on the performance and emission parameters. When the blending proportion of biodiesel is increased, then the highest pressure reduces due to the fall in the calorific value of the blended mixture. Experimental analysis shows a promising decrease in nitrogen oxides (NOx). A mixture of 20% biodiesel and mineral diesel is the best negotiation, mixing ratio, and beyond that, a remarkable reduction in the outcome of the performance has been observed.Keywords: alternative sources, diesel engine, emissions, performance
Procedia PDF Downloads 1791363 Cultural and Historical Roots of Plagiarism in Georgia
Authors: Lali Khurtsia, Vano Tsertsvadze
Abstract:
The purpose of the study was to find out incentives and expectations, methods and ways, which are influential to students during working with their thesis. Research findings shows that the use of plagiarism has cultural links deep in the history - on the one hand, the tradition of sharing knowledge in the oral manner, with its different interpretations, and on the other hand the lack of fair and honest methods in the academic process. Research results allow us to determine general ideas about preventive policy to reduce the use of plagiarism. We conducted surveys in three different groups – we interviewed so-called diploma writers, students on bachelors and masters level and the focus group of lecturers. We found that the problem with plagiarism in Georgia has cultural-mental character. We think that nearest years’ main task should be breaking of barriers existed between lecturers and students and acknowledgement of honest principals of study process among students and pupils.Keywords: education, Georgia, plagiarism, study process, school, university
Procedia PDF Downloads 2291362 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network
Procedia PDF Downloads 1491361 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network
Authors: Li Hui, Riyadh Hindi
Abstract:
Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network
Procedia PDF Downloads 661360 Microgrid Design Under Optimal Control With Batch Reinforcement Learning
Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion
Abstract:
Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.Keywords: batch-constrained reinforcement learning, control, design, optimal
Procedia PDF Downloads 1221359 Impact of Maternal Employment on the Overall Behavioral Development of Children
Authors: Hareem Kausar
Abstract:
Women of today’s world are energetic, enthusiastic and high-spirited. They tend to be the best in whatever they do and strive to accept and fulfil each challenge with utmost liveliness. The aim of the research was about studying the impact of Maternal Employment on the Child’s Behavioral Development. It was conducted as an initiative to study the impact factor in Pakistani culture and for deep insight to the subject using qualitative research methodology. The samples were interviewed through semi-structured interview method in three phases including two working mothers, two children and a day care center official and the data was collected and analyzed through content analysis. Further, it was linked with the literature from the west and the results show that children of working mothers tend to be sound mentally and physically but at some points they face the inner feeling of solitude. Overall, develop the mechanism in independence in their nature and behavior but maternal employment definitely affects the overall behavioral development of the children.Keywords: maternal employment, child behavior- development, childhood, impact
Procedia PDF Downloads 5511358 Amelioration of Stability and Rheological Properties of a Crude Oil-Based Drilling Mud
Authors: Hammadi Larbi, Bergane Cheikh
Abstract:
Drilling for oil is done through many mechanisms. The goal is first to dig deep and then, after arriving at the oil source, to simply suck it up. And for this, it is important to know the role of oil-based drilling muds, which had many benefits for the drilling tool and for drilling generally, and also and essentially to know the rheological behavior of the emulsion system in particular water-in-oil inverse emulsions (Water/crude oil). This work contributes to the improvement of the stability and rheological properties of crude oil-based drilling mud by organophilic clay. Experimental data from steady-state flow measurements of crude oil-based drilling mud are classically analyzed by the Herschel-Bulkley model. The effects of organophilic clay type VG69 are studied. Microscopic observation showed that the addition of quantities of organophilic clay type VG69 less than or equal to 3 g leads to the stability of inverse Water/Oil emulsions; on the other hand, for quantities greater than 3g, the emulsions are destabilized.Keywords: drilling, organophilic clay, crude oil, stability
Procedia PDF Downloads 1251357 Human Posture Estimation Based on Multiple Viewpoints
Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo
Abstract:
This study aimed to address the problem of improving the confidence of key points by fusing multi-view information, thereby estimating human posture more accurately. We first obtained multi-view image information and then used the MvP algorithm to fuse this multi-view information together to obtain a set of high-confidence human key points. We used these as the input for the Spatio-Temporal Graph Convolution (ST-GCN). ST-GCN is a deep learning model used for processing spatio-temporal data, which can effectively capture spatio-temporal relationships in video sequences. By using the MvP algorithm to fuse multi-view information and inputting it into the spatio-temporal graph convolution model, this study provides an effective method to improve the accuracy of human posture estimation and provides strong support for further research and application in related fields.Keywords: multi-view, pose estimation, ST-GCN, joint fusion
Procedia PDF Downloads 701356 Recombination Center Levels in Gold and Platinum Doped N-type Silicon for High-Speed Thyristor
Authors: Nam Chol Yu, GyongIl Chu, HoJong Ri
Abstract:
Using DLTS (Deep-level transient spectroscopy) measurement techniques, we determined the dominant recombination center levels (defects of both A and B) in gold and platinum doped n-type silicon. Also, the injection and temperature dependence of the Shockley-Read-Hall (SRH) carrier lifetime was studied under low-level injection and high-level injection. Here measurements show that the dominant level under low-level injection located at EC-0.25 eV (A) correlated to the Pt+G1 and the dominant level under high-level injection located at EC-0.54 eV (B) correlated to the Au+G4. Finally, A and B are the same dominant levels for controlling the lifetime in gold-platinum doped n-silicon.Keywords: recombination center level, lifetime, carrier lifetime control, Gold, Platinum, Silicon
Procedia PDF Downloads 681355 Chi Square Confirmation of Autonomic Functions Percentile Norms of Indian Sportspersons Withdrawn from Competitive Games and Sports
Authors: Pawan Kumar, Dhananjoy Shaw, Manoj Kumar Rathi
Abstract:
Purpose of the study were to compare between (a) frequencies among the four quartiles of percentile norms of autonomic variables from power events and (b) frequencies among the four quartiles percentile norms of autonomic variables from aerobic events of Indian sportspersons withdrawn from competitive games and sports in regard to number of samples falling in each quartile. The study was conducted on 430 males of 30 to 35 years of age. Based on the nature of game/sports the retired sportspersons were classified into power events (throwers, judo players, wrestlers, short distance swimmers, cricket fast bowlers and power lifters) and aerobic events (long distance runners, long distance swimmers, water polo players). Date was collected using ECG polygraphs. Data were processed and extracted using frequency domain analysis and time domain analysis. Collected data were computed with frequency, percentage of each quartile and finally the frequencies were compared with the chi square analysis. The finding pertaining to norm reference comparison of frequencies among the four quartiles of Indian sportspersons withdrawn from competitive games and sports from (a) power events suggests that frequency distribution in four quartile namely Q1, Q2, Q3, and Q4 are significantly different at .05 level in regard to variables namely, SDNN, Total Power (Absolute Power), HF (Absolute Power), LF (Normalized Power), HF (Normalized Power), LF/HF ratio, deep breathing test, expiratory respiratory ratio, valsalva manoeuvre, hand grip test, cold pressor test and lying to standing test, whereas, insignificantly different at .05 level in regard to variables namely, SDSD, RMSSD, SDANN, NN50 Count, pNN50 Count, LF (Absolute Power) and 30: 15 Ratio (b) aerobic events suggests that frequency distribution in four quartile are significantly different at .05 level in regard to variables namely, SDNN, LF (Normalized Power), HF (Normalized Power), LF/HF ratio, deep breathing test, expiratory respiratory ratio, hand grip test, cold pressor test, lying to standing test and 30: 15 ratio, whereas, insignificantly different at .05 level in regard to variables namely, SDSD, RMSSD. SDANN, NN50 count, pNN50 count, Total Power (Absolute Power), LF(Absolute Power) HF(Absolute Power), and valsalva manoeuvre. The study concluded that comparison of frequencies among the four quartiles of Indian retired sportspersons from power events and aerobic events are different in four quartiles in regard to selected autonomic functions, hence the developed percentile norms are not homogenously distributed across the percentile scale; hence strengthen the percentage distribution towards normal distribution.Keywords: power, aerobic, absolute power, normalized power
Procedia PDF Downloads 3531354 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception
Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu
Abstract:
Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish
Procedia PDF Downloads 1461353 Assessment of Environmental Impacts and Determination of Sustainability Level of BOOG Granite Mine Using a Mathematical Model
Authors: Gholamhassan Kakha, Mohsen Jami, Daniel Alex Merino Natorce
Abstract:
Sustainable development refers to the creation of a balance between the development and the environment too; it consists of three key principles namely environment, society and economy. These three parameters are related to each other and the imbalance occurs in each will lead to the disparity of the other parts. Mining is one of the most important tools of the economic growth and social welfare in many countries. Meanwhile, assessment of the environmental impacts has directed to the attention of planners toward the natural environment of the areas surrounded by mines and allowing for monitoring and controlling of the current situation by the designers. In this look upon, a semi-quantitative model using a matrix method is presented for assessing the environmental impacts in the BOOG Granite Mine located in Sistan and Balouchestan, one of the provinces of Iran for determining the effective factors and environmental components. For accomplishing this purpose, the initial data are collected by the experts at the next stage; the effect of the factors affects each environmental component is determined by specifying the qualitative viewpoints. Based on the results, factors including air quality, ecology, human health and safety along with the environmental damages resulted from mining activities in that area. Finally, the results gained from the assessment of the environmental impact are used to evaluate the sustainability by using Philips mathematical model. The results show that the sustainability of this area is weak, so environmental preventive measures are recommended to reduce the environmental damages to its components.Keywords: sustainable development, environmental impacts' assessment, BOOG granite, Philips mathematical model
Procedia PDF Downloads 1971352 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics
Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin
Abstract:
Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.Keywords: convolutional neural networks, deep learning, shallow correctors, sign language
Procedia PDF Downloads 1001351 A Comparison between Russian and Western Approach for Deep Foundation Design
Authors: Saeed Delara, Kendra MacKay
Abstract:
Varying methodologies are considered for pile design for both Russian and Western approaches. Although both approaches rely on toe and side frictional resistances, different calculation methods are proposed to estimate pile capacity. The Western approach relies on compactness (internal friction angle) of soil for cohesionless soils and undrained shear strength for cohesive soils. The Russian approach relies on grain size for cohesionless soils and liquidity index for cohesive soils. Though most recommended methods in the Western approaches are relatively simple methods to predict pile settlement, the Russian approach provides a detailed method to estimate single pile and pile group settlement. Details to calculate pile axial capacity and settlement using the Russian and Western approaches are discussed and compared against field test results.Keywords: pile capacity, pile settlement, Russian approach, western approach
Procedia PDF Downloads 1661350 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Liu Xuebing, Lao Xueru, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behavior recognition models, to provide empirical data such as 'pedestrian flow data and human behavioral characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, sustainable development
Procedia PDF Downloads 4181349 Investigation of Ground Disturbance Caused by Pile Driving: Case Study
Authors: Thayalan Nall, Harry Poulos
Abstract:
Piling is the most widely used foundation method for heavy structures in poor soil conditions. The geotechnical engineer can choose among a variety of piling methods, but in most cases, driving piles by impact hammer is the most cost-effective alternative. Under unfavourable conditions, driving piles can cause environmental problems, such as noise, ground movements and vibrations, with the risk of ground disturbance leading to potential damage to proposed structures. In one of the project sites in which the authors were involved, three offshore container terminals, namely CT1, CT2 and CT3, were constructed over thick compressible marine mud. The seabed was around 6m deep and the soft clay thickness within the project site varied between 9m and 20m. CT2 and CT3 were connected together and rectangular in shape and were 2600mx800m in size. CT1 was 400m x 800m in size and was located on south opposite of CT2 towards its eastern end. CT1 was constructed first and due to time and environmental limitations, it was supported on a “forest” of large diameter driven piles. CT2 and CT3 are now under construction and are being carried out using a traditional dredging and reclamation approach with ground improvement by surcharging with vertical drains. A few months after the installation of the CT1 piles, a 2600m long sand bund to 2m above mean sea level was constructed along the southern perimeter of CT2 and CT3 to contain the dredged mud that was expected to be pumped. The sand bund was constructed by sand spraying and pumping using a dredging vessel. About 2000m length of the sand bund in the west section was constructed without any major stability issues or any noticeable distress. However, as the sand bund approached the section parallel to CT1, it underwent a series of deep seated failures leading the displaced soft clay materials to heave above the standing water level. The crest of the sand bund was about 100m away from the last row of piles. There were no plausible geological reasons to conclude that the marine mud only across the CT1 region was weaker than over the rest of the site. Hence it was suspected that the pile driving by impact hammer may have caused ground movements and vibrations, leading to generation of excess pore pressures and cyclic softening of the marine mud. This paper investigates the probable cause of failure by reviewing: (1) All ground investigation data within the region; (2) Soil displacement caused by pile driving, using theories similar to spherical cavity expansion; (3) Transfer of stresses and vibrations through the entire system, including vibrations transmitted from the hammer to the pile, and the dynamic properties of the soil; and (4) Generation of excess pore pressure due to ground vibration and resulting cyclic softening. The evidence suggests that the problems encountered at the site were primarily caused by the “side effects” of the pile driving operations.Keywords: pile driving, ground vibration, excess pore pressure, cyclic softening
Procedia PDF Downloads 2351348 The Old Man And The Sea: From A Gerotranscendence Perpective
Abstract:
The Old Man and The Sea is a novella written by Ernest Hemingway that depicts an old fisherman’ journey out into the deep sea in his pursuit to catch a big fish. Through this novella, Hemingway creates a world for his protagonist, Santiago who is portrayed as an old man who has gone eighty-four days without catching a fish, at last hooks an eighteen-foot marlin, the largest he ever known. The old man endures pain and struggles to bring back to shore. Looking through the lens of gerotranscendence, we can see that the old man has his dreams, and goals in life. In his pursuit for happiness, he has fought tirelessly to ward off the shark attacks and finally he won even though only half of his fish is left. Hemingway has portrayed Santiago as an old man as a transcendent self leaping from the dimension of “The Self” to the cosmic dimension with the personal and social relationship dimension in tow. The Old Man and The Sea offers a glimpse of the struggles of an old man, who is old and gaunt but spiritually undefeated in his battle out in the sea. He is surprisingly strong and powerful despite his old age, he respects the sea, the birds. the turtles, the sharks and the fish. He can endure suffering and is focussed on achieving his goals. This is what Hemingway has portrayed Santiago to be a gerotranscendent in the eyes of the gerotranscendental approach in respect of the changes and development as seen in Santiago, the protagonist in this novella.Keywords: gerotranscendence, gerotranscendenatal, old man, the sea, hemingway
Procedia PDF Downloads 331347 Various Perspectives for the Concept of the Emotion Labor
Authors: Jae Soo Do, Kyoung-Seok Kim
Abstract:
Radical changes in the industrial environment, and spectacular developments of IT have changed the current of managements from people-centered to technology- or IT-centered. Interpersonal emotion exchanges have long become insipid and interactive services have also come as mechanical reactions. This study offers various concepts for the emotional labor based on traditional studies on emotional labor. Especially the present day, on which human emotions are subject to being served as machinized thing, is the time when the study on human emotions comes momentous. Precedent researches on emotional labors commonly and basically dealt with the relationship between the active group who performs actions and the passive group who is done with the action. This study focuses on the passive group and tries to offer a new perspective of 'liquid emotion' as a defence mechanism for the passive group from the external environment. Especially, this addresses a concrete discussion on directions of following studies on the liquid labor as a newly suggested perspective.Keywords: emotion labor, surface acting, deep acting, liquid emotion
Procedia PDF Downloads 3461346 Use of Technology to Improve Students’ Attitude in Learning Mathematics of Non- Mathematics Undergraduate Students
Authors: Asia Majeed
Abstract:
The learning of mathematics in science, engineering and social science programs can be enhanced through practical problem-solving techniques. The instructors can design their lessons with some strategies to improve students’ educational needs and accomplishments in mathematics classrooms. The use of technology in class problem solving and application sessions can enhance deep understanding of mathematics among students. As mathematician, we believe in subject specific and content-driven teaching methods. Through technology the relationship between the physical problems and the mathematical models can be analyzed. This paper is about selective use of technology in mathematics classrooms and helpful to others mathematics instructors who wishes to improve their traditional teaching techniques to improve students’ attitude in learning mathematics. These techniques corpus can be used in teaching large mathematics classes in science, technology, engineering, and social science.Keywords: attitude in learning mathematics, mathematics, non-mathematics undergraduate students, technology
Procedia PDF Downloads 2201345 Resilience Assessment of Mountain Cities from the Perspective of Disaster Prevention: Taking Chongqing as an Example
Abstract:
President Xi Jinping has clearly stated the need to more effectively advance the process of urbanization centered on people, striving to shape cities into spaces that are healthier, safer, and more livable. However, during the development and construction of mountainous cities, numerous uncertain disruptive factors have emerged, one after another, posing severe challenges to the city's overall development. Therefore, building resilient cities and creating high-quality urban ecosystems and safety systems have become the core and crux of achieving sustainable urban development. This paper takes the central urban area of Chongqing as the research object and establishes an urban resilience assessment indicator system from four dimensions: society, economy, ecology, and infrastructure. It employs the entropy weight method and TOPSIS model to assess the urban resilience level of the central urban area of Chongqing from 2019 to 2022. The results indicate that i. the resilience level of the central urban area of Chongqing is unevenly distributed, showing a spatial pattern of "high in the middle and low around"; it also demonstrates differentiation across different dimensions; ii. due to the impact of the COVID-19 pandemic, the overall resilience level of the central urban area of Chongqing has declined significantly, with low recovery capacity and slow improvement in urban resilience. Finally, based on the four selected dimensions, this paper proposes optimization strategies for urban resilience in mountainous cities, providing a basis for Chongqing to build a safe and livable new city.Keywords: mountainous urban areas, central urban area of Chongqing, entropy weight method, TOPSIS model, ArcGIS
Procedia PDF Downloads 41344 PM Air Quality of Windsor Regional Scale Transport’s Impact and Climate Change
Authors: Moustafa Osman Mohammed
Abstract:
This paper is mapping air quality model to engineering the industrial system that ultimately utilized in extensive range of energy systems, distribution resources, and end-user technologies. The model is determining long-range transport patterns contribution as area source can either traced from 48 hrs backward trajectory model or remotely described from background measurements data in those days. The trajectory model will be run within stable conditions and quite constant parameters of the atmospheric pressure at the most time of the year. Air parcel trajectory is necessary for estimating the long-range transport of pollutants and other chemical species. It provides a better understanding of airflow patterns. Since a large amount of meteorological data and a great number of calculations are required to drive trajectory, it will be very useful to apply HYPSLIT model to locate areas and boundaries influence air quality at regional location of Windsor. 2–days backward trajectories model at high and low concentration measurements below and upward the benchmark which was areas influence air quality measurement levels. The benchmark level will be considered as 30 (μg/m3) as the moderate level for Ontario region. Thereby, air quality model is incorporating a midpoint concept between biotic and abiotic components to broaden the scope of quantification impact. The later outcomes’ theories of environmental obligation suggest either a recommendation or a decision of what is a legislative should be achieved in mitigation measures of air emission impact ultimately.Keywords: air quality, management systems, environmental impact assessment, industrial ecology, climate change
Procedia PDF Downloads 2471343 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks
Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz
Abstract:
Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.Keywords: customer relationship management, churn prediction, telecom industry, deep learning, artificial neural networks
Procedia PDF Downloads 1441342 Seismic Inversion to Improve the Reservoir Characterization: Case Study in Central Blue Nile Basin, Sudan
Authors: Safwat E. Musa, Nuha E. Mohamed, Nuha A. Bagi
Abstract:
In this study, several crossplots of the P-impedance with the lithology logs (gamma ray, neutron porosity, deep resistivity, water saturation and Vp/Vs curves) were made in three available wells, which were drilled in central part of the Blue Nile basin in depths varies from 1460 m to 1600 m. These crossplots were successful to discriminate between sand and shale when using P-Impedance values, and between the wet sand and the pay sand when using both P-impedance and Vp/Vs together. Also, some impedance sections were converted to porosity sections using linear formula to characterize the reservoir in terms of porosity. The used crossplots were created on log resolution, while the seismic resolution can identify only the reservoir, unless a 3D seismic angle stacks were available; then it would be easier to identify the pay sand with great confidence; through high resolution seismic inversion and geostatistical approach when using P-impedance and Vp/Vs volumes.Keywords: basin, Blue Nile, inversion, seismic
Procedia PDF Downloads 4301341 The Effect of Choke on the Efficiency of Coaxial Antenna for Percutaneous Microwave Coagulation Therapy for Hepatic Tumor
Authors: Surita Maini
Abstract:
There are many perceived advantages of microwave ablation have driven researchers to develop innovative antennas to effectively treat deep-seated, non-resectable hepatic tumors. In this paper a coaxial antenna with a miniaturized sleeve choke has been discussed for microwave interstitial ablation therapy, in order to reduce backward heating effects irrespective of the insertion depth into the tissue. Two dimensional Finite Element Method (FEM) is used to simulate and measure the results of miniaturized sleeve choke antenna. This paper emphasizes the importance of factors that can affect simulation accuracy, which include mesh resolution, surface heating and reflection coefficient. Quarter wavelength choke effectiveness has been discussed by comparing it with the unchoked antenna with same dimensions.Keywords: microwave ablation, tumor, finite element method, coaxial slot antenna, coaxial dipole antenna
Procedia PDF Downloads 357