Search results for: count data
24481 Cooperative Cross Layer Topology for Concurrent Transmission Scheduling Scheme in Broadband Wireless Networks
Authors: Gunasekaran Raja, Ramkumar Jayaraman
Abstract:
In this paper, we consider CCL-N (Cooperative Cross Layer Network) topology based on the cross layer (both centralized and distributed) environment to form network communities. Various performance metrics related to the IEEE 802.16 networks are discussed to design CCL-N Topology. In CCL-N topology, nodes are classified as master nodes (Master Base Station [MBS]) and serving nodes (Relay Station [RS]). Nodes communities are organized based on the networking terminologies. Based on CCL-N Topology, various simulation analyses for both transparent and non-transparent relays are tabulated and throughput efficiency is calculated. Weighted load balancing problem plays a challenging role in IEEE 802.16 network. CoTS (Concurrent Transmission Scheduling) Scheme is formulated in terms of three aspects – transmission mechanism based on identical communities, different communities and identical node communities. CoTS scheme helps in identifying the weighted load balancing problem. Based on the analytical results, modularity value is inversely proportional to that of the error value. The modularity value plays a key role in solving the CoTS problem based on hop count. The transmission mechanism for identical node community has no impact since modularity value is same for all the network groups. In this paper three aspects of communities based on the modularity value which helps in solving the problem of weighted load balancing and CoTS are discussed.Keywords: cross layer network topology, concurrent scheduling, modularity value, network communities and weighted load balancing
Procedia PDF Downloads 26524480 Vulnerability of Groundwater to Pollution in Akwa Ibom State, Southern Nigeria, using the DRASTIC Model and Geographic Information System (GIS)
Authors: Aniedi A. Udo, Magnus U. Igboekwe, Rasaaq Bello, Francis D. Eyenaka, Michael C. Ohakwere-Eze
Abstract:
Groundwater vulnerability to pollution was assessed in Akwa Ibom State, Southern Nigeria, with the aim of locating areas with high potentials for resource contamination, especially due to anthropogenic influence. The electrical resistivity method was utilized in the collection of the initial field data. Additional data input, which included depth to static water level, drilled well log data, aquifer recharge data, percentage slope, as well as soil information, were sourced from secondary sources. The initial field data were interpreted both manually and with computer modeling to provide information on the geoelectric properties of the subsurface. Interpreted results together with the secondary data were used to develop the DRASTIC thematic maps. A vulnerability assessment was performed using the DRASTIC model in a GIS environment and areas with high vulnerability which needed immediate attention was clearly mapped out and presented using an aquifer vulnerability map. The model was subjected to validation and the rate of validity was 73% within the area of study.Keywords: groundwater, vulnerability, DRASTIC model, pollution
Procedia PDF Downloads 20724479 A Review Paper on Data Security in Precision Agriculture Using Internet of Things
Authors: Tonderai Muchenje, Xolani Mkhwanazi
Abstract:
Precision agriculture uses a number of technologies, devices, protocols, and computing paradigms to optimize agricultural processes. Big data, artificial intelligence, cloud computing, and edge computing are all used to handle the huge amounts of data generated by precision agriculture. However, precision agriculture is still emerging and has a low level of security features. Furthermore, future solutions will demand data availability and accuracy as key points to help farmers, and security is important to build robust and efficient systems. Since precision agriculture comprises a wide variety and quantity of resources, security addresses issues such as compatibility, constrained resources, and massive data. Moreover, conventional protection schemes used in the traditional internet may not be useful for agricultural systems, creating extra demands and opportunities. Therefore, this paper aims at reviewing state of the art of precision agriculture security, particularly in open field agriculture, discussing its architecture, describing security issues, and presenting the major challenges and future directions.Keywords: precision agriculture, security, IoT, EIDE
Procedia PDF Downloads 9024478 Commercial Automobile Insurance: A Practical Approach of the Generalized Additive Model
Authors: Nicolas Plamondon, Stuart Atkinson, Shuzi Zhou
Abstract:
The insurance industry is usually not the first topic one has in mind when thinking about applications of data science. However, the use of data science in the finance and insurance industry is growing quickly for several reasons, including an abundance of reliable customer data, ferocious competition requiring more accurate pricing, etc. Among the top use cases of data science, we find pricing optimization, customer segmentation, customer risk assessment, fraud detection, marketing, and triage analytics. The objective of this paper is to present an application of the generalized additive model (GAM) on a commercial automobile insurance product: an individually rated commercial automobile. These are vehicles used for commercial purposes, but for which there is not enough volume to apply pricing to several vehicles at the same time. The GAM model was selected as an improvement over GLM for its ease of use and its wide range of applications. The model was trained using the largest split of the data to determine model parameters. The remaining part of the data was used as testing data to verify the quality of the modeling activity. We used the Gini coefficient to evaluate the performance of the model. For long-term monitoring, commonly used metrics such as RMSE and MAE will be used. Another topic of interest in the insurance industry is to process of producing the model. We will discuss at a high level the interactions between the different teams with an insurance company that needs to work together to produce a model and then monitor the performance of the model over time. Moreover, we will discuss the regulations in place in the insurance industry. Finally, we will discuss the maintenance of the model and the fact that new data does not come constantly and that some metrics can take a long time to become meaningful.Keywords: insurance, data science, modeling, monitoring, regulation, processes
Procedia PDF Downloads 7624477 Modeling Pan Evaporation Using Intelligent Methods of ANN, LSSVM and Tree Model M5 (Case Study: Shahroud and Mayamey Stations)
Authors: Hamidreza Ghazvinian, Khosro Ghazvinian, Touba Khodaiean
Abstract:
The importance of evaporation estimation in water resources and agricultural studies is undeniable. Pan evaporation are used as an indicator to determine the evaporation of lakes and reservoirs around the world due to the ease of interpreting its data. In this research, intelligent models were investigated in estimating pan evaporation on a daily basis. Shahroud and Mayamey were considered as the studied cities. These two cities are located in Semnan province in Iran. The mentioned cities have dry weather conditions that are susceptible to high evaporation potential. Meteorological data of 11 years of synoptic stations of Shahrood and Mayamey cities were used. The intelligent models used in this study are Artificial Neural Network (ANN), Least Squares Support Vector Machine (LSSVM), and M5 tree models. Meteorological parameters of minimum and maximum air temperature (Tmax, Tmin), wind speed (WS), sunshine hours (SH), air pressure (PA), relative humidity (RH) as selected input data and evaporation data from pan (EP) to The output data was considered. 70% of data is used at the education level, and 30 % of the data is used at the test level. Models used with explanation coefficient evaluation (R2) Root of Mean Squares Error (RMSE) and Mean Absolute Error (MAE). The results for the two Shahroud and Mayamey stations showed that the above three models' operations are rather appropriate.Keywords: pan evaporation, intelligent methods, shahroud, mayamey
Procedia PDF Downloads 7424476 Influence of Some Chemical Drinking Water Parameters on Germ Count in Nalout Region, Libya
Authors: Dukali Abujnah, Mokhtar Blgacem Halbuda
Abstract:
Water is one of the world's natural resources. It is an essential source for the maintenance of human, animal, and plant life. It has a significant impact on the country's economy and all human activities. Over the past twenty years, pressure on water resources has increased due to population and industrial growth and increasing demand for agricultural and household products, which has become a major concern of the international community. The aim of this study is the physical and bacteriological analysis of drinking water in the city of Value. The study covered different locations in the city. Thirty-six groundwater samples were taken from wells and various tanks owned by the State and private wells, and the Ain Thalia spring and other samples were taken from underground water tanks. It fills up with rainwater during the rainy season. These samples were analyzed for their physical, chemical, and biological status and the results were compared to Libyan and World Health Organization drinking water specifications to assess the quality of drinking water in the city of Value. Physical and chemical analysis of water samples showed acceptable values for acidity and electrical conductivity, and turbidity was found in water samples collected from underground reservoirs compared to Libyan and World Health Organization standards. The highest levels of electrical conductivity and alkalinity, TDS, and water hardness in the samples collected were below the maximum acceptable levels for drinking water as recommended by Libyan and World Health Organization specifications. The biological test results also showed that the water samples were free of intestinal bacteria.Keywords: quality, agriculture, region, reservoir, evaluation
Procedia PDF Downloads 9124475 Generating Insights from Data Using a Hybrid Approach
Authors: Allmin Susaiyah, Aki Härmä, Milan Petković
Abstract:
Automatic generation of insights from data using insight mining systems (IMS) is useful in many applications, such as personal health tracking, patient monitoring, and business process management. Existing IMS face challenges in controlling insight extraction, scaling to large databases, and generalising to unseen domains. In this work, we propose a hybrid approach consisting of rule-based and neural components for generating insights from data while overcoming the aforementioned challenges. Firstly, a rule-based data 2CNL component is used to extract statistically significant insights from data and represent them in a controlled natural language (CNL). Secondly, a BERTSum-based CNL2NL component is used to convert these CNLs into natural language texts. We improve the model using task-specific and domain-specific fine-tuning. Our approach has been evaluated using statistical techniques and standard evaluation metrics. We overcame the aforementioned challenges and observed significant improvement with domain-specific fine-tuning.Keywords: data mining, insight mining, natural language generation, pre-trained language models
Procedia PDF Downloads 11924474 Removal of Diesel by Soil Washing Technologies Using a Non-Ionic Surfactant
Authors: Carolina Guatemala, Josefina Barrera
Abstract:
A large number of soils highly polluted with recalcitrant hydrocarbons and the limitation of the current bioremediation methods continue being the drawback for an efficient recuperation of these under safe conditions. In this regard, soil washing by degradable surfactants is an alternative option knowing the capacity of surfactants to desorb oily organic compounds. The aim of this study was the establishment of the washing conditions of a soil polluted with diesel, using a nonionic surfactant. A soil polluted with diesel was used. This was collected near to a polluted railway station zone. The soil was dried at room temperature and sieved to a mesh size 10 for its physicochemical and biological characterization. Washing of the polluted soil was performed with surfactant solutions in a 1:5 ratio (5g of soil per 25 mL of the surfactant solution). This was carried out at 28±1 °C and 150 rpm for 72 hours. The factors tested were the Tween 80 surfactant concentration (1, 2, 5 and 10%) and the treatment time. Residual diesel concentration was determined every 24 h. The soil was of a sandy loam texture with a low concentration of organic matter (3.68%) and conductivity (0.016 dS.m- 1). The soil had a pH of 7.63 which was slightly alkaline and a Total Petroleum Hydrocarbon content (TPH) of 11,600 ± 1058.38 mg/kg. The high TPH content could explain the low microbial count of 1.1105 determined as UFC per gram of dried soil. Within the range of the surfactant concentration tested for washing the polluted soil under study, TPH removal increased proportionally with the surfactant concentration. 5080.8 ± 422.2 ppm (43.8 ± 3.64 %) was the maximal concentration of TPH removed after 72 h of contact with surfactant pollution at 10%. Despite the high percentage of hydrocarbons removed, it is assumed that a higher concentration of these could be removed if the washing process is extended or is carried out by stages. Soil washing through the use of surfactants as a desorbing agent was found to be a viable and effective technology for the rapid recovery of soils highly polluted with recalcitrant hydrocarbons.Keywords: diesel, hydrocarbons, soil washing, tween 80
Procedia PDF Downloads 14224473 Review of K0-Factors and Related Nuclear Data of the Selected Radionuclides for Use in K0-NAA
Authors: Manh-Dung Ho, Van-Giap Pham, Van-Doanh Ho, Quang-Thien Tran, Tuan-Anh Tran
Abstract:
The k0-factors and related nuclear data, i.e. the Q0-factors and effective resonance energies (Ēr) of the selected radionuclides which are used in the k0-based neutron activation analysis (k0-NAA), were critically reviewed to be integrated in the “k0-DALAT” software. The k0- and Q0-factors of some short-lived radionuclides: 46mSc, 110Ag, 116m2In, 165mDy, and 183mW, were experimentally determined at the Dalat research reactor. The other radionuclides selected are: 20F, 36S, 49Ca, 60mCo, 60Co, 75Se, 77mSe, 86mRb, 115Cd, 115mIn, 131Ba, 134mCs, 134Cs, 153Gd, 153Sm, 159Gd, 170Tm, 177mYb, 192Ir, 197mHg, 239U and 239Np. The reviewed data as compared with the literature data were biased within 5.6-7.3% in which the experimental re-determined factors were within 6.1 and 7.3%. The NIST standard reference materials: Oyster Tissue (1566b), Montana II Soil (2711a) and Coal Fly Ash (1633b) were used to validate the new reviewed data showing that the new data gave an improved k0-NAA using the “k0-DALAT” software with a factor of 4.5-6.8% for the investigated radionuclides.Keywords: neutron activation analysis, k0-based method, k0 factor, Q0 factor, effective resonance energy
Procedia PDF Downloads 12624472 Optimizing Electric Vehicle Charging with Charging Data Analytics
Authors: Tayyibah Khanam, Mohammad Saad Alam, Sanchari Deb, Yasser Rafat
Abstract:
Electric vehicles are considered as viable replacements to gasoline cars since they help in reducing harmful emissions and stimulate power generation through renewable energy sources, hence contributing to sustainability. However, one of the significant obstacles in the mass deployment of electric vehicles is the charging time anxiety among users and, thus, the subsequent large waiting times for available chargers at charging stations. Data analytics, on the other hand, has revolutionized the decision-making tasks of management and operating systems since its arrival. In this paper, we attempt to optimize the choice of EV charging stations for users in their vicinity by minimizing the time taken to reach the charging stations and the waiting times for available chargers. Time taken to travel to the charging station is calculated by the Google Maps API and the waiting times are predicted by polynomial regression of the historical data stored. The proposed framework utilizes real-time data and historical data from all operating charging stations in the city and assists the user in finding the best suitable charging station for their current situation and can be implemented in a mobile phone application. The algorithm successfully predicts the most optimal choice of a charging station and the minimum required time for various sample data sets.Keywords: charging data, electric vehicles, machine learning, waiting times
Procedia PDF Downloads 19424471 Finding Data Envelopment Analysis Targets Using Multi-Objective Programming in DEA-R with Stochastic Data
Authors: R. Shamsi, F. Sharifi
Abstract:
In this paper, we obtain the projection of inefficient units in data envelopment analysis (DEA) in the case of stochastic inputs and outputs using the multi-objective programming (MOP) structure. In some problems, the inputs might be stochastic while the outputs are deterministic, and vice versa. In such cases, we propose a multi-objective DEA-R model because in some cases (e.g., when unnecessary and irrational weights by the BCC model reduce the efficiency score), an efficient decision-making unit (DMU) is introduced as inefficient by the BCC model, whereas the DMU is considered efficient by the DEA-R model. In some other cases, only the ratio of stochastic data may be available (e.g., the ratio of stochastic inputs to stochastic outputs). Thus, we provide a multi-objective DEA model without explicit outputs and prove that the input-oriented MOP DEA-R model in the invariable return to scale case can be replaced by the MOP-DEA model without explicit outputs in the variable return to scale and vice versa. Using the interactive methods for solving the proposed model yields a projection corresponding to the viewpoint of the DM and the analyst, which is nearer to reality and more practical. Finally, an application is provided.Keywords: DEA-R, multi-objective programming, stochastic data, data envelopment analysis
Procedia PDF Downloads 10524470 Inhibitory Activity of Lactic Acid Bacteria on the Growth and Biogenic Amines Production by Foodborne Pathogens and Food Spoilage Bacteria
Authors: Abderrezzak khatib
Abstract:
Biogenic amines are low molecular weight nitrogenous compounds that have the potential to accumulate in food, posing a significant risk to food safety and human health. In this study, we investigated the inhibitory activity of three strains of lactic acid bacteria (LAB), against the growth and production of biogenic amines by both foodborne pathogens and food spoilage bacteria. The foodborne pathogens studied included Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella Paratyphi, while the food spoilage bacteria comprised Enterobacter cloacae and Proteus mirabilis. The methodology involved bacterial growth determination in petri dishes, bacterial culture extraction and derivatization, and biogenic amine analysis using HPLC. Our findings revealed that the inhibitory effects of LAB on these pathogens varied, with all three LAB strains demonstrating a remarkable reduction in the total bacterial count when combined with most pathogens, compared to the individual cultures of the pathogens. Furthermore, the presence of LAB in co-cultures with the pathogens resulted in a significant decrease in the production of tyramine and other biogenic amines by the pathogens themselves. These results suggest that LAB strains hold considerable promise in preventing the accumulation of biogenic amines in food products, thereby enhancing food safety. This study provides insights into the potential utilization of LAB in the context of preserving and ensuring the safety of food products. It highlights the significance of conducting additional research endeavors to elucidate the underlying mechanisms involved and to identify the precise bioactive compounds that are responsible for the observed inhibitory effects.Keywords: food safety, lactic acid bacteria, foodborne pathogens, food spoilage bacteria, biogenic amines, tyrosine
Procedia PDF Downloads 5524469 Integrated Model for Enhancing Data Security Processing Time in Cloud Computing
Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali
Abstract:
Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a simple user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.Keywords: cloud computing, data security, SAAS, PAAS, IAAS, Blowfish
Procedia PDF Downloads 35824468 Comparison of Statistical Methods for Estimating Missing Precipitation Data in the River Subbasin Lenguazaque, Colombia
Authors: Miguel Cañon, Darwin Mena, Ivan Cabeza
Abstract:
In this work was compared and evaluated the applicability of statistical methods for the estimation of missing precipitations data in the basin of the river Lenguazaque located in the departments of Cundinamarca and Boyacá, Colombia. The methods used were the method of simple linear regression, distance rate, local averages, mean rates, correlation with nearly stations and multiple regression method. The analysis used to determine the effectiveness of the methods is performed by using three statistical tools, the correlation coefficient (r2), standard error of estimation and the test of agreement of Bland and Altmant. The analysis was performed using real rainfall values removed randomly in each of the seasons and then estimated using the methodologies mentioned to complete the missing data values. So it was determined that the methods with the highest performance and accuracy in the estimation of data according to conditions that were counted are the method of multiple regressions with three nearby stations and a random application scheme supported in the precipitation behavior of related data sets.Keywords: statistical comparison, precipitation data, river subbasin, Bland and Altmant
Procedia PDF Downloads 46724467 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network
Authors: Li Qingjian, Li Ke, He Chun, Huang Yong
Abstract:
In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.Keywords: DBN, SOM, pattern classification, hyperspectral, data compression
Procedia PDF Downloads 34124466 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images
Authors: Masood Varshosaz, Kamyar Hasanpour
Abstract:
In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.Keywords: human recognition, deep learning, drones, disaster mitigation
Procedia PDF Downloads 9324465 Emotional Artificial Intelligence and the Right to Privacy
Authors: Emine Akar
Abstract:
The majority of privacy-related regulation has traditionally focused on concepts that are perceived to be well-understood or easily describable, such as certain categories of data and personal information or images. In the past century, such regulation appeared reasonably suitable for its purposes. However, technologies such as AI, combined with ever-increasing capabilities to collect, process, and store “big data”, not only require calibration of these traditional understandings but may require re-thinking of entire categories of privacy law. In the presentation, it will be explained, against the background of various emerging technologies under the umbrella term “emotional artificial intelligence”, why modern privacy law will need to embrace human emotions as potentially private subject matter. This argument can be made on a jurisprudential level, given that human emotions can plausibly be accommodated within the various concepts that are traditionally regarded as the underlying foundation of privacy protection, such as, for example, dignity, autonomy, and liberal values. However, the practical reasons for regarding human emotions as potentially private subject matter are perhaps more important (and very likely more convincing from the perspective of regulators). In that respect, it should be regarded as alarming that, according to most projections, the usefulness of emotional data to governments and, particularly, private companies will not only lead to radically increased processing and analysing of such data but, concerningly, to an exponential growth in the collection of such data. In light of this, it is also necessity to discuss options for how regulators could address this emerging threat.Keywords: AI, privacy law, data protection, big data
Procedia PDF Downloads 8824464 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform
Authors: Reza Mohammadzadeh
Abstract:
The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.Keywords: data model, geotechnical risks, machine learning, underground coal mining
Procedia PDF Downloads 27424463 Classification of Poverty Level Data in Indonesia Using the Naïve Bayes Method
Authors: Anung Style Bukhori, Ani Dijah Rahajoe
Abstract:
Poverty poses a significant challenge in Indonesia, requiring an effective analytical approach to understand and address this issue. In this research, we applied the Naïve Bayes classification method to examine and classify poverty data in Indonesia. The main focus is on classifying data using RapidMiner, a powerful data analysis platform. The analysis process involves data splitting to train and test the classification model. First, we collected and prepared a poverty dataset that includes various factors such as education, employment, and health..The experimental results indicate that the Naïve Bayes classification model can provide accurate predictions regarding the risk of poverty. The use of RapidMiner in the analysis process offers flexibility and efficiency in evaluating the model's performance. The classification produces several values to serve as the standard for classifying poverty data in Indonesia using Naive Bayes. The accuracy result obtained is 40.26%, with a moderate recall result of 35.94%, a high recall result of 63.16%, and a low recall result of 38.03%. The precision for the moderate class is 58.97%, for the high class is 17.39%, and for the low class is 58.70%. These results can be seen from the graph below.Keywords: poverty, classification, naïve bayes, Indonesia
Procedia PDF Downloads 5524462 Web Search Engine Based Naming Procedure for Independent Topic
Authors: Takahiro Nishigaki, Takashi Onoda
Abstract:
In recent years, the number of document data has been increasing since the spread of the Internet. Many methods have been studied for extracting topics from large document data. We proposed Independent Topic Analysis (ITA) to extract topics independent of each other from large document data such as newspaper data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis. The topic represented by ITA is represented by a set of words. However, the set of words is quite different from the topics the user imagines. For example, the top five words with high independence of a topic are as follows. Topic1 = {"scor", "game", "lead", "quarter", "rebound"}. This Topic 1 is considered to represent the topic of "SPORTS". This topic name "SPORTS" has to be attached by the user. ITA cannot name topics. Therefore, in this research, we propose a method to obtain topics easy for people to understand by using the web search engine, topics given by the set of words given by independent topic analysis. In particular, we search a set of topical words, and the title of the homepage of the search result is taken as the topic name. And we also use the proposed method for some data and verify its effectiveness.Keywords: independent topic analysis, topic extraction, topic naming, web search engine
Procedia PDF Downloads 11924461 Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas
Authors: Ziad Abdeldayem, Jakub Markiewicz, Kunal Kansara, Laura Edwards
Abstract:
Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as filtering. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m.Keywords: airborne laser scanning, digital terrain models, filtering, forested areas
Procedia PDF Downloads 13924460 Estimating the Life-Distribution Parameters of Weibull-Life PV Systems Utilizing Non-Parametric Analysis
Authors: Saleem Z. Ramadan
Abstract:
In this paper, a model is proposed to determine the life distribution parameters of the useful life region for the PV system utilizing a combination of non-parametric and linear regression analysis for the failure data of these systems. Results showed that this method is dependable for analyzing failure time data for such reliable systems when the data is scarce.Keywords: masking, bathtub model, reliability, non-parametric analysis, useful life
Procedia PDF Downloads 56224459 Preliminary Design of Maritime Energy Management System: Naval Architectural Approach to Resolve Recent Limitations
Authors: Seyong Jeong, Jinmo Park, Jinhyoun Park, Boram Kim, Kyoungsoo Ahn
Abstract:
Energy management in the maritime industry is being required by economics and in conformity with new legislative actions taken by the International Maritime Organization (IMO) and the European Union (EU). In response, the various performance monitoring methodologies and data collection practices have been examined by different stakeholders. While many assorted advancements in operation and technology are applicable, their adoption in the shipping industry stays small. This slow uptake can be considered due to many different barriers such as data analysis problems, misreported data, and feedback problems, etc. This study presents a conceptual design of an energy management system (EMS) and proposes the methodology to resolve the limitations (e.g., data normalization using naval architectural evaluation, management of misrepresented data, and feedback from shore to ship through management of performance analysis history). We expect this system to make even short-term charterers assess the ship performance properly and implement sustainable fleet control.Keywords: data normalization, energy management system, naval architectural evaluation, ship performance analysis
Procedia PDF Downloads 44924458 Hemato-Biochemical Studies on Naturally Infected Camels with Trypanosomiasis
Authors: Khalid Mehmood, Riaz Hussain, Rao Z. Abbas, Tariq Abbas, Abdul Ghaffar, Ahmad J. Sabir
Abstract:
Blood born diseases such as trypanosomiasis have negative impacts on health, production and working efficiency of camels in different camel-rearing areas of the world including Pakistan. In present study blood samples were collected from camels kept at the desert condition of cholistan to estimate the prevalence of trypanosomiasis and hemato-biochemical changes in naturally infected cases. Results showed an overall 9.31% prevalence of trypanosomiasis in camels. Various clinical signs such as pyrexia, occasional shivering, inappetence, urticaria, swelling, lethargy, going down in condition and edema of pads were observed in few cases. The statistical analysis did not show significant association of age and sex with trypanosomiasis. However, results revealed significantly decreased values of total erythrocyte counts, packed cell volume, hemoglobin concentration, mean corpuscular hemoglobin concentration, serum total proteins and albumin while increased values of mean corpuscular volume was recorded in infected animals as compared to healthy. A significant (P<0.01) increased values of total leukocyte count, monocyte, lymphocyte, neutrophils, and eosinophils was recorded in infected animals. Moreover, microscopic examination of blood films obtained from naturally infected cases showed the presence of parasite and various morphological changes in cells such as stomatocyte, hyperchromasia, and polychromasia. Significantly increased values of different hepatic enzymes including alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) were also recorded.Keywords: camel, hematological indices, serum enzymes, Trypanosomiasis
Procedia PDF Downloads 52624457 Geospatial Data Complexity in Electronic Airport Layout Plan
Authors: Shyam Parhi
Abstract:
Airports GIS program collects Airports data, validate and verify it, and stores it in specific database. Airports GIS allows authorized users to submit changes to airport data. The verified data is used to develop several engineering applications. One of these applications is electronic Airport Layout Plan (eALP) whose primary aim is to move from paper to digital form of ALP. The first phase of development of eALP was completed recently and it was tested for a few pilot program airports across different regions. We conducted gap analysis and noticed that a lot of development work is needed to fine tune at least six mandatory sheets of eALP. It is important to note that significant amount of programming is needed to move from out-of-box ArcGIS to a much customized ArcGIS which will be discussed. The ArcGIS viewer capability to display essential features like runway or taxiway or the perpendicular distance between them will be discussed. An enterprise level workflow which incorporates coordination process among different lines of business will be highlighted.Keywords: geospatial data, geology, geographic information systems, aviation
Procedia PDF Downloads 41624456 Anisotropic Total Fractional Order Variation Model in Seismic Data Denoising
Authors: Jianwei Ma, Diriba Gemechu
Abstract:
In seismic data processing, attenuation of random noise is the basic step to improve quality of data for further application of seismic data in exploration and development in different gas and oil industries. The signal-to-noise ratio of the data also highly determines quality of seismic data. This factor affects the reliability as well as the accuracy of seismic signal during interpretation for different purposes in different companies. To use seismic data for further application and interpretation, we need to improve the signal-to-noise ration while attenuating random noise effectively. To improve the signal-to-noise ration and attenuating seismic random noise by preserving important features and information about seismic signals, we introduce the concept of anisotropic total fractional order denoising algorithm. The anisotropic total fractional order variation model defined in fractional order bounded variation is proposed as a regularization in seismic denoising. The split Bregman algorithm is employed to solve the minimization problem of the anisotropic total fractional order variation model and the corresponding denoising algorithm for the proposed method is derived. We test the effectiveness of theproposed method for synthetic and real seismic data sets and the denoised result is compared with F-X deconvolution and non-local means denoising algorithm.Keywords: anisotropic total fractional order variation, fractional order bounded variation, seismic random noise attenuation, split Bregman algorithm
Procedia PDF Downloads 20724455 Investigating the Role of Lactiplantibacillus Plantarum vs. Spontaneous Fermentation in Improving Nutritional and Consumer Safety of the Fermented White Cabbage Sprouts
Authors: Anam Layla, Qamar Abbas Syed, Tahir Zahoor, Muhammad Shahid
Abstract:
Brassicaceae sprouts are promising candidates for functional food because of their unique phytochemistry and high nutrient density compared to their seeds and matured vegetables. Despite being admired for their health-promoting properties, white cabbage sprouts have been least explored for their nutritional significance and behavior to lactic acid fermentation. This study aimed to investigate the role of lactic acid fermentation i.e., inoculum vs. spontaneous, in reducing intrinsic toxicants load and improving nutrients delivering potential of the white cabbage sprouts. White cabbage sprouts with a 5 – 7 cm average size were processed as raw, blanched, Lactiplantibacillus plantarum inoculated fermentation and spontaneous fermentation. Plant material was dehydrated at 40˚C and evaluated for microbiological quality, macronutrients, minerals, and anti-nutrient contents. The results indicate L. plantarum inoculum fermentation of blanched cabbage sprouts (IF-BCS) to increase lactic acid bacteria count of the sprouts from 0.97 to 8.47 log CFU/g. Compared with the raw cabbage sprouts (RCS), inoculum fermented-raw cabbage sprouts (IF-RCS), and spontaneous fermented-raw cabbage sprouts (SF-RCS), the highest content of Ca (447 mg/ 100g d.w.), Mg (204 mg/100g d.w.), Fe (9.3 mg/100g d.w.), Zn (5 mg/100g d.w.) and Cu (0.5 mg/100g d.w.) were recorded in IF-BCS. L. plantarum led fermentation of BCS demonstrated a reduction in phytates, tannins, and oxalates contents at a rate of 42%, 66%, and 53%, respectively, while standalone lactic acid fermentation of the raw sprouts reduced the burden of anti-nutrients in a range between 32 to 56%. The results suggest L. plantarum led lactic acid fermentation coupled with sprouts blanching is the most promising way to improve the nutritional quality and safety of the white cabbage sprouts.Keywords: lactic acid fermentation, anti-nutrients, mineral content, nutritional quality
Procedia PDF Downloads 5824454 NSBS: Design of a Network Storage Backup System
Authors: Xinyan Zhang, Zhipeng Tan, Shan Fan
Abstract:
The first layer of defense against data loss is the backup data. This paper implements an agent-based network backup system used the backup, server-storage and server-backup agent these tripartite construction, and we realize the snapshot and hierarchical index in the NSBS. It realizes the control command and data flow separation, balances the system load, thereby improving the efficiency of the system backup and recovery. The test results show the agent-based network backup system can effectively improve the task-based concurrency, reasonably allocate network bandwidth, the system backup performance loss costs smaller and improves data recovery efficiency by 20%.Keywords: agent, network backup system, three architecture model, NSBS
Procedia PDF Downloads 45924453 A t-SNE and UMAP Based Neural Network Image Classification Algorithm
Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang
Abstract:
Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.Keywords: t-SNE, UMAP, fashion MNIST, neural networks
Procedia PDF Downloads 19824452 The Survival of Bifidobacterium longum in Frozen Yoghurt Ice Cream and Its Properties Affected by Prebiotics (Galacto-Oligosaccharides and Fructo-Oligosaccharides) and Fat Content
Authors: S. Thaiudom, W. Toommuangpak
Abstract:
Yoghurt ice cream (YIC) containing prebiotics and probiotics seems to be much more recognized among consumers who concern for their health. Not only can it be a benefit on consumers’ health but also its taste and freshness provide people easily accept. However, the survival of such probiotic especially Bifidobacterium longum, found in human gastrointestinal tract and to be benefit to human gut, was still needed to study in the severe condition as whipping and freezing in ice cream process. Low and full-fat yoghurt ice cream containing 2 and 10% (w/w) fat content (LYIC and FYIC), respectively was produced by mixing 20% yoghurt containing B. longum into milk ice cream mix. Fructo-oligosaccharides (FOS) or galacto-oligosaccharides (GOS) at 0, 1, and 2% (w/w) were separately used as prebiotic in order to improve the survival of B. longum. Survival of this bacteria as a function of ice cream storage time and ice cream properties were investigated. The results showed that prebiotic; especially FOS could improve viable count of B. longum. The more concentration of prebiotic used, the more is the survival of B. Longum. These prebiotics could prolong the survival of B. longum up to 60 days, and the amount of survival number was still in the recommended level (106 cfu per gram). Fat content and prebiotic did not significantly affect the total acidity and the overrun of all samples, but an increase of fat content significantly increased the fat particle size which might be because of partial coalescence found in FYIC rather than in LYIC. However, addition of GOS or FOS could reduce the fat particle size, especially in FYIC. GOS seemed to reduce the hardness of YIC rather than FOS. High fat content (10% fat) significantly influenced on lowering the melting rate of YIC better than 2% fat content due to the 3-dimension networks of fat partial coalescence theoretically occurring more in FYIC than in LYIC. However, FOS seemed to retard the melting rate of ice cream better than GOS. In conclusion, GOS and FOS in YIC with different fat content can enhance the survival of B. longum and affect physical and chemical properties of such yoghurt ice cream.Keywords: Bifidobacterium longum, prebiotic, survival, yoghurt ice cream
Procedia PDF Downloads 161